东海盆地西湖凹陷平湖组微量稀土元素对古生产环境的指示意义

徐博, 曾文倩, 刁慧, 汤睿, 欧戈. 东海盆地西湖凹陷平湖组微量稀土元素对古生产环境的指示意义[J]. 海洋地质与第四纪地质, 2021, 41(3): 72-84. doi: 10.16562/j.cnki.0256-1492.2020082402
引用本文: 徐博, 曾文倩, 刁慧, 汤睿, 欧戈. 东海盆地西湖凹陷平湖组微量稀土元素对古生产环境的指示意义[J]. 海洋地质与第四纪地质, 2021, 41(3): 72-84. doi: 10.16562/j.cnki.0256-1492.2020082402
XU Bo, ZENG Wenqian, DIAO Hui, TANG Rui, OU Ge. Trace rare earth elements in the Pinghu Formation of Xihu Sag and its implications for paleo-production environment[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 72-84. doi: 10.16562/j.cnki.0256-1492.2020082402
Citation: XU Bo, ZENG Wenqian, DIAO Hui, TANG Rui, OU Ge. Trace rare earth elements in the Pinghu Formation of Xihu Sag and its implications for paleo-production environment[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 72-84. doi: 10.16562/j.cnki.0256-1492.2020082402

东海盆地西湖凹陷平湖组微量稀土元素对古生产环境的指示意义

  • 基金项目: “十三五”国家科技重大专项“东海盆地天然气资源潜力评价”(2016ZX05027-001)
详细信息
    作者简介: 徐博(1986—),男,工程师,主要从事石油地质研究,E-mail:xubo9@cnooc.com.cn
  • 中图分类号: P744.4

Trace rare earth elements in the Pinghu Formation of Xihu Sag and its implications for paleo-production environment

  • 西湖凹陷是中国东海已证实的富烃凹陷,始新统平湖组是该凹陷主力烃源岩层系。通过对西湖凹陷30口井433个样品的地球化学及微量元素分析测试,从平湖组下段、中段、上段3个层段分析了有机碳、微量元素、稀土元素的特征及其垂向变化规律,从纵向上分析平湖组的古盐度、古气候、古氧化还原环境、古水深、古水温、古生产力等古生产环境。结果表明:微量元素Rb、Ba、Zr富集,均表现出明显的正异常,而Co、Mo、Sc、Hf相对亏损。Sr/Ba、Sr/Cu、古气候C值、V/Cr、Ni/Co、U/Th、V/(V+Ni)、V/Sc、Mn/Fe、Co、Sr、Sr/Cu、生源Ba等参数表明平湖组为温暖气候下的陆相淡水沉积,属于半干旱-半潮湿气候环境,具有较高的古生产力,生烃潜力好。

  • 加载中
  • 图 1  西湖凹陷构造图

    Figure 1. 

    图 2  西湖凹陷地层示意图

    Figure 2. 

    图 3  平湖组烃源岩有机质丰度交会图

    Figure 3. 

    图 4  平湖组微量元素分配

    Figure 4. 

    图 5  平湖组球粒陨石标准化稀土元素分配模式

    Figure 5. 

    图 6  平湖组Sr/Ba与深度关系图

    Figure 6. 

    图 7  平湖组Sr/Cu与深度关系图

    Figure 7. 

    图 8  平湖组古气候C值与深度关系图

    Figure 8. 

    图 9  平湖组不同参数与深度关系图

    Figure 9. 

    图 10  物源Co与粒径大小之间的经验关系曲线[28]

    Figure 10. 

    图 11  平湖组古水温与深度关系图

    Figure 11. 

    图 12  C-6井两种方法计算的平湖组古水温与深度关系图

    Figure 12. 

    图 13  C-3井平湖组古生产力、TOC与与深度关系图

    Figure 13. 

