An experimental research of vibration pore water pressure of remolded silt under low confining pressure: A case from Chengbei sea area
-
摘要:
开展了低围压条件下固结不排水振动三轴实验,对埕北海域重塑粉土振动孔压发展模型进行研究。低围压条件下粉土孔压随振次的发展曲线呈现两种形态,具体呈现何种形态与粉土轴向动应力和临界循环应力有关。对孔压数据进行了归一化处理,发现低围压条件下粉土孔压模型可以用指数函数进行拟合,且黏土含量并不影响孔压模型形式,只会影响a、b两个实验参数。孔压影响因素分析表明,少量黏粒含量的加入可以使粉土的孔压发展速度增大;振动频率对粉土孔压发展的影响也存在一个临界值,约0.2 Hz,当振动频率小于该值时,粉土孔压增长速度随频率的增加而减缓;当振动频率大于该值时,粉土孔压增长的速度随频率的增加而增大。
Abstract:A triaxial experiment for vibration pore water pressure of remolded silt was carried out in Chengbei sea area under low confining pressure and consolidated undrained conditions. The results indicate the pore water pressure curve of the silt shows two forms at low confining pressure, depending on the axial vibration stress and/or critical cyclic stress of the silt. After the vibration pore water pressure data was normalized, it is found that the vibration pore water pressure of the silt at low confining pressure changes following a pattern of exponential function and the clay content does not affect much the model except the two experimental parameters a and b. Study of the factors that affect pore water pressure shows that even a small amount of clay may increase the growth rate of pore pressure in remolded silt but there is a threshold of about 10~11%. When the clay content exceeds this threshold the rate of pore pressure will significantly slow down. There is a threshold of vibration frequency in a figure of 0.2 Hz. The increase of the vibration frequency will slow down the growth rate of pore water pressure when the vibration frequency is less than 0.2 Hz but accelerate with the increase in vibration frequency when the vibration frequency is greater than 0.2 Hz.
-
-
表 1 试验土样颗粒组成(%)
Table 1. Particle composition of soil samples
土样 2~1 mm 1~0.5 mm 0.5~0.25 mm 0.25~0.075 mm 0.075~0.005 mm <0.005 mm(黏粒) I类土 0 0 6.39 38.12 47.00 8.49 II类土 0 0 2.30 29.25 58.62 9.83 III类土 0 0 0 0.89 87.54 11.77 表 2 土样基本物理性质
Table 2. Physical properties of the soil samples
土样类型 黏粒含量Mc/% 含水率ω/% 饱和密度ρ/(g/cm3) 干密度ρd/(g/cm3) 比重Gs 孔隙比e I类土 8 19.7 1.92 1.54 2.70 0.675 II类土 10 20.2 1.94 1.56 2.70 0.670 III类土 12 20.4 1.96 1.58 2.70 0.668 表 3 三类粉土的动孔压发展模型参数
Table 3. Parameters of dynamic pore water pressure model for the three types of silt
土样 黏粒含量% 函数表达式 R2 a b I类土 8 ln(N/Nf)=2.46*(μ/σ3)−2.77 0.94 2.46 −2.77 II类土 10 ln(N/Nf)=3.66*(μ/σ3)−3.90 0.88 3.66 −3.90 III类土 12 ln(N/Nf)=3.42*(μ/σ3)−2.76 0.89 3.42 –2.76 -
[1] 王树英, 阳军生, LUNA R. 前期动载对低塑性粉土静态和动态强度的影响[J]. 岩石力学与工程学报, 2013, 32(2):363-368 doi: 10.3969/j.issn.1000-6915.2013.02.018
WANG Shuying, YANG Junsheng, LUNA R. Effect of previous dynamic loading on static and dynamic strengths of low-plasticity silt [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 363-368. doi: 10.3969/j.issn.1000-6915.2013.02.018
[2] Seed H B, Martin P P, Lysmer J. The generation and dissipation of pore water pressures during soil liquefaction[R]. Berkeley: University of California, 1975.
[3] Liam Finn W D, Lee K W, Martin G R. An effective stress model for liquefaction [J]. Journal of the Geotechnical Engineering Division, 1977, 103(6): 517-533.
[4] 谢定义. 土动力学[M]. 西安: 西安交通大学出版社, 2011.
XIE Dingyi. Soil Dynamics[M]. Xi’an: Xian Jiaotong University Press, 2011.
[5] 徐志英, 沈珠江. 地震液化的有效应力二维动力分析方法[J]. 华东水利学院学报, 1981(3):1-14
XU Zhiying, SHEN Zhujiang. 2-D dynamic analysis of effective stresses of seismic liquefaction [J]. Journal of East China College of Water Resources, 1981(3): 1-14.
[6] Martin G R, Seed H B, Liam Finn W D. Fundamentals of liquefaction under cyclic loading [J]. Journal of the Geotechnical Engineering Division, ASCE, 1975, 101(5): 423-438.
