末次盛冰期巽他大陆北部草本植被扩张

杨莹, 田军, 黄恩清. 末次盛冰期巽他大陆北部草本植被扩张[J]. 海洋地质与第四纪地质, 2020, 40(1): 85-93. doi: 10.16562/j.cnki.0256-1492.2019031301
引用本文: 杨莹, 田军, 黄恩清. 末次盛冰期巽他大陆北部草本植被扩张[J]. 海洋地质与第四纪地质, 2020, 40(1): 85-93. doi: 10.16562/j.cnki.0256-1492.2019031301
YANG Ying, TIAN Jun, HUANG Enqing. Herbaceous vegetation expansion on the north equatorial Sundaland during the last glacial maximum[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 85-93. doi: 10.16562/j.cnki.0256-1492.2019031301
Citation: YANG Ying, TIAN Jun, HUANG Enqing. Herbaceous vegetation expansion on the north equatorial Sundaland during the last glacial maximum[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 85-93. doi: 10.16562/j.cnki.0256-1492.2019031301

末次盛冰期巽他大陆北部草本植被扩张

  • 基金项目: 国家自然科学基金“古海洋学”(41525020),“晚中新世大洋碳位移事件的成因机制及其古环境效应”(41776051);上海市优秀学术带头人“新近纪南海碳酸盐补偿深度变化及其古气候意义”(A类,16XD1403000)
详细信息
    作者简介: 杨莹(1994—),女,硕士研究生,海洋地质专业,E-mail: 1731658@tongji.edu.cn
    通讯作者: 田军(1974—),男,教授,从事古海洋学与古环境变化研究,E-mail: tianjun@tongji.edu.cn
  • 中图分类号: P736.1

Herbaceous vegetation expansion on the north equatorial Sundaland during the last glacial maximum

More Information
  • 末次盛冰期(Last Glacial Maximum, LGM)全球低海平面时,巽他陆架大面积暴露,其上的植被类型对于生物多样性演化和全球陆地碳储库有重要影响。但目前植被重建结果仍存在很大争议:一种观点认为LGM时巽他陆架主要分布稀树草原植被,雨林只零星存在于少数区域;而一些数值模拟结果和沉积记录显示巽他陆架上不存在大面积跨赤道的稀树草原,雨林植被仍占主导。LGM时巽他大陆北部可靠的植被记录十分有限。本研究依据靠近巽他陆架北部古河流入海口的沉积物岩芯,利用叶蜡烷烃含量和正构烷烃平均链长指标重建LGM时北巽他大陆的植被信息,结果显示平均链长在22~14.5 kaBP期间出现最大值,推测相对于全新世,冰期时巽他大陆北部草本成分增加。海平面降低使得冰期太平洋沃克环流减弱,呈现类厄尔尼诺状态,导致巽他大陆地区干旱加重,特别是赤道外围区域(南北纬7°以外)降水季节性增强,这种气候状态可能是草本植被成分增多的主要因素。

  • 加载中
  • 图 1  巽他大陆地形与本文涉及的研究站位

    Figure 1. 

    图 2  MD 05-2894烷烃含量,CPI、ACL和C31/(C29+C31)比值及其五点平滑结果

    Figure 2. 

    图 3  MD 05-2894站位烷烃含量(b)和ACL(c)指标与其他古环境重建记录的对比

    Figure 3. 

    图 4  LGM时期巽他大陆植被分布

    Figure 4. 

    图 5  LGM东南亚植被分布假说图

    Figure 5. 