    表 1  西湖凹陷平湖组烃源岩丰度统计

    Table 1.  Organic matter abundance in source rocks of Pinghu Formation in Xihu Sag

    岩性层位TOC/
    %
    (S1+S2)/
    (mg/g)
    HI
    (mgHC/gTOC)
    Tmax/
    泥岩平上段0.5~5.98 1.59(367)0.22~59.83 5.76(367)31.43~913.82 279.61(346)321~484.3 444.01(346)
    平中段0.5~5.97 1.68(543)0.21~54.29 6.18(543)21.65~893.89 253.03(539)260~496 428.61(539)
    平下段0.5~5.52 1.36(191)0.34~54.08 6.12(191)30.82~891.77 255.36(191)355~490 442.32(191)
    碳质泥岩平上段6.45~19.64 11.38(39)5.81~184 31.78(39)80.4~921.72 249.1(39)422~461 441.9(39)
    平中段6.06~19.63 10.95(89)1.43~143.8 46.91(89)8.31~900.06 383.02(89)344~506 444.97(89)
    平下段6.59~14.9 10.365(8)9.79~62.12 31.27(8)85.5~763.77 275.31(8)431~479 451(8)
    平上段20.55~72.95 51.47(32)56.32~219.15 137.05(32)180.26~663.58 284.35(19)421~457 444.63(19)
    平中段20.2~69.2 35.32(41)51.36~421.85 159.16(41)192.92~976.14 412.14(41)417~469 442(41)
    平下段21.99~61.9 43.586(5)56.14~193.8 98.1(5)92.27~326.01 225.86(5)432~489 454(5)
      注:
    下载: 导出CSV

    表 2  平湖组微量元素分布范围

    Table 2.  The distribution of trace elements in Pinghu Formation

    μg/g
    元素平上段平中段平下段
    Rb 0.063~231.021
    118.637(72)
    0.074~234.798
    117.107(122)
    5.22~337.659
    134.726(66)
    Ba 165.969~18 866
    2 154.651(135)
    180~32 697
    2 989.647(189)
    230.7~29 319.518
    3 488.624(109)
    Zr 38.5~437.515
    269.44(72)
    42.2~433.044
    247.493(122)
    45.32~400.232
    215.673(66)
    Co 2.61~42.511
    19.34(135)
    4.52~33.146
    17.226(187)
    3.24~40.384
    15.439 (107)
    Mo 0.38~14.369
    1.998(91)
    0.38~89.894
    2.061(134)
    0.15~66.7
    2.198(67)
    Sc 0.005~25.65
    14.372(94)
    0.007~24.36
    14.022(137)
    2.638~27.52
    14.514(66)
    Hf 0.74~12.883
    7.622(72)
    0.52~12.331
    6.984(122)
    0.74~11.691
    6.217(66)
      注:
    下载: 导出CSV