[7] 汪闻韶. 土液化特性中的几点发现[J]. 岩土工程学报, 1980, 2(3):55-63 doi: 10.3321/j.issn:1000-4548.1980.03.007
WANG Wenshao. Some findings in soil liquefaction [J]. Chinese Journal of Geotechnical Engineering, 1980, 2(3): 55-63. doi: 10.3321/j.issn:1000-4548.1980.03.007
[8] Finn W D L, Bhatia S K. Endochronic theory of sand liquefaction[C]//Proceedings of the 7th Word Conference on Earthquake Engineering. Turkey: Istanbul, 1980.
[9] Nemat-Nasser S, Shokooh A. A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing [J]. Canadian Geotechnical Journal, 1979, 16(4): 659-678. doi: 10.1139/t79-076
[10] 曹亚林, 何广讷, 林皋. 土中振动孔隙水压力升长程度的能量分析法[J]. 大连工学院学报, 1987, 26(3):83-89
CAO Yalin, HE Guangna, LIN Gao. An energy approach for analysing the development of cyclic pore water pressure [J]. Journal of Dalian Institute of Technology, 1987, 26(3): 83-89.
[11] Ishihara K, Tatsuoka F, Yasuda S. Undrained deformation and liquefaction of sand under cyclic stresses [J]. Soils and Foundations, 1975, 15(1): 29-44. doi: 10.3208/sandf1972.15.29
[12] 谢定义, 张建民. 往返荷载下饱和砂土强度变形瞬态变化的机理[J]. 土木工程学报, 1987(3):57-70
XIE Dingyi, ZHANG Jianmin. Developing mechanism on transient strength-deformation of saturated sand under cyclic loading [J]. China Civil Engineering Journal, 1987(3): 57-70.
[13] 于濂洪, 王波. 饱和粉土振动孔隙水压力的试验研究[J]. 大连大学学报, 1999, 20(4):59-62
YU Lianhong, WANG Bo. Study on pore water pressure of saturated and disturbed sandy loam during cyclic loading [J]. Journal of Dalian University, 1999, 20(4): 59-62.
[14] 曾长女, 刘汉龙, 周云东. 饱和粉土粉粒含量影响的动孔压发展规律试验研究[J]. 防灾减灾工程学报, 2006, 26(2):180-184
ZENG Changnü, LIU Hanlong, ZHOU Yundong. Experimental study on influence of silt particle content on pore water pressure mode of saturated silt [J]. Journal of Disaster Prevention and Mitigation Engineering, 2006, 26(2): 180-184.
[15] 罗强. 饱和粉土液化孔压增长模型的适用性研究[J]. 人民长江, 2012, 43(7):59-62 doi: 10.3969/j.issn.1001-4179.2012.07.015
LUO Qiang. Applicability study on model of pore water pressure increase model of saturated silt liquefaction [J]. Yangtze River, 2012, 43(7): 59-62. doi: 10.3969/j.issn.1001-4179.2012.07.015
[16] 李治朋, 张宇亭, 马希磊, 等. 颗粒组成对粉土动强度的影响分析[J]. 地震工程学报, 2015, 37(2):500-504 doi: 10.3969/j.issn.1000-0844.2015.02.0500
LI Zhipeng, ZHANG Yuting, MA Xilei, et al. Influence of particle composition on the dynamic strength of silt [J]. China Earthquake Engineering Journal, 2015, 37(2): 500-504. doi: 10.3969/j.issn.1000-0844.2015.02.0500
[17] 丁志宇, 丰土根, 周健, 等. 细粒含量对饱和粉土动力特性影响试验研究[J]. 人民黄河, 2013, 35(3):138-140 doi: 10.3969/j.issn.1000-1379.2013.03.046
DING Zhiyu, FENG Tugen, ZHOU Jian, et al. Experimental study of influence of fine particle content on dynamic properties of saturated silty soil [J]. Yellow River, 2013, 35(3): 138-140. doi: 10.3969/j.issn.1000-1379.2013.03.046
[18] 马一霁, 冯艳辉, 王武刚. 淮南地区饱和粉土动孔压模型试验与有限元对比分析[J]. 建筑结构, 2017, 47(S1):1166-1169
MA Yiji, FENG Yanhui, WANG Wugang. Tri-axial test research and finite element analysis of liquefaction behavior of saturated silt of Huainan Area [J]. Building Structure, 2017, 47(S1): 1166-1169.
