低围压下埕北海域重塑粉土振动孔压模型试验研究

肖晓, 冯秀丽, 林霖, 姜波, 冯智泉. 低围压下埕北海域重塑粉土振动孔压模型试验研究[J]. 海洋地质与第四纪地质, 2020, 40(4): 214-222. doi: 10.16562/j.cnki.0256-1492.2019070401
引用本文: 肖晓, 冯秀丽, 林霖, 姜波, 冯智泉. 低围压下埕北海域重塑粉土振动孔压模型试验研究[J]. 海洋地质与第四纪地质, 2020, 40(4): 214-222. doi: 10.16562/j.cnki.0256-1492.2019070401
XIAO Xiao, FENG Xiuli, LIN Lin, JIANG Bo, FENG Zhiquan. An experimental research of vibration pore water pressure of remolded silt under low confining pressure: A case from Chengbei sea area[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 214-222. doi: 10.16562/j.cnki.0256-1492.2019070401
Citation: XIAO Xiao, FENG Xiuli, LIN Lin, JIANG Bo, FENG Zhiquan. An experimental research of vibration pore water pressure of remolded silt under low confining pressure: A case from Chengbei sea area[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 214-222. doi: 10.16562/j.cnki.0256-1492.2019070401

低围压下埕北海域重塑粉土振动孔压模型试验研究

  • 基金项目: 国家重点研发计划“临海油气管道及陆上终端设施损伤机理与演化规律研究”(2016YFC0802301);国家自然科学基金“自升式平台桩靴基础的全工作周期稳定性分析”(U1806230)
详细信息
    作者简介: 肖晓(1990—),女,博士,从事海洋沉积和海洋工程研究,E-mail:oucxiaoxiao@163.com
    通讯作者: 冯秀丽(1962—),女,博士,教授,从事海洋环境和岩土工程性质研究,E-mail:fengxiuli@ouc.edu.cn
  • 中图分类号: P642

An experimental research of vibration pore water pressure of remolded silt under low confining pressure: A case from Chengbei sea area

More Information
  • 开展了低围压条件下固结不排水振动三轴实验,对埕北海域重塑粉土振动孔压发展模型进行研究。低围压条件下粉土孔压随振次的发展曲线呈现两种形态,具体呈现何种形态与粉土轴向动应力和临界循环应力有关。对孔压数据进行了归一化处理,发现低围压条件下粉土孔压模型可以用指数函数进行拟合,且黏土含量并不影响孔压模型形式,只会影响ab两个实验参数。孔压影响因素分析表明,少量黏粒含量的加入可以使粉土的孔压发展速度增大;振动频率对粉土孔压发展的影响也存在一个临界值,约0.2 Hz,当振动频率小于该值时,粉土孔压增长速度随频率的增加而减缓;当振动频率大于该值时,粉土孔压增长的速度随频率的增加而增大。

  • 加载中
  • 图 1  土样颗粒频率曲线及概率累积曲线图

    Figure 1. 

    图 2  动孔压发展曲线

    Figure 2. 

    图 3  I、II、III类粉土孔压发展模型拟合图

    Figure 3. 

    图 4  不同黏粒含量粉土孔压比与振次比关系曲线

    Figure 4. 

    图 5  不同振动频率粉土孔压比与振次比关系曲线

    Figure 5. 

    表 1  试验土样颗粒组成(%)

    Table 1.  Particle composition of soil samples

    土样2~1 mm1~0.5 mm0.5~0.25 mm0.25~0.075 mm0.075~0.005 mm<0.005 mm(黏粒)
    I类土006.3938.1247.008.49
    II类土002.3029.2558.629.83
    III类土0000.8987.5411.77
    下载: 导出CSV

    表 2  土样基本物理性质

    Table 2.  Physical properties of the soil samples

    土样类型黏粒含量Mc/%含水率ω/%饱和密度ρ/(g/cm3)干密度ρd/(g/cm3)比重Gs孔隙比e
    I类土819.71.921.542.700.675
    II类土1020.21.941.562.700.670
    III类土1220.41.961.582.700.668
    下载: 导出CSV

    表 3  三类粉土的动孔压发展模型参数

    Table 3.  Parameters of dynamic pore water pressure model for the three types of silt

