海底冷泉气泡羽流声学探测参数研究

余翼, 栾锡武, 刘鸿, 郭龙祥, 秘丛永, 石艳锋, 刘嘉程, 张豪. 海底冷泉气泡羽流声学探测参数研究[J]. 海洋地质与第四纪地质, 2019, 39(2): 188-199. doi: 10.16562/j.cnki.0256-1492.2018042401
引用本文: 余翼, 栾锡武, 刘鸿, 郭龙祥, 秘丛永, 石艳锋, 刘嘉程, 张豪. 海底冷泉气泡羽流声学探测参数研究[J]. 海洋地质与第四纪地质, 2019, 39(2): 188-199. doi: 10.16562/j.cnki.0256-1492.2018042401
YU Yi, LUAN Xiwu, LIU Hong, GUO Longxiang, MI Congyong, SHI Yanfeng, LIU Jiacheng, ZHANG Hao. Research on acoustic detection parameters for bubble plume in cold seeps[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 188-199. doi: 10.16562/j.cnki.0256-1492.2018042401
Citation: YU Yi, LUAN Xiwu, LIU Hong, GUO Longxiang, MI Congyong, SHI Yanfeng, LIU Jiacheng, ZHANG Hao. Research on acoustic detection parameters for bubble plume in cold seeps[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 188-199. doi: 10.16562/j.cnki.0256-1492.2018042401

海底冷泉气泡羽流声学探测参数研究

  • 基金项目:
    国土资源部公益性行业科研专项“海底冷泉拖曳式快速成像系统”(201511037);青岛海洋科学与技术国家实验室鳌山科技创新计划项目“深海地质过程与资源环境效应”(2016ASKJ13)
详细信息
    作者简介: 余翼(1993—), 男, 硕士生, 研究方向为海底冷泉声学探测成像, E-mail:yuyi_mail@qq.com
    通讯作者: 栾锡武(1966—), 男, 研究员, 从事海洋地球物理测量方法及数据处理方法以及大陆边缘构造演化研究, E-mail: xluan@cgs.cn
  • 中图分类号: P738

  • 蔡秋蓉编辑

Research on acoustic detection parameters for bubble plume in cold seeps

More Information
  • 对气泡羽流的声学探测是目前海底冷泉调查的主要手段。在声学探测理论基础上, 分析了声学探测过程中CW声波脉冲信号的发射频率、发射功率、声波脉冲宽度(脉冲持续时间)3个参数对海底冷泉气泡羽流探测成像的影响。同时, 结合黄、渤海老铁山水道海域海底冷泉外业调查和人工模拟冷泉实验的数据, 进一步明确了这些参数的选取原则和范围。针对声学水体剖面上出现的异常干扰带, 还提出了改变脉冲发射时延值来消除水体声学剖面图中干扰带的方法, 从而进一步优化海底冷泉气泡羽流的声学成像效果。

  • 加载中
  • 图 1  海底冷泉气柱的声学剖面(据文献[6])

    Figure 1. 

    图 2  散射截面与频率的关系(据文献[36])

    Figure 2. 

    图 3  人工模拟冷泉实验示意图

    Figure 3. 

    图 4  不同频率脉冲声学成像效果对比

    Figure 4. 

    图 5  不同频率Sv强度分布直方图对比

    Figure 5. 

    图 6  38和120kHz采集剖面对比

    Figure 6. 

    图 7  激发功率不同的条件下采集剖面对比

    Figure 7. 

    图 8  脉冲持续时间不同的条件下声学剖面对比

    Figure 8. 

    图 9  声呐数据帧时序结构示意图

    Figure 9. 

    图 10  声图中较浅海底与干扰带位置关系

    Figure 10. 

    图 11  声图中较浅海底与干扰带位置关系

    Figure 11. 

    图 12  海底描线(下)与时延处理描线(上)

    Figure 12. 

    图 13  声学干扰带消除前后对比

    Figure 13. 