    表 1  MD 05-2894站AMS 14C年龄

    Table 1.  AMS 14C Age of site MD 05-2894

    深度/cmAMS 14C年龄/aBP(±1σ)日历年龄/aBP备注
    5.53 390±303 261±50本研究
    62.55 010±355 366±51据文献[29]
    104.56 765±407 295±47据文献[29]
    113.59 140±409 909±105本研究
    125.59 910±3010 866±85本研究
    140.510 825±4512 325±121据文献[29]
    159.512 020±4013 457±60本研究
    188.513 195±5015 237±78据文献[29]
    214.513 285±4515 368±108据文献[29]
    284.513 785±5016 102±94据文献[29]
    368.514 890±6517 657±111据文献[29]
    418.516 150±5018 983±70本研究
    519.517 550±6020 678±100本研究
    619.517 040±7020 072±110本研究
    下载: 导出CSV
  • [1]

    Myers N, Mittermeier R A, Mittermeier C G, et al. Biodiversity hotspots for conservation priorities [J]. Nature, 2000, 403(6772): 853-858. doi: 10.1038/35002501

    [2]

    Woodruff D S. Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity [J]. Biodiversity and Conservation, 2010, 19(4): 919-941. doi: 10.1007/s10531-010-9783-3

    [3]

    Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica [J]. Nature, 1999, 399(6735): 429-436. doi: 10.1038/20859

    [4]

    Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide [J]. Nature, 2000, 407(6806): 859-869. doi: 10.1038/35038000

    [5]

    Montenegro A, Eby M, Kaplan J O, et al. Carbon storage on exposed continental shelves during the glacial‐interglacial transition [J]. Geophysical Research Letters, 2006, 33(8): L08703.

    [6]

    Otto D, Rasse D, Kaplan J, et al. Biospheric carbon stocks reconstructed at the Last Glacial Maximum: comparison between general circulation models using prescribed and computed sea surface temperatures [J]. Global and Planetary Change, 2002, 33(1-2): 117-138. doi: 10.1016/S0921-8181(02)00066-8

    [7]

    Hoogakker B A A, Smith R S, Singarayer J S, et al. Terrestrial biosphere changes over the last 120 kyr [J]. Climate of the Past Discussions, 2015, 11(2): 1031-1091. doi: 10.5194/cpd-11-1031-2015

    [8]

    Heaney L R. A synopsis of climatic and vegetational change in Southeast Asia [J]. Climatic Change, 1991, 19(1-2): 53-61. doi: 10.1007/BF00142213

    [9]

    Gathorne-Hardy F J, Syaukani, Davies R G, et al. Quaternary rainforest refugia in South-East Asia: using termites (Isoptera) as indicators [J]. Biological Journal of the Linnean Society, 2002, 75(4): 453-466. doi: 10.1046/j.1095-8312.2002.00031.x

    [10]

    Wurster C M, Bird M I, Bull I D, et al. Forest contraction in north equatorial Southeast Asia during the Last Glacial Period [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(35): 15508-15511. doi: 10.1073/pnas.1005507107

    [11]

    Sun X J, Li X, Luo Y L, et al. The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 160(3-4): 301-316. doi: 10.1016/S0031-0182(00)00078-X

    [12]

    Hope G, Kershaw A P, van der Kaars S, et al. History of vegetation and habitat change in the Austral-Asian region [J]. Quaternary International, 2004, 118-119: 103-126. doi: 10.1016/S1040-6182(03)00133-2

    [13]

    Wang X M, Sun X J, Wang P X, et al. Vegetation on the Sunda shelf, South China Sea, during the last glacial maximum [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 278(1-4): 88-97. doi: 10.1016/j.palaeo.2009.04.008

    [14]

    Cannon C H, Morley R J, Bush A B G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 11188-11193. doi: 10.1073/pnas.0809865106

    [15]

    Raes N, Cannon C H, Hijmans R J, et al. Historical distribution of Sundaland's Dipterocarp rainforests at Quaternary glacial maxima [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16790-16795. doi: 10.1073/pnas.1403053111

    [16]

    Eglinton G, Hamilton R J. Leaf epicuticular waxes [J]. Science, 1967, 156(3780): 1322-1335. doi: 10.1126/science.156.3780.1322

    [17]

    Schwark L, Zink K, Lechterbeck J. Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments [J]. Geology, 2002, 30(5): 463-466. doi: 10.1130/0091-7613(2002)030<0463:ROPTEH>2.0.CO;2

    [18]

    Schefuß E, Schouten S, Schneider R R. Climatic controls on central African hydrology during the past 20, 000?years [J]. Nature, 2005, 437(7061): 1003-1006. doi: 10.1038/nature03945

    [19]

    Rommerskirchen F, Eglinton G, Dupont L, et al. A north to south transect of Holocene southeast Atlantic continental margin sediments: relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records [J]. Geochemistry, Geophysics, Geosystems, 2013, 4(12): 1101.