    土样黏粒含量%函数表达式R2ab
    I类土8ln(N/Nf)=2.46*(μ/σ3)−2.770.942.46−2.77
    II类土10ln(N/Nf)=3.66*(μ/σ3)−3.900.883.66−3.90
    III类土12ln(N/Nf)=3.42*(μ/σ3)−2.760.893.42–2.76
    下载: 导出CSV
  • [1]

    王树英, 阳军生, LUNA R. 前期动载对低塑性粉土静态和动态强度的影响[J]. 岩石力学与工程学报, 2013, 32(2):363-368 doi: 10.3969/j.issn.1000-6915.2013.02.018

    WANG Shuying, YANG Junsheng, LUNA R. Effect of previous dynamic loading on static and dynamic strengths of low-plasticity silt [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 363-368. doi: 10.3969/j.issn.1000-6915.2013.02.018

    [2]

    Seed H B, Martin P P, Lysmer J. The generation and dissipation of pore water pressures during soil liquefaction[R]. Berkeley: University of California, 1975.

    [3]

    Liam Finn W D, Lee K W, Martin G R. An effective stress model for liquefaction [J]. Journal of the Geotechnical Engineering Division, 1977, 103(6): 517-533.

    [4]

    谢定义. 土动力学[M]. 西安: 西安交通大学出版社, 2011.

    XIE Dingyi. Soil Dynamics[M]. Xi’an: Xian Jiaotong University Press, 2011.

    [5]

    徐志英, 沈珠江. 地震液化的有效应力二维动力分析方法[J]. 华东水利学院学报, 1981(3):1-14

    XU Zhiying, SHEN Zhujiang. 2-D dynamic analysis of effective stresses of seismic liquefaction [J]. Journal of East China College of Water Resources, 1981(3): 1-14.

    [6]

    Martin G R, Seed H B, Liam Finn W D. Fundamentals of liquefaction under cyclic loading [J]. Journal of the Geotechnical Engineering Division, ASCE, 1975, 101(5): 423-438.

    [7]

    汪闻韶. 土液化特性中的几点发现[J]. 岩土工程学报, 1980, 2(3):55-63 doi: 10.3321/j.issn:1000-4548.1980.03.007

    WANG Wenshao. Some findings in soil liquefaction [J]. Chinese Journal of Geotechnical Engineering, 1980, 2(3): 55-63. doi: 10.3321/j.issn:1000-4548.1980.03.007

    [8]

    Finn W D L, Bhatia S K. Endochronic theory of sand liquefaction[C]//Proceedings of the 7th Word Conference on Earthquake Engineering. Turkey: Istanbul, 1980.

    [9]

    Nemat-Nasser S, Shokooh A. A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing [J]. Canadian Geotechnical Journal, 1979, 16(4): 659-678. doi: 10.1139/t79-076

    [10]

    曹亚林, 何广讷, 林皋. 土中振动孔隙水压力升长程度的能量分析法[J]. 大连工学院学报, 1987, 26(3):83-89

    CAO Yalin, HE Guangna, LIN Gao. An energy approach for analysing the development of cyclic pore water pressure [J]. Journal of Dalian Institute of Technology, 1987, 26(3): 83-89.

    [11]

    Ishihara K, Tatsuoka F, Yasuda S. Undrained deformation and liquefaction of sand under cyclic stresses [J]. Soils and Foundations, 1975, 15(1): 29-44. doi: 10.3208/sandf1972.15.29

    [12]

    谢定义, 张建民. 往返荷载下饱和砂土强度变形瞬态变化的机理[J]. 土木工程学报, 1987(3):57-70

    XIE Dingyi, ZHANG Jianmin. Developing mechanism on transient strength-deformation of saturated sand under cyclic loading [J]. China Civil Engineering Journal, 1987(3): 57-70.

    [13]

    于濂洪, 王波. 饱和粉土振动孔隙水压力的试验研究[J]. 大连大学学报, 1999, 20(4):59-62

    YU Lianhong, WANG Bo. Study on pore water pressure of saturated and disturbed sandy loam during cyclic loading [J]. Journal of Dalian University, 1999, 20(4): 59-62.