    表 1  世界不同海区的声学探测实例(据文献[25])

    Table 1.  Example of acoustic detection in different sea areas of the world

    位置 水深/m 声学方法与参数 资料来源
    美国圣巴巴拉海峡 3.5kHz浅层剖面仪:带通滤波3~4kHz; Derek C Quigley等[14]
    伊比利亚半岛Cadiz湾 50~1300 Simrad EM12S-120多波束系统:主频13kHz;TOPAS系统:主频15~18kHz, 差频0.5~5 kHz, 垂向分辨率0.5~1.0m;单道地震:声源3.5~7kJ, 频率50Hz~4kHz L Somoza等[15]
    加拿大St.Lawrence河口 100~300 Simrad EM 1200多波束系统:频率95 kHz;单道地震:声源2~8kJ电火花和40in3气枪, 主频200Hz, 穿透深度300m, 最大垂向分辨率1.5m Nicolas Pinet等[16]
    Barents海 180~450 Simrad EM 1002多波束系统:频率95kHz;常规2D、3D地震系统 Helge Leth等[17]
    非洲西南部Congo Fan海区 500~3500 Hydrosweep多波束系统:频率15kHz;深拖侧扫声纳:频率75kHz, 最大分辨率0.75m;参量阵浅剖:主频18kHz和22kHz, 差频4kHz Heiko Sahling等[18]
    黑海 < 2000 Simrad EM 12S-120多波束系统:主频13kHz;MAK1海洋声学系统(侧扫声纳:低频30kHz, 高频100kHz;浅剖:主频4.5kHz, 穿透深度60m) R P Kruglyakova等[19]
    埃及尼罗河深海扇 1000~1300 AUV(Simrad EM 2000多波束系统:频率200kHz, 111波束, 120°开角, 作业深度距海底70m, 分辨率1.0m) S Dupre等[20]
    爱尔兰Porcupine盆地 300~900 3.5kHz浅剖;侧扫声纳频率30kHz;单道地震声源500J电火花;常规2D、3D地震系统 P Van Rensbergen等[21.22]
    北海Gullfaks油气田 150~250 ROV(多波束系统、侧扫声纳、浅地层剖面) M Hovland等[23]
    南黄海济州岛近海 40~100 3.5kHz浅剖;Simrad EA 500单波束测深:频率208kHz K S Jeong等[24]
    下载: 导出CSV

    表 2  不同水深时冷泉羽流气泡的共振频率

    Table 2.  Resonant freguency of seep bubbles in different water depths

    单位:Hz
    水深/m 2 10 20 30 40 50 100 200 500
    常见气泡(直径0.5~5mm) 1429~
    14285
    1844~
    18441
    2259~
    22586
    2608~
    26080
    2916~
    29158
    3194~
    31941
    4325~
    43249
    5976~
    59757
    9312~
    93124
    中等气泡(直径2.5mm) 2857 3688 4517 5216 5832 6388 8650 11951 18625
    易破碎的大气泡(直径8mm) 893 1153 1412 1630 1822 1996 2703 3735 5820
    下载: 导出CSV

    表 3  功率和脉冲宽度实验参数

    Table 3.  Experimental parameters for power and pulse width

    38kHz 120kHz
    序号 发射功率/W 脉冲持续时间/ms 序号 发射功率/W 脉冲持续时间/ms
    A1 200 0.256 B1 100 0.064
    A2 400 0.256 B2 50 0.128
    A3 1000 0.256 B3 100 0.128
    A4 2000 0.256 B4 50 0.256
    A5 200 0.512 B5 100 0.256
    A6 400 0.512 B6 125 0.256
    A7 1000 0.512 B7 200 0.256
    A8 2000 0.512 B8 250 0.256
    A9 400 1.024 B9 50 0.512
    A10 1000 1.024 B10 100 0.512
    A11 2000 1.024 B11 50 1.024
    A12 200 2.048 B12 100 1.024
    A13 400 2.048 B13 250 1.024
    A14 1000 2.048
    A15 400 4.096
    下载: 导出CSV
  • [1]

    席世川, 张鑫, 王冰.海底冷泉标志与主要冷泉区的分布和比较[J].海洋地质前沿, 2017, 33(2):7-18. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201702002

