中、西太平洋多金属结壳生长速率变化与制约因素

王洋, 方念乔. 中、西太平洋多金属结壳生长速率变化与制约因素[J]. 海洋地质与第四纪地质, 2020, 40(4): 162-174. doi: 10.16562/j.cnki.0256-1492.2019110701
引用本文: 王洋, 方念乔. 中、西太平洋多金属结壳生长速率变化与制约因素[J]. 海洋地质与第四纪地质, 2020, 40(4): 162-174. doi: 10.16562/j.cnki.0256-1492.2019110701
WANG Yang, FANG Nianqiao. Variation in growth rate of polymetallic crusts in the central and western Pacific Ocean and its constraining factors[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 162-174. doi: 10.16562/j.cnki.0256-1492.2019110701
Citation: WANG Yang, FANG Nianqiao. Variation in growth rate of polymetallic crusts in the central and western Pacific Ocean and its constraining factors[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 162-174. doi: 10.16562/j.cnki.0256-1492.2019110701

中、西太平洋多金属结壳生长速率变化与制约因素

  • 基金项目: 中国大洋矿产资源研究开发协会“十三五”资源环境项目“合同区海山形成演化及铁锰矿床成矿模型研究”(DY135-C1-1-06)
详细信息
    作者简介: 王洋(1991—),男,博士研究生,主要从事多金属结壳及古海洋学研究,E-mail:WangY_SOS@cugb.edu.cn
  • 中图分类号: P736.3

Variation in growth rate of polymetallic crusts in the central and western Pacific Ocean and its constraining factors

  • 多金属结壳在不同生长区域、层位存在生长速率的差异,这在一定程度上反映了其生长条件的优劣,说明其受到了诸多海洋要素的制约。本研究在总结生长速率变化与结壳生长区域、年代和结构构造的关系的同时,分析生长间断发生与生长速率变化的关系,并尝试对多金属结壳生长环境条件的转变进行探讨。多金属结壳的生长速率随采样海山区位置由东向西(莱恩海山区—麦哲伦等海山区)、结构构造由致密到疏松再到较致密和生长期由老到新由高至低变化。最低含氧带之下合适的深度、较强的氧化性、较丰富的陆源物质供给和海洋中较高的碳酸钙溶解率有利于结壳的生长,使其具有较大的生长速率。多金属结壳生长间断的发生对应3种生长速率变化情形:①在生长速率由低升高前,主要对应65~60 Ma的间断期,此时水动力条件不佳,结壳因生长环境过差而间断,由差转好时复生长;②生长速率由高转低时,主要对应51~42 Ma和40~35 Ma的两次间断期,此时气候回暖同时陆源风尘供应水平较低,结壳在生长环境变差时间断,稍好时复生长;③生长速率持续偏低时,对应28~18 Ma的间断期,此时大洋CaCO3溶解率持续偏低,结壳在长时间较差的生长环境中断续生长。

  • 加载中
  • 图 1  壳层划分与取样点位示意图

    Figure 1. 

    图 4  多金属结壳的Co-Os年代框架

    Figure 4. 

    图 2  多金属结壳的生长速率年代剖面图

    Figure 2. 

    图 3  多金属结壳生长间断的显微证据

    Figure 3. 

    图 5  结壳样品Fe、K、Si、Al元素年代剖面

    Figure 5. 

    图 6  结壳样品斑杂状构造显微照片[22]

    Figure 6. 