    表 3  西湖凹陷平湖组烃源岩稀土元素含量

    Table 3.  ΣREE analytical data of source rocks of Pinghu Formation in Xihu Sag

    层位井名LaCePrNdSmEuGdTbDyHoErTmYbLuΣREE/
    (μg/g)
    ΣLREE/
    (μg/g)
    ΣHREE/
    (μg/g)
    ΣLREE/
    ΣHREE
    LaN/
    YbN
    δEuδCe
    /(μg/g)
    平上段C-22 61.0 130 14.6 55.0 11.0 2.23 10.6 1.43 9.45 1.55 4.70 0.65 4.47 0.75306.94 273.35 33.60 8.14 1.32 0.91 0.95
    C-134.890.38.5430.56.411.496.280.906.141.012.750.442.700.73193.09172.1420.958.221.251.031.14
    C-251.411112.144.69.192.168.221.117.651.233.610.523.580.60256.93230.4226.518.691.391.090.97
    C-344.688.010.337.87.741.637.071.027.301.183.500.483.300.57214.47190.0524.427.781.310.970.90
    C-445.789.09.9236.57.381.596.570.947.041.153.430.483.390.60213.69190.1023.598.061.311.000.91
    B-148.597.311.442.58.891.988.461.188.171.303.740.513.510.60238.07210.5927.477.671.341.000.90
    C-541.71038.8331.86.831.855.570.765.800.892.810.392.890.50213.93194.3419.599.921.401.321.17
    A-335.490.89.2231.26.881.796.721.376.691.483.150.863.071.16199.74175.2424.507.151.121.161.09
    B-240.798.79.5935.97.521.756.530.926.441.033.010.433.080.53216.06194.0921.978.841.281.101.09
    B-347.811511.040.510.43.177.911.107.721.253.710.533.530.64254.34227.9426.398.641.311.541.09
    C-668.9233.8112.6412.862.311.60.570.450.320.420.410.650.09136.04131.534.5129.1610.272.290.25
    C-1228.366.72.4524.721.18.396.643.071.824.13167.30151.6415.669.680.663.111.74
    C-2321.439.94.3316.45.732.43.320.362.460.41.30.151.240.1499.5390.169.379.621.672.420.90
    C-1327.253.46.0923.36.482.195.220.593.680.611.830.221.690.21132.71118.6614.058.451.561.650.90
    C-1427.151.5622.75.321.465.20.653.670.671.890.281.810.28128.53114.0814.457.891.451.220.88
    C-1541.8681.318.7431.788.623.245.940.864.750.832.260.292.100.35192.94175.5617.3810.101.931.990.93
    C-1657.20114.2813.3153.5111.942.7411.641.629.321.775.180.825.000.82289.15252.9836.176.991.111.020.90
    平中段C-2240.397.69.8437.37.691.607.231.037.621.243.690.503.620.63219.85194.2925.567.601.080.941.07
    C-338.877.08.8232.27.321.955.830.846.100.952.850.392.880.49186.50166.1620.348.171.301.310.91
    C-1222.444.40.2918.357.734.54.571.91.464.04189.56177.5911.9714.840.549.333.79
    C-1428.255.56.2924.55.61.365.620.674.010.672.020.2720.26136.97121.4515.527.831.371.060.91
    C-1645.0689.6210.5142.799.402.209.061.277.031.303.760.633.520.64226.81199.5827.227.331.241.050.90
    C-250.611311.643.413.45.008.521.158.101.293.760.493.500.61264.37236.9527.428.641.402.061.01
    C-440.579.89.2335.07.491.736.610.946.651.043.000.412.890.51195.88173.8322.057.881.361.080.90
    B-141.482.69.8337.58.111.837.271.027.331.163.390.453.240.57205.62181.1924.437.421.241.050.89
    C-537.51188.5631.37.181.905.840.826.210.952.920.423.140.54224.94204.0920.859.791.161.291.43
    C-654.3249.181010.962.470.843.010.780.860.440.910.530.570.12134.99127.777.2217.709.231.350.46
    C-131.6957.947.1326.954.891.154.580.703.830.772.170.312.010.29144.41129.7414.678.841.521.060.84
    C-2327.953.66.1522.86.22.144.710.613.380.621.740.251.60.26131.96118.7913.179.021.691.740.89
    C-1325.848.95.5620.99.984.84.170.472.740.431.260.161.130.16126.46115.9410.5211.022.213.270.89
    C-1533.9266.587.6127.895.701.585.320.864.490.862.320.392.360.45160.33143.2817.058.401.391.260.90
    C-1848.0995.279.9643.019.522.687.931.206.631.243.420.543.190.53233.23208.5424.698.451.461.350.95
    C-1941.7784.729.8238.498.061.777.351.086.041.183.320.593.300.59208.07184.6323.447.881.231.010.91
    平下段C-23 45.2 72.9 9.72 34.8 7.15 1.60 6.15 0.96 7.35 1.26 3.96 0.56 4.00 0.68 196.31 171.40 24.90 6.88 1.10 1.06 0.76
    C-2254.712012.446.19.972.439.371.278.671.454.220.584.060.69275.94245.6230.318.101.311.111.00
    平下段C-1 35.0 87.3 8.22 31.2 5.85 1.42 6.05 0.71 6.61 0.67 2.62 0.66 1.99 1.45 189.76 169.00 20.77 8.14 1.71 1.05 1.12
    C-450.910111.743.79.222.078.501.198.111.303.770.523.790.63246.50218.6927.817.861.301.030.90
    C-665.2440.3211.238.562.350.780.450.780.410.560.560.540.50.05132.33128.483.8533.3712.643.330.32
    C-2050.998.310.740.77.131.495.840.9495.0912.910.4753.140.442229.07209.2219.8510.541.571.010.92
    C-2139.475.28.2231.15.111.064.190.73.870.7552.630.4012.690.444175.77160.0915.6810.211.421.010.91
    C-816.1730.213.5813.142.220.742.020.281.530.300.820.130.780.1172.0366.055.9711.062.011.540.87
    C-1325.750.75.7421.96.692.484.660.523.160.51.520.191.450.18125.39113.2112.189.291.721.950.91
    C-230.9959.767.0625.547.032.784.680.793.740.751.880.391.840.44147.67133.1614.509.181.642.130.88
    C-1545.3689.4710.2037.147.211.737.591.126.461.123.040.433.220.50214.58191.1123.478.141.371.030.91
    C-1850.7198.8610.3344.648.321.876.960.914.710.862.410.412.620.43234.03214.7219.3111.121.871.080.94
    下载: 导出CSV