[19] 曹成林, 孙永福, 董斌. 不同粘粒含量粉质土的动力强度特性研究[J]. 海岸工程, 2009, 28(3):27-32 doi: 10.3969/j.issn.1002-3682.2009.03.004
CAO Chenglin, SUN Yongfu, DONG Bin. Study on dynamical intensity features of silt with different clay-particle contents [J]. Coastal Engineering, 2009, 28(3): 27-32. doi: 10.3969/j.issn.1002-3682.2009.03.004
[20] 王海龙, 张宁, 张伟. 山西粉土的动力特性试验研究[J]. 工程勘察, 2010, 38(1):19-22
WANG Hailong, ZHANG Ning ZHANG Wei. Experimental research on dynamic properties of silts in Shanxi [J]. Geotechnical Investigation & Surveying, 2010, 38(1): 19-22.
[21] 刘茜, 郑西来, 刘红军, 等. 黄河三角洲粉土液化的试验研究[J]. 世界地震工程, 2007, 23(2):161-166 doi: 10.3969/j.issn.1007-6069.2007.02.026
LIU Qian, ZHENG Xilai, LIU Hongjun, et al. Experimental studies on liquefaction behavior of silt in the Huanghe River delta [J]. World Earthquake Engineering, 2007, 23(2): 161-166. doi: 10.3969/j.issn.1007-6069.2007.02.026
[22] 杨秀娟, 侯天顺. 黄河三角洲新近沉积土动力学试验研究[J]. 水利水电技术, 2013, 44(12):82-84 doi: 10.3969/j.issn.1000-0860.2013.12.021
YANG Xiujuan, HOU Tianshun. Experimental study on dynamic behavior of recent sediment soil within Yellow River Delta [J]. Water Resources and Hydropower Engineering, 2013, 44(12): 82-84. doi: 10.3969/j.issn.1000-0860.2013.12.021
[23] 孟凡丽, 黄聪, 郑棋. 细粒对杭州饱和粉土动力特性的影响[J]. 浙江工业大学学报, 2016, 44(3):300-304 doi: 10.3969/j.issn.1006-4303.2016.03.013
MENG Fanli, HUANG Cong, ZHENG Qi. Influence of fine particles on dynamic characteristics of saturated silt in Hangzhou [J]. Journal of Zhejiang University of Technology, 2016, 44(3): 300-304. doi: 10.3969/j.issn.1006-4303.2016.03.013
[24] Belkhatir M, Arab A, Della N, et al. Laboratory study on the hydraulic conductivity and pore pressure of sand-silt mixtures [J]. Marine Georesources & Geotechnology, 2014, 32(2): 106-122.
[25] 中华人民共和国水利部. SL237-1999 土工试验规程[S]. 北京: 中国水利水电出版社, 1999.
Ministry of Water Resources of the People’s Republic of China. SL 237-1999 Specification of Soil Test[S]. Beijing: China Water & Power Press, 1999.
[26] 曾长女. 细粒含量对粉土液化特性影响的试验研究[J]. 防灾减灾工程学报, 2007, 27(4):478-483
ZENG Changnü. Experimental Study of the influence of fines content on liquefaction characteristics of silt [J]. Journal of Disaster Prevention and Mitigation Engineering, 2007, 27(4): 478-483.
[27] 姜波, 冯秀丽, 田动会, 等. 埕北海域工程地质分区及模糊数学稳定性评价[J]. 海洋科学, 2018, 42(4):18-27 doi: 10.11759/hykx20170117004
JIANG Bo, FENG Xiuli, Tian Donghui, et al. Engineering geological zoning of Chengbei sea area and stability assessment using fuzzy mathematics [J]. Marine Sciences, 2018, 42(4): 18-27. doi: 10.11759/hykx20170117004
[28] 吴世明. 土动力学[M]. 北京: 中国建筑工业出版社, 2000.
WU Shiming. Soil Dynamics[M]. Beijing: China Architecture & Building Press, 2000.
[29] 陈国兴, 刘雪珠. 南京粉质黏土与粉砂互层土及粉细砂的振动孔压发展规律研究[J]. 岩土工程学报, 2004, 26(1):79-82 doi: 10.3321/j.issn:1000-4548.2004.01.015
CHEN Guoxing, LIU Xuezhu. Study on dynamic pore water pressure in silty clay interbedded with fine sand of Nanjing [J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 79-82. doi: 10.3321/j.issn:1000-4548.2004.01.015
[30] 张建民, 谢定义. 饱和砂土振动孔隙水压力增长的实用算法[J]. 水利学报, 1991(8):45-51 doi: 10.3321/j.issn:0559-9350.1991.08.007
ZHANG Jianmin, XIE Dingyi. A practical method for calculating the increase of pore water pressure in saturated sand under vibration [J]. Journal of Hydraulic Engineering, 1991(8): 45-51. doi: 10.3321/j.issn:0559-9350.1991.08.007
[31] 章克凌, 陶振宇. 饱和粘土在循环荷载作用下的孔压预测[J]. 岩土力学, 1994, 15(3):9-17
ZHANG Keling, TAO Zhenyu. The prediction of pore pressure of saturated clay under cyclic loading [J]. Rock and Soil Mechanics, 1994, 15(3): 9-17.