    表 1  结壳取样信息和结构构造简述

    Table 1.  Sampling information and structural description

    样品名称采样区域采样位置层位宏观描述
    MS1 麦哲伦海山区 12.1°N、153.3°E
    2 128 m
    较致密 结核状结壳,环绕核心生长。
    整体致密,按生长纹理大致
    可分为5层,无明显疏松层。
    致密
    MHD79 马绍尔海山区 11.7°N、163.2°E
    2 381 m
    较致密 亮黑色—黑褐色,致密块状,组成纯净,横纵节理发育,贝壳状断口。
    疏松 黄白色—黄褐色,质地疏松,杂质较多。
    致密 亮黑色—黑褐色,致密块状,片理发育。
    CLD34-2 马尔库斯威克海山区 21.67°N、160.5°E
    2 191 m
    较致密 黑褐色,致密块状,组成纯净,柱状构造。
    较致密 黑褐色,同心圆构造,具柱状构造。
    CLD50 疏松 黑褐色,多孔,充填大量碎屑,构造杂乱。
    致密 亮黑色,组成纯净,具平行纹层构造,具生物痕迹。
    MP3D10 莱恩海山区 13.2°N、165.3°W
    2 739 m
    较致密 黑褐色,致密块状。
    疏松 黑褐色—黄褐色,裂隙和孔洞多,大量杂质。
    致密 亮黑色—黄白色,致密块状,节理裂隙发育。
    MP3D22 14.3°N、166.1°W
    3 214 m
    较致密 褐黑色,呈层状,金属光泽。
    疏松 灰色—黄褐色,裂隙和孔洞多。
    致密 亮黑色,致密块状,组成纯净。
    下载: 导出CSV