    [20]

    Cranwell P A. Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment [J]. Organic Geochemistry, 1981, 3(3): 79-89. doi: 10.1016/0146-6380(81)90002-4

    [21]

    Yan X H, Ho C R, Zheng Q A, et al. Temperature and size variabilities of the Western pacific warm pool [J]. Science, 1992, 258(5088): 1643-1645. doi: 10.1126/science.258.5088.1643

    [22]

    Moerman J W, Cobb K M, Adkins J F, et al. Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology [J]. Earth and Planetary Science Letters, 2013, 369-370: 108-119. doi: 10.1016/j.jpgl.2013.03.014

    [23]

    Lea D W, Pak D K, Spero H J. Climate impact of late quaternary equatorial pacific sea surface temperature variations [J]. Science, 2000, 289(5485): 1719-1724. doi: 10.1126/science.289.5485.1719

    [24]

    Hanebuth T J J, Voris H K, Yokoyama Y, et al. Formation and fate of sedimentary depocentres on Southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications [J]. Earth-Science Reviews, 2011, 104(1-3): 92-110. doi: 10.1016/j.earscirev.2010.09.006

    [25]

    Molengraaff G A F. Modern deep-sea research in the East Indian archipelago [J]. The Geographical Journal, 1921, 57(2): 95-118. doi: 10.2307/1781559

    [26]

    Solihuddin T. A drowning Sunda shelf model during Last Glacial Maximum (LGM) and Holocene: a review [J]. Indonesian Journal on Geoscience, 2014, 1(2): 99-107.

    [27]

    Voris H K. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations [J]. Journal of Biogeography, 2000, 27(5): 1153-1167. doi: 10.1046/j.1365-2699.2000.00489.x

    [28]

    Laj C, Wang P, Balut Y. MD147-Marco Polo IMAGES XII Cruise Report[R]. France: Institut Paul-Emile Victor, 2005: 36-38.

    [29]

    安阳, 翦知湣. 末次冰消期南海南部的普林虫低值事件[J]. 科学通报, 2009, 54(17):2527-2532.

    [30]

    Reimer P J, Baillie M G L, Bard E, et al. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50 000 Years cal BP [J]. Radiocarbon, 2009, 51(4): 1111-1150. doi: 10.1017/S0033822200034202

    [31]

    Marzi R, Torkelson B E, Olson R K. A revised carbon preference index [J]. Organic Geochemistry, 1993, 20(8): 1303-1306. doi: 10.1016/0146-6380(93)90016-5

    [32]

    Collister J W, Rieley G, Stern B, et al. Compound-specific δ 13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms [J]. Organic Geochemistry, 1994, 21(6-7): 619-627. doi: 10.1016/0146-6380(94)90008-6

    [33]

    Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change [J]. Freshwater Biology, 1973, 3(3): 259-265. doi: 10.1111/j.1365-2427.1973.tb00921.x

    [34]

    Zech M, Zech R, Morrás H, et al. Late Quaternary environmental changes in Misiones, subtropical NE Argentina, deduced from multi-proxy geochemical analyses in a palaeosol-sediment sequence [J]. Quaternary International, 2009, 196(1-2): 121-136. doi: 10.1016/j.quaint.2008.06.006

    [35]

    Vogts A, Schefuß E, Badewien T, et al. n-Alkane parameters from a deep sea sediment transect off southwest Africa reflect continental vegetation and climate conditions [J]. Organic Geochemistry, 2012, 47: 109-119. doi: 10.1016/j.orggeochem.2012.03.011

    [36]

    Vogts A, Moossen H, Rommerskirchen F, et al. Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species [J]. Organic Geochemistry, 2009, 40(10): 1037-1054. doi: 10.1016/j.orggeochem.2009.07.011

    [37]