    [14]

    曾长女, 刘汉龙, 周云东. 饱和粉土粉粒含量影响的动孔压发展规律试验研究[J]. 防灾减灾工程学报, 2006, 26(2):180-184

    ZENG Changnü, LIU Hanlong, ZHOU Yundong. Experimental study on influence of silt particle content on pore water pressure mode of saturated silt [J]. Journal of Disaster Prevention and Mitigation Engineering, 2006, 26(2): 180-184.

    [15]

    罗强. 饱和粉土液化孔压增长模型的适用性研究[J]. 人民长江, 2012, 43(7):59-62 doi: 10.3969/j.issn.1001-4179.2012.07.015

    LUO Qiang. Applicability study on model of pore water pressure increase model of saturated silt liquefaction [J]. Yangtze River, 2012, 43(7): 59-62. doi: 10.3969/j.issn.1001-4179.2012.07.015

    [16]

    李治朋, 张宇亭, 马希磊, 等. 颗粒组成对粉土动强度的影响分析[J]. 地震工程学报, 2015, 37(2):500-504 doi: 10.3969/j.issn.1000-0844.2015.02.0500

    LI Zhipeng, ZHANG Yuting, MA Xilei, et al. Influence of particle composition on the dynamic strength of silt [J]. China Earthquake Engineering Journal, 2015, 37(2): 500-504. doi: 10.3969/j.issn.1000-0844.2015.02.0500

    [17]

    丁志宇, 丰土根, 周健, 等. 细粒含量对饱和粉土动力特性影响试验研究[J]. 人民黄河, 2013, 35(3):138-140 doi: 10.3969/j.issn.1000-1379.2013.03.046

    DING Zhiyu, FENG Tugen, ZHOU Jian, et al. Experimental study of influence of fine particle content on dynamic properties of saturated silty soil [J]. Yellow River, 2013, 35(3): 138-140. doi: 10.3969/j.issn.1000-1379.2013.03.046

    [18]

    马一霁, 冯艳辉, 王武刚. 淮南地区饱和粉土动孔压模型试验与有限元对比分析[J]. 建筑结构, 2017, 47(S1):1166-1169

    MA Yiji, FENG Yanhui, WANG Wugang. Tri-axial test research and finite element analysis of liquefaction behavior of saturated silt of Huainan Area [J]. Building Structure, 2017, 47(S1): 1166-1169.

    [19]

    曹成林, 孙永福, 董斌. 不同粘粒含量粉质土的动力强度特性研究[J]. 海岸工程, 2009, 28(3):27-32 doi: 10.3969/j.issn.1002-3682.2009.03.004

    CAO Chenglin, SUN Yongfu, DONG Bin. Study on dynamical intensity features of silt with different clay-particle contents [J]. Coastal Engineering, 2009, 28(3): 27-32. doi: 10.3969/j.issn.1002-3682.2009.03.004

    [20]

    王海龙, 张宁, 张伟. 山西粉土的动力特性试验研究[J]. 工程勘察, 2010, 38(1):19-22

    WANG Hailong, ZHANG Ning ZHANG Wei. Experimental research on dynamic properties of silts in Shanxi [J]. Geotechnical Investigation & Surveying, 2010, 38(1): 19-22.

    [21]

    刘茜, 郑西来, 刘红军, 等. 黄河三角洲粉土液化的试验研究[J]. 世界地震工程, 2007, 23(2):161-166 doi: 10.3969/j.issn.1007-6069.2007.02.026

    LIU Qian, ZHENG Xilai, LIU Hongjun, et al. Experimental studies on liquefaction behavior of silt in the Huanghe River delta [J]. World Earthquake Engineering, 2007, 23(2): 161-166. doi: 10.3969/j.issn.1007-6069.2007.02.026

    [22]

    杨秀娟, 侯天顺. 黄河三角洲新近沉积土动力学试验研究[J]. 水利水电技术, 2013, 44(12):82-84 doi: 10.3969/j.issn.1000-0860.2013.12.021

    YANG Xiujuan, HOU Tianshun. Experimental study on dynamic behavior of recent sediment soil within Yellow River Delta [J]. Water Resources and Hydropower Engineering, 2013, 44(12): 82-84. doi: 10.3969/j.issn.1000-0860.2013.12.021

    [23]