    表 2  中、西太平洋多金属结壳分层生长速率

    Table 2.  Growth rate changes within the crust layers in Western-Central Pacific

    取样点位 取样深度/mm Co含量/% 生长速率/(mm/Ma) 187Os/188Os Co-Os年龄/Ma 分层平均值
    麦哲伦海山区MS1
    1 3 0.36 3.82 0.966 8 1.18 较致密层2.19
    2 6 0.37 3.64 0.941 2 2
    3 9 0.43 2.79 0.907 0 2.9
    4 11 0.48 2.35 0.874 6 3.75
    5 13 0.51 2.07 0.827 1 8
    6 15 0.49 2.27 0.787 9 10
    7 17 0.44 2.70 0.777 8 10.92
    8 20 0.50 1.92 0.781 2 12.23
    9 22 0.74 1.14 0.790 7 14.43
    10 25 0.75 1.09 0.790 9 17.18
    11 28 0.76 1.08 0.769 5 28
    12 30 0.67 1.34 0.708 6 29.87
    13 33 0.62 1.50 0.617 7 32.2
    14 37 0.46 2.48 0.617 7 33.81
    15 41 0.44 2.64 0.506 9 35.52
    16 46 0.61 1.54 0.431 5 54 致密层1.54
    平均值 0.54 2.15 0.756 1
    马绍尔海山区MHD79
    1 2 0.51 2.09 0.969 0 2.63 较致密层1.91
    2 9 0.54 1.90 0.877 4 6.05
    3 15 0.50 2.16 0.840 2 8.47
    4 19.5 0.49 2.24 0.780 0 10.59
    5 24.5 0.61 1.55 0.783 0 28
    6 28.5 0.60 1.60 0.693 7 30.51
    7 32.5 0.58 1.69 0.560 2 32.29
    8 34.5 0.52 2.03 0.568 1 33.52
    9 37.5 0.53 1.96 0.388 3 35.05
    10 40.5 0.49 2.24 0.533 1 40 疏松层2.69
    11 44.5 0.50 2.16 0.405 8 42.54
    12 51.5 0.42 2.93 0.432 4 51
    13 59.5 0.39 3.32 0.443 4 53.26
    14 66.5 0.43 2.78 0.308 0 55.42
    15 71.5 0.48 2.31 0.368 4 65 致密层2.39
    16 77 0.44 2.68 0.422 0 66.87
    17 81.5 0.43 2.75 0.507 5 68.32
    18 85 0.54 1.90 0.606 0 75
    19 90 0.50 2.18 0.589 5 77.44
    20 96 0.46 2.49 0.696 3 79.04
    平均值 0.50 2.25 0.588 6
    马尔库斯威克海山区CLD34-2
    1 2 0.57 2.17 1.027 6 1.32 较致密层1.85
    2 4 0.70 1.97 0.996 5 2.37
    3 6 0.81 1.84 0.979 6 3.48
    4 8 0.98 1.68 0.947 7 4.67
    5 10 0.88 1.77 0.921 1 5.77
    6 12 1.00 1.67 0.912 9 6.95
    7 14 0.81 1.84 0.832 9 8.29
    平均值 0.85 1.85 0.945 5
    马尔库斯威克海山区CLD50
    1 2 0.51 2.29 1.022 0 1.17 较致密层1.83
    2 4 1.17 1.55 1.016 9 2.3
    3 6 0.73 1.93 0.975 4 3.34
    4 8 1.32 1.47 0.936 5 4.63
    5 10 0.74 1.92 0.848 1 5.73
    6 14 0.73 1.93 0.670 1 13 疏松层1.93
    7 30 0.65 2.05 0.621 9 32 致密层2.15
    8 34 0.53 2.24 0.508 5 32.95
    9 40 0.57 2.17 0.399 9 34.84
    平均值 0.76 1.95 0.78
    莱恩海山区MP3D10
    1 3 0.61 2.11 0.915 1 3 较致密层2.11
    2 7 0.41 2.54 0.812 4 10 疏松层2.56
    3 10 0.40 2.57 0.763 9 11.17
    4 13 0.41 2.54 0.769 9 12.35 致密层2.83
    5 16 0.57 2.17 0.801 2 28
    6 20 0.51 2.29 0.750 0 30.18
    7 26 0.44 2.46 0.596 3 32.42
    8 31 0.50 2.31 0.568 0 34.15
    9 34 0.31 2.90 0.672 1 35.18
    10 37 0.30 2.92 0.694 7 40
    11 40 0.30 2.94 0.687 7 41.02
    12 43 0.27 3.06 0.664 4 42.16
    13 47 0.24 3.27 0.642 0 54
    14 51 0.23 3.35 0.599 0 55.05
    15 54 0.22 3.38 0.513 1 55.79
    16 56 0.22 3.39 0.524 1 56.53
    17 59 0.39 2.60 0.502 4 65
    平均值 0.37 2.75 0.675 1
    莱恩海山区MP3D22
    1 4 0.44 2.46 0.826 7 8 较致密层2.46
    2 8 0.37 2.66 0.636 2 11 疏松层2.66
    3 11 0.31 2.90 0.712 5 31 致密层3.46
    4 15 0.18 3.74 0.718 2 32.07
    5 19 0.16 3.95 0.650 7 33.08
    6 23 0.16 3.95 0.651 6 34.03
    7 26.5 0.20 3.56 0.653 3 34.95
    8 29.5 0.27 3.09 0.584 4 56
    9 32.5 0.22 3.40 0.535 1 56.81
    10 35 0.23 3.33 0.565 8 57.63
    11 38 0.21 3.48 0.574 1 58.49
    12 41 0.21 3.48 0.604 8 59.5
    13 45 0.19 3.65 0.611 2 60.6
    14 49 0.20 3.56 0.690 2 66
    15 51 0.20 3.56 0.777 9 66.7
    16 54 0.21 3.48 0.821 1 67.42
    17 56 0.23 3.33 0.854 7 68.17
    18 59 0.22 3.40 0.862 8 69.05
    19 62 0.22 3.40 0.803 5 69.94
    20 65 0.24 3.27 0.839 6 78
    21 70 0.21 3.48 0.897 3 79.44
    22 75 0.25 3.20 0.916 9 80.53
    平均值 0.23 3.38 0.717 7
      注:MS1 和 MHD79 采用 Manheim 和 L-Bostwick[23](式1)的经验公式,其他4个样品则采用McMurtry等[24](式2)的公式,对受到磷酸盐化影响较大的 MHD79、CLD50 和 MP3D10 依据 Puteanus 和 Halbach[8]的方法进行了磷酸盐化校正。分别计算了样品各宏观构造层的平均生长速率。
    下载: 导出CSV

    表 3  结壳在不同生长期内的生长速率(单位:mm/Ma)

    Table 3.  Growth rate of crusts during different growing periods(unit:mm/Ma)

    样品名称生长期/Ma
    80~7570~6560~5042~4035~2815~108~0
    MS11.54-I1.81-III1.82-III2.93-III
    MHD792.19-I2.58-I3.01-II2.2-II1.77-III2.1-III
    CLD34-21.85-III
    CLD502.15-I1.93-II1.83-III
    MP3D102.6-I3.35-I2.97-I2.43-I2.55-II2.11-III
    MP3D223.32-I3.46-13.41-13.62-12.66-II2.46-III
      注:I-致密层,II-疏松层,III-较致密层。
    下载: 导出CSV
  • [1]