    Pelejero C. Terrigenous n-alkane input in the South China Sea: high-resolution records and surface sediments [J]. Chemical Geology, 2003, 200(1-2): 89-103. doi: 10.1016/S0009-2541(03)00164-5

    [38]

    Hu J F, Peng P A, Fang D Y, et al. No aridity in Sunda Land during the last glaciation: evidence from molecular-isotopic stratigraphy of long-chain n-alkanes [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 201(3-4): 269-281. doi: 10.1016/S0031-0182(03)00613-8

    [39]

    Li L, Li Q Y, Tian J, et al. Low latitude hydro-climatic changes during the Plio-Pleistocene: evidence from high resolution alkane records in the southern South China Sea [J]. Quaternary Science Reviews, 2013, 78: 209-224. doi: 10.1016/j.quascirev.2013.08.007

    [40]

    Hanebuth T, Stattegger K, Grootes P M. Rapid flooding of the Sunda shelf: a late-glacial sea-level record [J]. Science, 2000, 288(5468): 1033-1035. doi: 10.1126/science.288.5468.1033

    [41]

    Pelejero C, Kienast M, Wang L J, et al. The flooding of Sundaland during the last deglaciation: imprints in hemipelagic sediments from the southern South China Sea [J]. Earth and Planetary Science Letters, 1999, 171(4): 661-671. doi: 10.1016/S0012-821X(99)00178-8

    [42]

    Liu Z F, Zhao Y L, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea [J]. Earth-Science Reviews, 2016, 153: 238-273. doi: 10.1016/j.earscirev.2015.08.005

    [43]

    Jiwarungrueangkul T, Liu Z F, Zhao Y L. Terrigenous sediment input responding to sea level change and East Asian monsoon evolution since the last deglaciation in the southern South China Sea [J]. Global and Planetary Change, 2019, 174: 127-137. doi: 10.1016/j.gloplacha.2019.01.011

    [44]

    Partin J W, Cobb K M, Adkins J F, et al. Millennial-scale trends in West Pacific warm pool hydrology since the last glacial maximum [J]. Nature, 2007, 449(7161): 452-455. doi: 10.1038/nature06164

    [45]

    Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 2001, 294(5550): 2345-2348. doi: 10.1126/science.1064618

    [46]

    Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon [J]. Science, 2004, 304(5670): 575-578. doi: 10.1126/science.1091220

    [47]

    Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth [J]. Astronomy and Astrophysics, 2004, 428(1): 261-285. doi: 10.1051/0004-6361:20041335

    [48]

    Dubois N, Oppo D W, Galy V V, et al. Indonesian vegetation response to changes in rainfall seasonality over the past 25 000 years [J]. Nature Geoscience, 2014, 7(7): 513-517. doi: 10.1038/ngeo2182

    [49]

    Maloney B K. Pollen analytical evidence for early forest clearance in North Sumatra [J]. Nature, 1980, 287(5780): 324-326. doi: 10.1038/287324a0

    [50]

    Hope G. Environmental change in the Late Pleistocene and later Holocene at Wanda site, Soroako, South Sulawesi, Indonesia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 171(3-4): 129-145. doi: 10.1016/S0031-0182(01)00243-7

    [51]

    Kershaw A P, van der Kaars S, Flenle J R. The quaternary history of Far Eastern rainforests[M]//Bush M B, Flenley J R. Tropical Rainforest Responses to Climatic Change. Berlin, Heidelberg: Springer, 2007.

    [52]

    Clement A C, Seager R, Cane M A. Orbital controls on the El Niño/Southern Oscillation and the tropical climate [J]. Paleoceanography, 1999, 14(4): 441-456. doi: 10.1029/1999PA900013

    [53]

    DiNezio P N, Tierney J E. The effect of sea level on glacial Indo-Pacific climate [J]. Nature Geoscience, 2013, 6(6): 485-491. doi: 10.1038/ngeo1823

  • 加载中

(5)

(1)

计量
  • 文章访问数:  1869
  • PDF下载数:  25
  • 施引文献:  0
出版历程
收稿日期:  2019-03-13
修回日期:  2019-06-10
刊出日期:  2020-02-25

目录