海洋生境的甲烷好氧氧化作用对氧浓度的响应特征

李晶, 刘昌岭, 吴能友, 贺行良, 许晓晴, 陈烨, 孟庆国. 海洋生境的甲烷好氧氧化作用对氧浓度的响应特征[J]. 海洋地质与第四纪地质, 2021, 41(3): 44-53. doi: 10.16562/j.cnki.0256-1492.2021011902
引用本文: 李晶, 刘昌岭, 吴能友, 贺行良, 许晓晴, 陈烨, 孟庆国. 海洋生境的甲烷好氧氧化作用对氧浓度的响应特征[J]. 海洋地质与第四纪地质, 2021, 41(3): 44-53. doi: 10.16562/j.cnki.0256-1492.2021011902
LI Jing, LIU Changling, WU Nengyou, HE Xingliang, XU Xiaoqing, CHEN Ye, MENG Qingguo. Response characteristics of aerobic methane oxidation to oxygen concentration in marine habitats[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 44-53. doi: 10.16562/j.cnki.0256-1492.2021011902
Citation: LI Jing, LIU Changling, WU Nengyou, HE Xingliang, XU Xiaoqing, CHEN Ye, MENG Qingguo. Response characteristics of aerobic methane oxidation to oxygen concentration in marine habitats[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 44-53. doi: 10.16562/j.cnki.0256-1492.2021011902

海洋生境的甲烷好氧氧化作用对氧浓度的响应特征

  • 基金项目: 山东省自然科学基金“不同渗漏模式下海底天然气水合物分解气好氧氧化规律研究”(ZR2020QD070);国家自然科学基金“南海沉积物中水合物降压分解动力学行为及控制机理研究”(41876051);国家天然气水合物127专项“天然气水合物储层模拟与测试技术”(DD20190221)
详细信息
    作者简介: 李晶(1991—),女,在站博士后,从事天然气水合物环境效应研究,E-mail:lijing_qimg@163.com
    通讯作者: 刘昌岭(1966—),男,博士,研究员,从事天然气水合物模拟实验研究,E-mail:qdliuchangling@163.com
  • 中图分类号: P736.4

Response characteristics of aerobic methane oxidation to oxygen concentration in marine habitats

More Information
  • 海洋生境来源的甲烷好氧氧化菌及其产生的甲烷氧化作用是否具有独特性,对氧浓度这一环境因子如何响应,目前尚不清楚。本文采用海底新鲜沉积物作为菌种来源,借助微生物培养技术,实验研究了不同氧浓度条件(0%、1%、10%和50%)下的甲烷好氧氧化过程。结果表明,完全无氧条件(0%)不能发生甲烷好氧氧化作用,实验体系的甲烷氧化速率及甲烷氧化菌总丰度随氧浓度升高而降低,当氧浓度由1%升高至50%时,甲烷氧化速率减弱了约15倍,甲烷氧化菌总丰度降低了两个数量级。甲烷氧化菌优势菌属为I型氧化菌Methylobacter属,由Methylobacter leteusMethylobacter whittenburyi组成,氧浓度增加时Methylobacter leteus的占比随之降低,Methylobacter whittenburyi则相反。本实验中甲烷好氧氧化菌及其氧化作用的最适氧浓度条件为1%,这与采样位置的原始生存环境最为接近。在海底低氧条件叠加低温、高压等特殊生境的长期驯化下,甲烷氧化菌的最适氧浓度条件将逐渐趋于其原始生存环境。

  • 加载中
  • 图 1  甲烷好氧氧化过程中CH4和CO2含量变化趋势图

    Figure 1. 

    图 2  不同氧浓度实验过程中的甲烷好氧氧化速率

    Figure 2. 

    图 3  不同氧浓度甲烷好氧氧化过程中甲烷氧化菌群落组成

    Figure 3. 

    图 4  不同氧浓度甲烷好氧氧化过程中的甲烷氧化菌丰度变化情况

    Figure 4. 