    Cowen J P, De Carlo E H, McGee D L. Calcareous nannofossil biostratigraphic dating of a ferromanganese crust from Schumann Seamount [J]. Marine Geology, 1993, 115(3-4): 289-306. doi: 10.1016/0025-3227(93)90057-3

    [2]

    Chabaux F, Unions R K, Cohen A S, et al. 238U-234U-230Th disequilibrium in hydrogenous oceanic Fe-Mn crusts: Palaeoceanographic record or diagenetic alteration? [J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3619-3632. doi: 10.1016/S0016-7037(97)00187-7

    [3]

    Klemm V, Levasseur S, Frank M, et al. Osmium isotope stratigraphy of a marine ferromanganese crust [J]. Earth and Planetary Science Letters, 2005, 238(1-2): 42-48. doi: 10.1016/j.jpgl.2005.07.016

    [4]

    李江山, 方念乔, 屈文俊, 等. 中太平洋富钴结壳的Os同位素定年与结壳生长间断[J]. 中国科学D辑: 地球科学, 2008, 51(10):1452-1459 doi: 10.1007/s11430-008-0100-x

    LI Jiangshan, FANG Nianqiao, QU Wenjun, et al. Os Isotope dating and growth hiatuses of Co-rich crust from central Pacific [J]. Science in China Series D: Earth Sciences, 2008, 51(10): 1452-1459. doi: 10.1007/s11430-008-0100-x

    [5]

    Hein J R, Bohrson W A, Schulz M S, et al. Variations in the fine-scale composition of a central Pacific ferromanganese crust: Paleoceanographic implications [J]. Paleoceanography, 1992, 7(1): 63-77. doi: 10.1029/91PA02936

    [6]

    Halbach P, Segl M, Puteanus D, et al. Co-fluxes and growth rates in ferromanganese deposits from Central Pacific Seamount areas [J]. Nature, 1983, 304(5928): 716-719. doi: 10.1038/304716a0

    [7]

    栾锡武. 大洋富钴结壳成因机制的探讨——水成因证据[J]. 海洋学研究, 2006, 24(2):8-19 doi: 10.3969/j.issn.1001-909X.2006.02.002

    LUAN Xiwu. Cobalt-rich ferromanganese crusts formation—Evidences of hydrogenous origin [J]. Journal of Marine Sciences, 2006, 24(2): 8-19. doi: 10.3969/j.issn.1001-909X.2006.02.002

    [8]

    朱克超, 赵祖斌, 李扬. 麦哲伦海山区MD、ME、MF海山富钴结壳特征[J]. 海洋地质与第四纪地质, 2001, 21(1):33-38

    ZHU Kechao, ZHAO Zubin, LI Yang. Cobalt-rich ferromanganese crusts from the MA, ME, and MF seamounts of the Magellan seamounts [J]. Marine Geology & Quaternary Geology, 2001, 21(1): 33-38.

    [9]

    Segl M, Mangini A, Banani G, et al. 10Be-dating of a manganese crust from Central North Pacific and implications for ocean palaeocirculation [J]. Nature, 1984, 309(5968): 540-543. doi: 10.1038/309540a0

    [10]

    Ling H F, Burton K W, O'Nions R K, et al. Evolution of Nd and Pb isotopes in Central Pacific Seawater from ferromanganese crusts [J]. Earth and Planetary Science Letters, 1997, 146(1-2): 1-12. doi: 10.1016/S0012-821X(96)00224-5

    [11]

    潘家华, DeCarlo E, 刘淑琴, 等. 西太平洋富钴结壳生长与富集特征[J]. 地质学报, 2005, 79(1):124-132 doi: 10.3321/j.issn:0001-5717.2005.01.014

    PAN Jiahua, DeCarlo E, LIU Shuqin, et al. Growth and enrichment characteristics of Co-rich crusts in the Western Pacific [J]. Acta Geologica Sinica, 2005, 79(1): 124-132. doi: 10.3321/j.issn:0001-5717.2005.01.014