    表 4  氧化还原环境的元素判别指标

    Table 4.  Element parameters for redox condition

    元素氧化氧化还原还原
    V/Cr<22~4.25>4.25
    Ni/Co<55~7>7
    U/Th<22~4.25>4.25
    V/(V+Ni)<0.60.6~0.84>0.84
    V/Sc<99~30>30
    下载: 导出CSV

    表 5  平湖组氧化还原环境判识结果

    Table 5.  The REDOX environment of Pinghu Formation

    元素平上段平中段平下段
    V/Cr0.21~5.01
    0.88(135)
    0.2~5.17
    0.9(189)
    0.12~39.71
    1.87(85)
    Ni/Co0.41~4.15
    2.23(135)
    0.75~28.14
    2.4(187)
    0.15~12.96
    3.39(107)
    U/Th0.08~0.76
    0.27(93)
    0.06~0.93
    0.25(130)
    0.15~1.41
    0.29(69)
    环境富氧氧化
    V/(V+Ni)0.4~0.91
    0.76(85)
    0.16~0.93
    0.79(189)
    0.55~0.92
    0.79(135)
    V/Sc2.57~27.23
    10.1(91)
    1.82~24.65
    9.8(135)
    0.5~50.79
    9.24(67)
    环境氧化-还原
      注:
    下载: 导出CSV

    表 6  平湖组不同层段水深微量元素含量

    Table 6.  Trace element contents in different layers of water depth for Pinghu Formation

    元素平湖组上段平湖组中段平湖组下段
    Co/(μg/g)2.61~42.51
    19.34(135)
    4.52~33.15
    17.23(187)
    3.24~40.384
    15.44(107)
    Cu/(μg/g)5.29~124
    33.01(135)
    2.19~91.78
    26.77(189)
    4.59~56.07
    24.28(87)
    Ni/(μg/g)5.7~88.5
    41(13)
    6~730.9
    40.9(190)
    1.8~129.2
    38.2(110)
    Mn/Ti0.01~0.86
    0.18(132)
    0.01~1.97
    0.19(186)
    0.03~1.18
    0.15(104)
    Mn/Fe0.01~0.05
    0.01(84)
    0.01~0.04
    0.01(116)
    0.01~0.05
    0.01(69)
      注:
    下载: 导出CSV
  • [1]

    朱光有, 金强, 张水昌, 等. 东营凹陷沙河街组湖相烃源岩的组合特征[J]. 地质学报, 2004, 78(3):416-427 doi: 10.3321/j.issn:0001-5717.2004.03.015

    ZHU Guangyou, JIN Qiang, ZHANG Shuichang, et al. Combination characteristics of lake facies source rock in the Shahejie formation, Dongying depression [J]. Acta Geologica Sinica, 2004, 78(3): 416-427. doi: 10.3321/j.issn:0001-5717.2004.03.015

    [2]

    Demaison G J, Moore G T. Anoxic environments and oil source bed genesis [J]. Organic Geochemistry, 1980, 2(1): 9-31. doi: 10.1016/0146-6380(80)90017-0

    [3]

    Calvert S E, Fontugne M R. On the late pleistocene-holocene sapropel record of climatic and oceanographic variability in the eastern Mediterranea [J]. Paleoceanography and Paleoclimatology, 2001, 16(1): 78-94.