    XI Shichuan, ZHANG Xin, WANG Bind, et al. The indicators of seabed cold seep and comparison among main distribution areas[J]. Marine Geology Frontiers, 2017, 33(2):7-18. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201702002

    [2]

    陈多福, 陈先沛, 陈光谦.冷泉流体沉积碳酸盐岩的地质地球化学特征[J].沉积学报, 2002, 20(1):34-40. doi: 10.3969/j.issn.1000-0550.2002.01.007

    CHEN Duofu, CHEN Xianpei, CHEN Guangqian. Geological and geochemical characteristics of Cold Seepage sedimentary carbonate rocks [J]. Journal of Sedimentation, 2002, 20(1):34-40. doi: 10.3969/j.issn.1000-0550.2002.01.007

    [3]

    栾锡武.海底冷泉的成因机制[C].中国地球物理学会第二十四届年会论文集, 2008.

    LUAN Xiwu. The genetic mechanism of the seabed cold seep[C]. The twenty -fourth annual meeting of the Chinese Geophysical Society, 2008.

    [4]

    Kowsmann R O, Carvalho M D. Erosional event causing gas-venting on the upper continental slope[J]. Campos Basin, Brazil, 2002. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0278-4343(02)00060-2/

    [5]

    栾锡武, 秦蕴珊.冲绳海槽宫古段西部槽底海底气泉的发现[J].科学通报, 2005, 50(8):802-810. doi: 10.3321/j.issn:0023-074X.2005.08.014

    LUAN Xiwu, Qin Yunshan. Discovery of submarine gas springs in Western trough of Miyako Island section of Okinawa trough[J]. Chinese Science Bulletin, 2005, 50(8):802-810. doi: 10.3321/j.issn:0023-074X.2005.08.014

    [6]

    栾锡武, 刘鸿, 岳保静.海底冷泉在旁扫声纳图像上的识别[J].现代地质, 2010, 24(3):474-480. doi: 10.3969/j.issn.1000-8527.2010.03.009

    LUAN Xiwu, LIU Hong, YUE BaoJing. Recognition of a cold seep on a side scan sonar image[J]. Geoscience, 2010, 24(3):474-480. doi: 10.3969/j.issn.1000-8527.2010.03.009

    [7]

    刘伯然.利用地震海洋学方法探测海底冷泉[C].中国地球物理学会, 2012.

    LIU Boran. Detecting submarine spring with multi-channel seismic data[C]. Chinese Geophysics Society of Chinese Geophysics, 2012.

    [8]

    樊栓狮, 刘锋, 陈多福.海洋天然气水合物的形成机理探讨[J].天然气地球科学, 2004, 15(5):524-530, 2315. doi: 10.3969/j.issn.1672-1926.2004.05.017

    FAN Shuanshi, LIU Feng, CHEN Duofu. Discussion on the formation mechanism of marine gas hydrate[J]. Natural Gas Geoscience, 2004, 15(5):524-530, 2315. doi: 10.3969/j.issn.1672-1926.2004.05.017

    [9]

    栾锡武, 赵克斌, A Obzhirov, 等.鄂霍次克海浅表层天然气水合物的勘查识别和基本特征[J].中国科学D辑:地球科学, 2008, 1:99-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200801011

    LUAN Xiwu, ZHAO Kebin, A Obzhirov, et al. Exploration identification and basic characteristics of shallow surface gas hydrates in Okhotsk sea[J]. Science in China(Series D). 2008, 1:99-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200801011

    [10]

    Garcia Gil S, Vilas F, Garcia Garcia A. Shallow gas features in incised-valley fills (RIa de Vigo, NW Spain): a case study[J]. Continental Shelf Research, 2002, 22(16):2303. doi: 10.1016/S0278-4343(02)00057-2

    [11]

    李智敏, 苟先太, 金炜东, 等.微地震信号的频率特征[J].岩土工程学报, 2008, 30(6):830-834. doi: 10.3321/j.issn:1000-4548.2008.06.009

    LI Zhimin, GOU Xiantai, JIN Weidong, et al. Frequency characteristics of micro-seismic signals[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6):830-834. doi: 10.3321/j.issn:1000-4548.2008.06.009

    [12]

    陈江欣, 宋海斌, 关永贤, 等.海底冷泉的地震海洋学初探[J].地球物理学报, 2017, 60(2):604-616.