    [12]

    Eisenhauer A, Gögen K, Pernicka E, et al. Climatic influences on the growth rates of Mn crusts during the Late Quaternary [J]. Earth and Planetary Science Letters, 1992, 109(1-2): 25-36. doi: 10.1016/0012-821X(92)90071-3

    [13]

    Mangini A, Segl M, Glasby G P, et al. Element accumulation rates in and growth histories of manganese nodules from the southwestern Pacific basin [J]. Marine Geology, 1990, 94(1-2): 97-107. doi: 10.1016/0025-3227(90)90105-S

    [14]

    Von Blanckenburg F, O’Nions R K, Hein J R. Distribution and sources of pre-anthropogenic lead isotopes in deep ocean water from Fe–Mn crusts [J]. Geochimica et Cosmochimica Acta, 1996, 60(24): 4957-4963. doi: 10.1016/S0016-7037(96)00310-9

    [15]

    Banakar V K, Pattan J N, Mudholkar A V. Palaeoceanographic conditions during the formation of a ferromanganese crust from the Afanasiy-Nikitin seamount, North Central Indian Ocean: geochemical evidence [J]. Marine Geology, 1997, 136(3-4): 299-315. doi: 10.1016/S0025-3227(96)00065-5

    [16]

    Banakar V K, Hein J R. Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean [J]. Marine Geology, 2000, 162(2-4): 529-540. doi: 10.1016/S0025-3227(99)00077-8

    [17]

    Frank M, O’Nions R K. Sources of Pb for Indian Ocean ferromanganese crusts: a record of Himalayan erosion? [J]. Earth and Planetary Science Letters, 1998, 158(3-4): 121-130. doi: 10.1016/S0012-821X(98)00055-7

    [18]

    潘家华, 张静, 刘淑琴, 等. 西北太平洋富钴结壳的钙质超微化石地层学研究及意义[J]. 地球学报, 2007, 28(5):411-417 doi: 10.3321/j.issn:1006-3021.2007.05.001

    PAN Jiahua, ZHANG Jing, LIU Shuqin, et al. Calcareous nannofossil biostratigraphy of Co-rich crusts from Northwestern Pacific and its significance [J]. Acta Geoscientica Sinica, 2007, 28(5): 411-417. doi: 10.3321/j.issn:1006-3021.2007.05.001

    [19]

    Noguchi A, Yamamoto Y, Nishi K, et al. Paleomagnetic study of ferromanganese crusts recovered from the northwest Pacific- testing the applicability of the magnetostratigraphic method to estimate growth rate [J]. Ore Geology Reviews, 2017, 87: 16-24. doi: 10.1016/j.oregeorev.2016.07.018

    [20]

    Puteanus D, Halbach P. Correlation of Co concentration and growth rate-A method for age determination of ferromanganese crusts [J]. Chemical Geology, 1988, 69(1-2): 73-85. doi: 10.1016/0009-2541(88)90159-3

    [21]

    初凤友, 胡大千, 姚杰. 中太平洋YJC海山富钴结壳矿物组成与元素地球化学[J]. 世界地质, 2006, 25(3):245-253 doi: 10.3969/j.issn.1004-5589.2006.03.005

    CHU Fengyou, HU Daqian, YAO Jie. Mineral composition and element geochemistry of Co-rich crust from the YJC sea mount in the Central Pacific Ocean [J]. Global Geology, 2006, 25(3): 245-253. doi: 10.3969/j.issn.1004-5589.2006.03.005

    [22]

    李江山, 方念乔, 丁旋, 等. 富钴结壳显微构造与元素含量: 基于中太平洋MHD79样品的研究[J]. 现代地质, 2007, 21(3):518-523 doi: 10.3969/j.issn.1000-8527.2007.03.013

    LI Jiangshan, FANG Nianqiao, DING Xuan, et al. Microstructure and element abundance of Co-rich crust: Evidences from the layered sample MHD79 collected from the Central Pacific [J]. Geoscience, 2007, 21(3): 518-523. doi: 10.3969/j.issn.1000-8527.2007.03.013

    [23]

    Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor [J]. Nature, 1988, 335(6185): 59-62. doi: 10.1038/335059a0

    [24]

    McMurtry G M, VonderHaar D L, Eisenhauer A, et al. Cenozoic accumulation history of a Pacific ferromanganese crust [J]. Earth and Planetary Science Letters, 1994, 125(1-4): 105-118. doi: 10.1016/0012-821X(94)90209-7

    [25]

    Frank M, O’Nions R K, Hein J R, et al. 60 Myr records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry [J]. Geochimica et Cosmochimica Acta, 1999, 63(11-12): 1689-1708. doi: 10.1016/S0016-7037(99)00079-4

    [26]

    Du A D, Wu S Q, Sun D Z, et al. Preparation and certification of Re-Os dating reference materials: Molybdenites HLP and JDC [J]. Geostandards and Geoanalytical Research, 2004, 28(1): 41-52. doi: 10.1111/j.1751-908X.2004.tb01042.x

    [27]

    符亚洲. 中太平洋莱恩海山富钴结壳的地球化学及Os同位素地层年代学研究[D]. 中国科学院地球化学研究所博士学位论文, 2006: 89-92.

    FU Yazhou. Geochemistry and Os isotopic geochronology of cobalt rich crusts in the Line seamount, Central Pacific Ocean[D]. Doctor Dissertation of Institute of geochemistry, Chinese Academy of Sciences, 2006: 89-92.

    [28]

    Jeong K S, Jung H S, Kang J K, et al. Formation of ferromanganese crusts on northwest intertropical Pacific seamounts: electron photomicrography and microprobe chemistry [J]. Marine Geology, 2000, 162(2-4): 541-559. doi: 10.1016/S0025-3227(99)00091-2

    [29]

    Halbach P, Puteanus D. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific seamount areas [J]. Earth and Planetary Science Letters, 1984, 68(1): 73-87. doi: 10.1016/0012-821X(84)90141-9

    [30]

    李江山. 中、西太平洋富钴结壳地球化学及古海洋环境[D]. 中国地质大学, 2007: 20-28.

    LI Jiangshan. Geochemistry and paleoceanic environment of cobalt rich crusts in the central and western Pacific[D]. China University of Geosciences, 2007: 20-28.

    [31]

    张志超. 中西太平洋富钴结壳Os同位素年代学研究及古海洋学意义[D]. 中国地质大学硕士学位论文, 2014: 11-13.

    ZHANG Zhichao. Geochronology of cobalt rich crusts in the central and western Pacific and its paleoceanographic significance[D]. Master Dissertation of China University of Geosciences, 2014: 11-13.

    [32]

    Halbach P, Giovanoli R, von Borstel D. Geochemical processes controlling the relationship between Co, Mn, and Fe in early diagenetic deep-sea nodules [J]. Earth and Planetary Science Letters, 1982, 60(2): 226-236. doi: 10.1016/0012-821X(82)90005-X

    [33]

    Boyd P W, Ellwood M J. The biogeochemical cycle of iron in the ocean [J]. Nature Geoscience, 2010, 3(10): 675-682. doi: 10.1038/ngeo964

    [34]

    Resing J A, Sedwick P N, German C R, et al. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean [J]. Nature, 2015, 523(7559): 200-203. doi: 10.1038/nature14577

    [35]

    Bressac M, Guieu C, Ellwood M J, et al. Resupply of mesopelagic dissolved iron controlled by particulate iron composition [J]. Nature Geoscience, 2019, 12(12): 995-1000. doi: 10.1038/s41561-019-0476-6

    [36]

    Ostrander C M, Nielsen S G, Owens J D, et al. Fully oxygenated water columns over continental shelves before the Great Oxidation Event [J]. Nature Geoscience, 2019, 12(3): 186-191. doi: 10.1038/s41561-019-0309-7

    [37]

    Aplin A C, Cronan D S. Ferromanganese oxide deposits from the central Pacific Ocean. I. Encrustations from the Line Islands Archipelago [J]. Geochimica et Cosmochimica Acta, 1985, 49(2): 427-436. doi: 10.1016/0016-7037(85)90034-1

    [38]