    [4]

    Rinna J, Warning B, Meyers P A, et al. Combined organic and inorganic geochemical reconstruction of paleodepositional conditions of a pliocene sapropel from the eastern Mediterranean sea [J]. Geochimica et Cosmochimica Acta, 2002, 66(11): 1969-1986. doi: 10.1016/S0016-7037(02)00826-8

    [5]

    Sageman B B, Murphy A E, Werne J P, et al. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich Strata, middle-upper Devonian, Appalachian basin [J]. Chemical Geology, 2003, 195(1-4): 229-273. doi: 10.1016/S0009-2541(02)00397-2

    [6]

    Mort H, Jacquat O, Adatte T, et al. The cenomanian/turonian anoxic event at the bonarelli level in Italy and Spain: enhanced productivity and/or better preservation? [J]. Cretaceous Research, 2007, 28(4): 597-612. doi: 10.1016/j.cretres.2006.09.003

    [7]

    Wei H Y, Chen D Z, Wang J G, et al. Organic accumulation in the Lower Chihsia formation (Middle Permian) of South China: constraints from pyrite morphology and multiple geochemical proxies [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 353-355: 73-86. doi: 10.1016/j.palaeo.2012.07.005

    [8]

    李艳芳, 邵德勇, 吕海刚, 等. 四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J]. 石油学报, 2015, 36(12):1470-1483 doi: 10.7623/syxb201512002

    LI Yanfang, SHAO deyong, LV Haigang, et al. A relationship between elemental geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation—Longmaxi Formation, Sichuan basin [J]. Acta Petrolei Sinica, 2015, 36(12): 1470-1483. doi: 10.7623/syxb201512002

    [9]

    Demaison GJ, Moore GT. Anixic environments and oil sourced genesis [J]. AAPG Bulletin, 1980, 64(8): 1179-1209.

    [10]

    Pedersen T F, Calver S E. Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks [J]. AAPG Bulletin, 1990, 74(4): 454-466.

    [11]

    张水昌, 张宝民, 边立曾, 等. 中国海相烃源岩发育控制因素[J]. 地学前缘, 2005, 12(3):39-48 doi: 10.3321/j.issn:1005-2321.2005.03.006

    ZHANG Shuichang, ZHANG Baomin, BIAN Liceng, et al. Development constraints of marine source rocks in China [J]. Earth Science Frontiers, 2005, 12(3): 39-48. doi: 10.3321/j.issn:1005-2321.2005.03.006

    [12]

    常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1):91-99 doi: 10.3321/j.issn:0371-5736.2009.01.011

    CHANG Huajin, CHU Xuelei, FENG Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies [J]. Geological Review, 2009, 55(1): 91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011

    [13]

    李双建, 肖开华, 沃玉进, 等. 南方海相上奥陶统-下志留统优质烃源岩发育的控制因素[J]. 沉积学报, 2008, 26(5):872-880

    LI Shuangjian, XIAO Kaihua, WO Yujin, et al. Developmental controlling factors of Upper Ordovician-Lower Silurian high quality source rocks in marine sequence, South China [J]. Acta Sedimentologica Sinica, 2008, 26(5): 872-880.

    [14]

    熊小辉, 肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境, 2011, 39(3):405-414

    XIONG Xiaohui, XIAO Jiafei. Geochemical indicators of sedimentary environments-a summary [J]. Earth and Environment, 2011, 39(3): 405-414.