[32] 叶俊能, 陈斌. 海相沉积软土动强度与孔压特性试验研究[J]. 岩土力学, 2011, 32(S1):55-60
YE Junneng, CHEN Bin. Dynamic strength and pore pressure property of marine deposit soft clay [J]. Rock and Soil Mechanics, 2011, 32(S1): 55-60.
[33] 刘家顺, 张向东, 孙嘉宝, 等. 主应力轴旋转下K0固结饱和粉质黏土孔压及变形特性试验研究[J]. 岩土力学, 2018, 39(8):2787-2794, 2804
LIU Jiashu, ZHANG Xiangdong, SUN Jiabao, et al. Experimental study on the pore pressure and deformation of saturated silty clay under K0 consolidation and principal stress axis rotation [J]. Rock and Soil Mechanics, 2018, 39(8): 2787-2794, 2804.
[34] 周建, 龚晓南, 李剑强. 循环荷载作用下饱和软粘土特性试验研究[J]. 工业建筑, 2000, 30(11):43-47, 4 doi: 10.3321/j.issn:1000-8993.2000.11.012
ZHOU Jian, GONG Xiaonan, LI Jianqiang. Experimental study of saturated soft clay under cyclic loading [J]. Industrial Construction, 2000, 30(11): 43-47, 4. doi: 10.3321/j.issn:1000-8993.2000.11.012
[35] 陈春雷, 王军, 丁光亚. 交通荷载作用下饱和软粘土孔压-应变分析模型[J]. 自然灾害学报, 2009, 18(6):64-70 doi: 10.3969/j.issn.1004-4574.2009.06.011
CHEN Chunlei, WANG Jun, DING Guangya. Pore water pressure-residual strain model of soft clay under traffic loading [J]. Journal of Natural Disasters, 2009, 18(6): 64-70. doi: 10.3969/j.issn.1004-4574.2009.06.011
[36] Matasovic N, Vucetic M. A pore pressure model for cyclic straining of clay [J]. Soils and Foundations, 1992, 32(3): 156-173. doi: 10.3208/sandf1972.32.3_156
[37] Wilson N E, Greenwood J R. Pore pressures and strains after repeated loading of saturated clay [J]. Canadian Geotechnical Journal, 1974, 11(2): 269-277. doi: 10.1139/t74-023
[38] Hyodo M, Yasuhara K, Hirao K. Prediction of clay behaviour in undrained and partially drained cyclic triaxial tests [J]. Soils and Foundations, 1992, 32(4): 117-127. doi: 10.3208/sandf1972.32.4_117
[39] 解新妍. 非等向固结条件下饱和砂土的动强度试验研究[D]. 长安大学硕士学位论文, 2017.
XIE Xinyan. Experimental study on dynamic strength of saturated sand under non - isotropic consolidation[D]. Master Dissertation of Chang’an University, 2017.
[40] 牛琪瑛, 裘以惠, 史美筠. 粉土抗液化特性的试验研究[J]. 太原工业大学学报, 1996, 27(3):5-8
NIU Qiying, QIU Yihui, SHI Meiyun. The study and test of liquefaction resistant characteristics of silt [J]. Journal of Taiyuan University of Technology, 1996, 27(3): 5-8.
[41] 刘雪珠, 陈国兴. 粘粒含量对南京粉细砂液化影响的试验研究[J]. 地震工程与工程振动, 2003, 23(3):150-155 doi: 10.3969/j.issn.1000-1301.2003.03.024
LIU Xuezhu, CHEN Guoxing. Experimental study on influence of clay Particle content on liquefaction of Nanjing fine sand [J]. Earthquake Engineering and Engineering Vibration, 2003, 23(3): 150-155. doi: 10.3969/j.issn.1000-1301.2003.03.024
[42] 郝建新, 魏玉峰. 饱和粉土的孔压和液化特性研究[J]. 公路交通科技, 2005, 22(11):39-41 doi: 10.3969/j.issn.1002-0268.2005.11.010
HAO Jianxin, WEI Yufeng. Study on pore pressure and liquefaction behavior of saturated silt [J]. Journal of Highway and Transportation Research and Development, 2005, 22(11): 39-41. doi: 10.3969/j.issn.1002-0268.2005.11.010
[43] 曾长女, 冯伟娜. 黏粒含量对粉土液化后特性影响的试验研究[J]. 地震工程学报, 2014, 36(3):727-733 doi: 10.3969/j.issn.1000-0844.2014.03.0727
ZENG Changnü, FENG Weina. Influence of clay content on post-liquefaction characteristics of silt [J]. China Earthquake Engineering Journal, 2014, 36(3): 727-733. doi: 10.3969/j.issn.1000-0844.2014.03.0727
-