    Robbins L J, Funk S P, Flynn S L, et al. Hydrogeological constraints on the formation of Palaeoproterozoic banded iron formations [J]. Nature Geoscience, 2019, 12(7): 558-563. doi: 10.1038/s41561-019-0372-0

    [39]

    De Carlo E H. Paleoceanographic implications of rare earth element variability within a Fe-Mn crust from the central Pacific Ocean [J]. Marine Geology, 1991, 98(2-4): 449-467. doi: 10.1016/0025-3227(91)90116-L

    [40]

    许东禹. 太平洋古海洋事件和成矿作用[C]//第30届国际地质大会论文集, 第13卷, 海洋地质学, 古海洋学. 北京: 地质出版社, 1999: 101-113.

    XU Dongyu. Paleooceanic events and mineralization in the Pacific Ocean[C]//Proceedings of the 30th International Geological Congress, Volume 13, Marine Geology and Paleoceanography. Beijing: Geological Publishing House, 1999: 101-113.

    [41]

    Siesser W G. Paleoproductivity of the Indian Ocean during the Tertiary period [J]. Global and Planetary Change, 1995, 11(1-2): 71-88. doi: 10.1016/0921-8181(95)00003-A

    [42]

    Roden G I. Effects of the Fieberling seamount group upon flow and thermohaline structure in the spring of 1991 [J]. Journal of Geophysical Research, 1994, 99(C5): 9941-9961. doi: 10.1029/94JC00057

    [43]

    Pautot G, Melguen M. Deep bottom currents, sedimentary hiatuses and polymetallic nodules [J]. Technical Bulletin, 1976, 2: 54-61.

    [44]

    张振国. 南海北部陆缘多金属结核地球化学特征及成矿意义[D]. 中国地质大学博士学位论文, 2007: 98-102.

    ZHANG Zhenguo. Approach to geochemical characteristics and minerogenetic environment of polymetallic nodules from the northern continental margin of the South China Sea[D]. Doctor Dissertation of China University of Geosciences, 2007: 98-102.

    [45]

    吴长航. 南海北部陆缘大型多金属结核的生长及元素地球化学特征研究[D]. 中国地质大学博士学位论文, 2009: 63-117.

    WU Changhang. Research on the growth and elemental geochemical characteristics of large-scale polymetallic nodules from the Northern continental margin of the South China Sea[D]. Doctor Dissertation of China University of Geosciences, 2009: 63-117.

    [46]

    佟景贵. 太平洋富钴结壳矿物地球化学及古海洋与古环境重建[D]. 中国地质大学博士学位论文, 2007: 6-13.

    TONG Jingguo. Geochemical and mineralogical study on the Co-rich ferromanganese crust from the Pacific ocean and the palaeoocean and palaeoenvironment reconstruction[D]. Doctor Dissertation of China University of Geosciences, 2007: 6-13.

    [47]

    Leinen M, Heath G R. Sedimentary indicators of atmospheric activity in the northern hemisphere during the Cenozoic [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1981, 36(1-2): 1-21. doi: 10.1016/0031-0182(81)90046-8

    [48]

    丁旋, 高莲凤, 方念乔, 等. 太平洋海山富钴结壳生长过程与新生代海洋演化关系[J]. 中国科学D辑: 地球科学, 2009, 52(8):1091-1103 doi: 10.1007/s11430-009-0106-z

    DING Xuan, GAO Lianfeng, FANG Nianqiao, et al. The relationship between the growth process of the ferromanganese crusts in the Pacific seamount and Cenozoic ocean evolvement [J]. Science in China Series D: Earth Sciences, 2009, 52(8): 1091-1103. doi: 10.1007/s11430-009-0106-z

    [49]

    Segl M, Mangini A, Beer J, et al. Growth rate variations of manganese nodules and crusts induced by paleoceanographic events [J]. Paleoceanography, 1989, 4(5): 511-530. doi: 10.1029/PA004i005p00511

  • 加载中

(6)

(3)

计量
  • 文章访问数:  1909
  • PDF下载数:  90
  • 施引文献:  0
出版历程
收稿日期:  2019-11-07
修回日期:  2020-02-28
刊出日期:  2020-08-25

目录