    [15]

    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update [J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012

    [16]

    Tribovillard N, Algeo T J, Baudin F, et al. Analysis of marine environmental conditions based on molybdenum-uranium covariation-applications to Mesozoic Paleoceanography [J]. Chemical Geology, 2012, 324-325: 46-58. doi: 10.1016/j.chemgeo.2011.09.009

    [17]

    胡玮, 卢宗盛, 喻鹏. 陆相盆地古生产力研究现状[J]. 地质科技情报, 2010, 29(6):15-20 doi: 10.3969/j.issn.1000-7849.2010.06.003

    HU Wei, LU Zongsheng, YU Peng. Current status of paleoproductivity research in continental basins [J]. Geological Science and Technology Information, 2010, 29(6): 15-20. doi: 10.3969/j.issn.1000-7849.2010.06.003

    [18]

    Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems [J]. Chemical Geology, 2004, 206(3-4): 289-318. doi: 10.1016/j.chemgeo.2003.12.009

    [19]

    叶加仁, 任建业, 吴景富, 等. 中国近海富烃凹陷特征及评价[M]. 北京: 科学出版社, 2016: 1-361.

    YE Jiaren, REN Jianye, WU Jingfu, et al. Characteristics and Evaluation of Hydrocarbon-Rich Depressions in Offshore China[M]. Beijing: Science Press, 2016: 1-361.

    [20]

    卢双舫, 张敏. 油气地球化学[M]. 北京: 石油工业出版社, 2008: 1-273.

    LU Shuangfang, ZHANG Min. Organic Geochemistry of Petroleum[M]. Beijing: Petroleum Industry Press, 2008: 1-273.

    [21]

    田正隆, 陈绍勇, 龙爱民. 以Ba为指标反演海洋古生产力的研究进展[J]. 热带海洋学报, 2004, 23(3):78-86 doi: 10.3969/j.issn.1009-5470.2004.03.012

    TIAN Zhenglong, CHEN Shaoyong, LONG Aimin. A review on barium as a geochemical proxy to reconstruct paleoproductivity [J]. Journal of Tropical Oceanography, 2004, 23(3): 78-86. doi: 10.3969/j.issn.1009-5470.2004.03.012

    [22]

    薛罗. 恩平凹陷古近系烃源岩元素地球化学综合评价[D]. 中国地质大学(武汉)硕士学位论文, 2013.

    XUE Luo. Element geochemistry evaluation of paleogene source rocks in Enping depression[D]. Master Dissertation of China University of Geosciences (Wuhan), 2013.

    [23]

    Mason B. Meteorites[M]//Fleischerl M. Data of Geochemistry, Chap B, Part I, USGS Prof Paper 440 B-1, US Government Printing Office. 1979: 132.

    [24]

    彭海艳, 陈洪德, 向芳, 等. 微量元素分析在沉积环境识别中的应用——以鄂尔多斯盆地东部二叠系山西组为例[J]. 新疆地质, 2006, 24(2):202-205 doi: 10.3969/j.issn.1000-8845.2006.02.022

    PENG Haiyan, CHEN Hongde, XIANG Fang, et al. Application of trace elements analysis on sedimentary environment identification--an example from the Permian Shanxi formation in eastern ordos basin [J]. Xinjiang Geology, 2006, 24(2): 202-205. doi: 10.3969/j.issn.1000-8845.2006.02.022

    [25]

    关有志. 科尔沁沙地的元素、粘土矿物与沉积环境[J]. 中国沙漠, 1992, 12(1):9-15

    GUAN Youzhi. The element, clay mineral and depositional environment in Horqin sand land [J]. Journal of Desert Research, 1992, 12(1): 9-15.