    孟凡丽, 黄聪, 郑棋. 细粒对杭州饱和粉土动力特性的影响[J]. 浙江工业大学学报, 2016, 44(3):300-304 doi: 10.3969/j.issn.1006-4303.2016.03.013

    MENG Fanli, HUANG Cong, ZHENG Qi. Influence of fine particles on dynamic characteristics of saturated silt in Hangzhou [J]. Journal of Zhejiang University of Technology, 2016, 44(3): 300-304. doi: 10.3969/j.issn.1006-4303.2016.03.013

    [24]

    Belkhatir M, Arab A, Della N, et al. Laboratory study on the hydraulic conductivity and pore pressure of sand-silt mixtures [J]. Marine Georesources & Geotechnology, 2014, 32(2): 106-122.

    [25]

    中华人民共和国水利部. SL237-1999 土工试验规程[S]. 北京: 中国水利水电出版社, 1999.

    Ministry of Water Resources of the People’s Republic of China. SL 237-1999 Specification of Soil Test[S]. Beijing: China Water & Power Press, 1999.

    [26]

    曾长女. 细粒含量对粉土液化特性影响的试验研究[J]. 防灾减灾工程学报, 2007, 27(4):478-483

    ZENG Changnü. Experimental Study of the influence of fines content on liquefaction characteristics of silt [J]. Journal of Disaster Prevention and Mitigation Engineering, 2007, 27(4): 478-483.

    [27]

    姜波, 冯秀丽, 田动会, 等. 埕北海域工程地质分区及模糊数学稳定性评价[J]. 海洋科学, 2018, 42(4):18-27 doi: 10.11759/hykx20170117004

    JIANG Bo, FENG Xiuli, Tian Donghui, et al. Engineering geological zoning of Chengbei sea area and stability assessment using fuzzy mathematics [J]. Marine Sciences, 2018, 42(4): 18-27. doi: 10.11759/hykx20170117004

    [28]

    吴世明. 土动力学[M]. 北京: 中国建筑工业出版社, 2000.

    WU Shiming. Soil Dynamics[M]. Beijing: China Architecture & Building Press, 2000.

    [29]

    陈国兴, 刘雪珠. 南京粉质黏土与粉砂互层土及粉细砂的振动孔压发展规律研究[J]. 岩土工程学报, 2004, 26(1):79-82 doi: 10.3321/j.issn:1000-4548.2004.01.015

    CHEN Guoxing, LIU Xuezhu. Study on dynamic pore water pressure in silty clay interbedded with fine sand of Nanjing [J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 79-82. doi: 10.3321/j.issn:1000-4548.2004.01.015

    [30]

    张建民, 谢定义. 饱和砂土振动孔隙水压力增长的实用算法[J]. 水利学报, 1991(8):45-51 doi: 10.3321/j.issn:0559-9350.1991.08.007

    ZHANG Jianmin, XIE Dingyi. A practical method for calculating the increase of pore water pressure in saturated sand under vibration [J]. Journal of Hydraulic Engineering, 1991(8): 45-51. doi: 10.3321/j.issn:0559-9350.1991.08.007

    [31]

    章克凌, 陶振宇. 饱和粘土在循环荷载作用下的孔压预测[J]. 岩土力学, 1994, 15(3):9-17

    ZHANG Keling, TAO Zhenyu. The prediction of pore pressure of saturated clay under cyclic loading [J]. Rock and Soil Mechanics, 1994, 15(3): 9-17.

    [32]

    叶俊能, 陈斌. 海相沉积软土动强度与孔压特性试验研究[J]. 岩土力学, 2011, 32(S1):55-60

    YE Junneng, CHEN Bin. Dynamic strength and pore pressure property of marine deposit soft clay [J]. Rock and Soil Mechanics, 2011, 32(S1): 55-60.

    [33]

    刘家顺, 张向东, 孙嘉宝, 等. 主应力轴旋转下K0固结饱和粉质黏土孔压及变形特性试验研究[J]. 岩土力学, 2018, 39(8):2787-2794, 2804

    LIU Jiashu, ZHANG Xiangdong, SUN Jiabao, et al. Experimental study on the pore pressure and deformation of saturated silty clay under K0 consolidation and principal stress axis rotation [J]. Rock and Soil Mechanics, 2018, 39(8): 2787-2794, 2804.