    CHEN Jiangxin, SONG Haibin, GUAN Yongxian, et al.Preliminary study on the earthquake Oceanography of the submarine cold seep[J]. Chinese Journal of Geophysics, 2017, 60(2):604-616.

    [13]

    Urick R J. Principle of underwater sound for engineers[J]. MacGraw-Hill, New York P, 1967, 384.

    [14]

    Derek C Quigley, J Scott Hornafius, Bruce P Luyendyk, et al. Decrease in natural marine hydrocarbon seepage near Coal Oil Point, California, associated with offshore oil production[J]. Geology, 1999, 27(11):1047-1050. doi: 10.1130/0091-7613(1999)027<1047:DINMHS>2.3.CO;2

    [15]

    Somoza L, Díaz-del-Ríob V, León R. Seabed morphology and hydrocarbon seepage in the Gulf of Cadiz mud volcano area:Acoustic imagery, multibeam and ultra-high resolution seismic data[J]. Marine Geology, 2003, 195:153-176. doi: 10.1016/S0025-3227(02)00686-2

    [16]

    Nicolas Pinet, Mathieu Duchesne, Denis Lavoie, et al. Surface and subsurface signatures of gas seepage in the St. Lawrence Estuary(Canada):Significance to hydrocarbon exploration[J]. Marine and Petroleum Geology, 2008, 25:271-288. doi: 10.1016/j.marpetgeo.2007.07.011

    [17]

    Helge Leth, Marita Gading, Lars Wensaas. Hydrocarbon leakage interpreted on seismic data[J]. Marine and Petroleum Geology, 2009, 26:1304-1319. doi: 10.1016/j.marpetgeo.2008.09.008

    [18]

    Heiko Sahling, Gerhard Bohrmann, Volkhard Spiess, et al. Pockmarks in the Northern Congo Fan area, SW Africa:Complex seafloor features shaped by fluid flow[J]. Marine Geology, 2008, 249:206-225. doi: 10.1016/j.margeo.2007.11.010

    [19]

    Kruglyakova R P, Byakov Y A, Kruglyakova M V, et al. Natural oil and gas seeps on the Black Sea floor[J]. Geo-Mar Lett, 2004, 24:150-162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cc71083d06f74a73174fc901527d9040

    [20]

    Dupre S, Buffet G, Mascle J, et al. High-resolution mapping of large gas emitting mud volcanoes on the Egyptian continental margin (Nile Deep Sea Fan) by AUV surveys[J]. Mar. Geophys. Res, 2008, 29:275-290. doi: 10.1007/s11001-009-9063-3

    [21]

    Van Rensbergen P, Rabaute A, Colpaert A. Fluid migration and fluid seepage in the Connemara Field, Porcupine Basin interpreted from industrial 3D seismic and well data combined with high-resolution site survey data[J]. Int. J. Earth Sci. (Geo Rundsch), 2007, 96:185-197. doi: 10.1007/s00531-005-0021-2

    [22]

    Huvenne V A I, Bailey W R, Shannon P M, et al. The Magellan mound province in the Porcupine Basin[J]. Int. J. Earth Sci. (Geol Rundsch), 2007, 96:85-101. doi: 10.1007/s00531-005-0494-z

    [23]

    Hovland M. Discovery of prolific natural methane seeps at Gullfaks, northern North Sea[J]. Geo-Mar Lett, 2007, 27:197-201. doi: 10.1007/s00367-007-0070-6

    [24]

    Jeong K S, Cho J H, Kim S R, et al. Geophysical and geochemical observations on actively seeping hydrocarbon gases on the south-eastern Yellow Sea continental shelf[J]. Geo- Mar Lett, 2004, 24:53-62. doi: 10.1007/s00367-003-0164-8

    [25]

    赵铁虎, 张训华, 冯京.海底油气渗漏浅表层声学探测技术[J].海洋地质与第四纪地质, 2010, 30(6):149-156. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=b8d3f18a-d0c5-4f52-8319-48adbe4fafa9