    [26]

    Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones [J]. Chemical Geology, 1994, 111(1-4): 111-129. doi: 10.1016/0009-2541(94)90085-X

    [27]

    Nicholls G D. Trace elements in sediments: an assessment of their possible utility as depth indicators [J]. Marine Geology, 1967, 5(5-6): 539-555. doi: 10.1016/0025-3227(67)90059-X

    [28]

    吴智平, 周瑶琪. 一种计算沉积速率的新方法——宇宙尘埃特征元素法[J]. 沉积学报, 2000, 18(3):395-399 doi: 10.3969/j.issn.1000-0550.2000.03.012

    WU Zhiping, ZHOU Yaoqi. Using the characteristic elements from meteoritic must in strata to calculate sedimentation rate [J]. Acta Sedimentologica Sinica, 2000, 18(3): 395-399. doi: 10.3969/j.issn.1000-0550.2000.03.012

    [29]

    周瑶琪, 吴智平. 地层间断面的时间结构研究[M]. 北京: 地质出版社, 2000.

    ZHOU Yaoqi, WU Zhiping. Study on the Time Compositional Units of Hiatus Surface[M]. Beijing: Geological Publishing House, 2000.

    [30]

    周洪瑞, 王自强, 崔新省, 等. 华北地台南部中新元古界层序地层研究[M]. 北京: 地质出版社, 1999.

    ZHOU Hongrui, WANG Ziqiang, CUI Xinsheng, et al. Study of the Neoproterozoic Strata on the southern of the North China Platform[M]. Beijing: Geological Publishing House, 1999.

    [31]

    张才利, 高阿龙, 刘哲, 等. 鄂尔多斯盆地长7油层组沉积水体及古气候特征研究[J]. 天然气地球科学, 2011, 22(4):582-587

    ZHANG Caili, GAO Along, LIU Zhe, et al. Study of character on sedimentary water and palaeoclimate for Chang 7 oil layer in Ordos basin [J]. Natural Gas Geoscience, 2011, 22(4): 582-587.

    [32]

    周瑶琪, 吴智平. 中子活化技术在层序地层学中的应用[J]. 地学前缘, 5(1-2): 143-149.

    ZHOU Yaoqi, WU Zhiping. Applications of neutron activation analysis in sequence stratigraphy[J]. Earth Science Frontiers, 5(1-2): 143-149.

    [33]

    刘福田, 李荣西, 赵帮胜, 等. 鄂尔多斯盆地西南缘蓟县系碳酸盐岩碳氧同位素特征及其地质意义[J]. 兰州大学学报(自然科学版), 2018, 54(4):597-603, 611

    LIU Futian, LI Rongxi, ZHAO Bangsheng, et al. Characteristics of carbon and oxygen isotopes of the Jixian System carbonate rocks in the southwestern margin of Ordos Basin and their implication [J]. Journal of Lanzhou University (Natural Sciences), 2018, 54(4): 597-603, 611.

    [34]

    Epstein S, Buchsbaum R, Lowenstam H A, et al. Revised carbonate-water isotopic temperature scale [J]. GSA Bulletin, 1953, 64(11): 1315-1326. doi: 10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2

    [35]

    陈慧, 解习农, 李红敬, 等. 利用古氧相和古生产力替代指标评价四川上寺剖面二叠系海相烃源岩[J]. 古地理学报, 2010, 12(3):324-333 doi: 10.7605/gdlxb.2010.03.008

    CHEN Hui, XIE Xinong, LI Hongjing, et al. Evaluation of the Permian marine hydrocarbon source rocks at Shangsi section in Sichuan Province using multi-proxies of paleoproductivity and paleoredox [J]. Journal of Palaeogeography, 2010, 12(3): 324-333. doi: 10.7605/gdlxb.2010.03.008

    [36]

    韦恒叶. 古海洋生产力与氧化还原指标——元素地球化学综述[J]. 沉积与特提斯地质, 2012, 32(2):76-88 doi: 10.3969/j.issn.1009-3850.2012.02.012

    WEI Hengye. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry [J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 76-88. doi: 10.3969/j.issn.1009-3850.2012.02.012

    [37]

    Tatlor S R, McLennan S M. The continental Crust: its composition and evolution: an examination of the Geochemical record preserved in sedimentary rocks[M]. Oxford: Blackwell Scientific Publications, 1985: 312.

  • 加载中

(13)

(6)

计量
  • 文章访问数:  1038
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2020-08-24
修回日期:  2020-10-12
刊出日期:  2021-06-28

目录