    [34]

    周建, 龚晓南, 李剑强. 循环荷载作用下饱和软粘土特性试验研究[J]. 工业建筑, 2000, 30(11):43-47, 4 doi: 10.3321/j.issn:1000-8993.2000.11.012

    ZHOU Jian, GONG Xiaonan, LI Jianqiang. Experimental study of saturated soft clay under cyclic loading [J]. Industrial Construction, 2000, 30(11): 43-47, 4. doi: 10.3321/j.issn:1000-8993.2000.11.012

    [35]

    陈春雷, 王军, 丁光亚. 交通荷载作用下饱和软粘土孔压-应变分析模型[J]. 自然灾害学报, 2009, 18(6):64-70 doi: 10.3969/j.issn.1004-4574.2009.06.011

    CHEN Chunlei, WANG Jun, DING Guangya. Pore water pressure-residual strain model of soft clay under traffic loading [J]. Journal of Natural Disasters, 2009, 18(6): 64-70. doi: 10.3969/j.issn.1004-4574.2009.06.011

    [36]

    Matasovic N, Vucetic M. A pore pressure model for cyclic straining of clay [J]. Soils and Foundations, 1992, 32(3): 156-173. doi: 10.3208/sandf1972.32.3_156

    [37]

    Wilson N E, Greenwood J R. Pore pressures and strains after repeated loading of saturated clay [J]. Canadian Geotechnical Journal, 1974, 11(2): 269-277. doi: 10.1139/t74-023

    [38]

    Hyodo M, Yasuhara K, Hirao K. Prediction of clay behaviour in undrained and partially drained cyclic triaxial tests [J]. Soils and Foundations, 1992, 32(4): 117-127. doi: 10.3208/sandf1972.32.4_117

    [39]

    解新妍. 非等向固结条件下饱和砂土的动强度试验研究[D]. 长安大学硕士学位论文, 2017.

    XIE Xinyan. Experimental study on dynamic strength of saturated sand under non - isotropic consolidation[D]. Master Dissertation of Chang’an University, 2017.

    [40]

    牛琪瑛, 裘以惠, 史美筠. 粉土抗液化特性的试验研究[J]. 太原工业大学学报, 1996, 27(3):5-8

    NIU Qiying, QIU Yihui, SHI Meiyun. The study and test of liquefaction resistant characteristics of silt [J]. Journal of Taiyuan University of Technology, 1996, 27(3): 5-8.

    [41]

    刘雪珠, 陈国兴. 粘粒含量对南京粉细砂液化影响的试验研究[J]. 地震工程与工程振动, 2003, 23(3):150-155 doi: 10.3969/j.issn.1000-1301.2003.03.024

    LIU Xuezhu, CHEN Guoxing. Experimental study on influence of clay Particle content on liquefaction of Nanjing fine sand [J]. Earthquake Engineering and Engineering Vibration, 2003, 23(3): 150-155. doi: 10.3969/j.issn.1000-1301.2003.03.024

    [42]

    郝建新, 魏玉峰. 饱和粉土的孔压和液化特性研究[J]. 公路交通科技, 2005, 22(11):39-41 doi: 10.3969/j.issn.1002-0268.2005.11.010

    HAO Jianxin, WEI Yufeng. Study on pore pressure and liquefaction behavior of saturated silt [J]. Journal of Highway and Transportation Research and Development, 2005, 22(11): 39-41. doi: 10.3969/j.issn.1002-0268.2005.11.010

    [43]

    曾长女, 冯伟娜. 黏粒含量对粉土液化后特性影响的试验研究[J]. 地震工程学报, 2014, 36(3):727-733 doi: 10.3969/j.issn.1000-0844.2014.03.0727

    ZENG Changnü, FENG Weina. Influence of clay content on post-liquefaction characteristics of silt [J]. China Earthquake Engineering Journal, 2014, 36(3): 727-733. doi: 10.3969/j.issn.1000-0844.2014.03.0727

  • 加载中

(5)

(3)

计量
  • 文章访问数:  2130
  • PDF下载数:  69
  • 施引文献:  0
出版历程
收稿日期:  2019-07-04
修回日期:  2020-05-20
刊出日期:  2020-08-25

目录