    ZHAO Tiehu, ZHANG Xunhua, FENG Jing. Acoustic detection techniques for seabed hydrocarbon seepage[J]. Marine Geology & Quaternary Geology, 2010, 30(6):149-156. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=b8d3f18a-d0c5-4f52-8319-48adbe4fafa9

    [26]

    顾兆峰, 刘怀山, 张志珣.浅层气逸出到海水中的气泡声学探测方法[J].海洋地质与第四纪地质, 2008, 28(2):129-135. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=35a33467-c001-482c-b844-fecd498a1999

    GU Zhaofeng, LIU Huaishan, ZHANG Zhixun. Acoustic detecting method for bubbles from shallow gas to sea water[J]. Marine Geology & Quaternary Geology, 2008, 28(2):129-135. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=35a33467-c001-482c-b844-fecd498a1999

    [27]

    宋春云, 雷亚辉, 丁士圻.混响背景下的CW信号检测[J].信号处理, 2008, 24(6):992-994. doi: 10.3969/j.issn.1003-0530.2008.06.021

    SONG Chunyun, LEI Yahui, DING Shiyang. CW signal detection under reverberation background[J]. Signal Processing, 2008, 24(6):992-994. doi: 10.3969/j.issn.1003-0530.2008.06.021

    [28]

    刘伯胜, 雷家煜.水声学原理[M].哈尔滨工程大学出版社, 2010.

    LIU Bosheng, LEI Jiayu. Theory of Underwater Acoustics[M]. Harbin Engineering University press, 2010.

    [29]

    田坦, 刘国枝, 孙大军.声呐技术[M].哈尔滨工程大学出版社, 2000:14-16.

    TIAN Tan, LIU Guozhi, SUN Dajun. Sonar Technology[M]. Harbin Engineering University press, 2000:14-16.

    [30]

    Spitzer L Jr. Acoustic properties of gas bubble in a liquid[R]. New York: Columbia University, 1943.

    [31]

    Minnaert M. XVI. On musical air-bubbles and the sounds of running water[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1933, 16(104):235-248. doi: 10.1080/14786443309462277

    [32]

    Smith F D. XCVIII. On the destructive mechanical effects of the gas-bubbles liberated by the passage of intense sound through a liquid[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1935, 19(130):1147-1151. doi: 10.1080/14786443508561454

    [33]

    Briggs H B, Johnson J B, Mason W P. Properties of liquids at high sound pressure[J]. The Journal of the Acoustical Society of America, 1947, 19(4): 664-677. doi: 10.1121/1.1916536

    [34]

    Houghton G. Theory of bubble pulsation and cavitation[J]. The Journal of the Acoustical Society of America, 1963, 35(9):1387-1393. doi: 10.1121/1.1918702

    [35]

    Shima A. The natural frequency of a bubble oscillating in a viscous compressible liquid[J]. Journal of Basic Engineering, 1970, 92(3):555-561. doi: 10.1115/1.3425065

    [36]

    林芳.海洋热液声学探测的方法研究[D].哈尔滨工程大学, 2010.

    LIN Fang. Methods of ocean hydrothermal acoustic detection[D]. Harbin Engineering University, 2010.

    [37]

    Artemov Y G, Egorov V N, Polikarpov G G, et al. Methane emission to the hydro-and atmosphere by gas bubble streams in the Dnieper paleo-delta, the Black Sea[J]. Rep. Natl. Acad. Sci. Ukraine, 2007, 5: 110-116.

    [38]

    Greinert J, Artemov Y, Egorov V, et al. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea:Hydroacoustic characteristics and temporal variability[J]. Earth & Planetary Science Letters, 2006, 244(1-2):1-15.

    [39]

    尤立克R J.水声原理[M].哈尔滨船舶工程学院出版社, 1990:199-203.

    Yutsk R J. Principles of Underwater Acoustic Engineering[M]. Harbin Institute of Ship Engineering, 1990:199-203.

  • 加载中

(13)

(3)

计量
  • 文章访问数:  1972
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2018-04-24
修回日期:  2018-06-03
刊出日期:  2019-04-28

目录