    表 1  甲烷好氧氧化实验设计方案

    Table 1.  Experimental design for aerobic methane oxidation

    实验组O2浓度底物配比气体配比
    i0%O211 g沉积物+30 mL海水20 mLCH4+180 mLN2
    ii1%O212.7 g沉积物+30 mL海水20 mLCH4+2 mLO2+178 mLN2
    iii10%O211.9 g沉积物+30 mL海水20 mLCH4+20 mLO2+160 mLN2
    iv50%O212.0 g沉积物+30 mL海水20 mLCH4+100 mLO2+80 mLN2
    空白组50%O211.9 g沉积物+30 mL海水100 mLO2+100 mLN2
    下载: 导出CSV

    表 2  不同氧浓度实验过程中的甲烷氧化速率

    Table 2.  Methane reduction rate from each experiment at different oxygen concentrations

    μmol/gdw/d
    天数实验ii-#1(1%O2实验ii-#2(1%O2实验iii-#1(10%O2实验iii-#2(10%O2实验iv-#1(50%O2实验iv-#2(50%O2
    甲烷含量快速变化阶段
    1
    36.076.6541.5631.133.803.64
    422.4215.9011.5911.28
    甲烷含量平稳变化阶段
    40.350.28
    73.267.541.522.100.360.20
    164.404.750.180.240.080.15
    233.152.363.614.970.210.20
    302.363.153.965.28
    373.153.942.400.240.12
    443.944.72
    513.012.960.440.29
    MOR平均值*3.334.202.323.000.280.21
      注:#1和#2分别指的是各实验中的两个平行实验组;MOR平均值*是由甲烷含量处于平稳变化阶段的气体减少速率取平均值获得。
    下载: 导出CSV

    表 3  甲烷好氧氧化菌pmoA基因α-多样性指数分析

    Table 3.  Analysis of α-diversity index of pmoA gene of methanotrophs

    样品名称序列/条97%相似水平
    OTUsShannon指数Chao 1指数覆盖率
    初始样品14023570.8570.9999
    实验i(0%O21004091.291.0000
    实验ii(1%O21020550.451.0000
    实验iii(10%O22200150.751.0000
    实验iv(50%O21969470.170.9999
    空白组13730931.7930.9999
    下载: 导出CSV

    表 4  不同实验组的甲烷氧化菌总丰度、各菌种的绝对丰度#和平均MOR*

    Table 4.  Abundances of methanotrophs, each species# and average MOR*

    菌群类别OTU编号实验i(0%O2)实验ii(1%O2)实验iii(10%O2)实验iv(50%O2)空白组
    甲烷氧化菌总丰度/(copies/g)所有OTU3.2×1051.9×1092.3×1084.1×1071.7×105
    methylobacter leteus绝对丰度/(copies/g)OTU4、51.5×1051.7×1094.4×1073.1×1052.9×104
    methylobacter whittenburyi绝对丰度/(copies/g)OTU6、7、81.6×1052.3×1081.9×1084.0×1071.1×105
    Methylocaldum绝对丰度/(copies/g)OTU2900003.9×103
    Methylocystis绝对丰度/(copies/g)OTU9300000
    平均MOR*/(μmol/gdw/d)3.772.660.25
      注:平均MOR*是由不同氧浓度实验中两个平行实验组得到的平均氧化速率;菌种的绝对丰度#=甲烷氧化菌总丰度×菌种所占百分比,百分比由高通量测序获得。
    下载: 导出CSV
  • [1]

    Ul Haque M F, Xu H J, Murrell J C, et al. Facultative methanotrophs-diversity, genetics, molecular ecology and biotechnological potential: a mini-review [J]. Microbiology, 2020, 166(10): 894-908. doi: 10.1099/mic.0.000977

    [2]

    Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps [J]. Nature Geoscience, 2013, 6(9): 725-734. doi: 10.1038/ngeo1926

    [3]

    Crespo-Medina M, Meile C D, Hunter K S, et al. The rise and fall of methanotrophy following a deepwater oil-well blowout [J]. Nature Geoscience, 2014, 7(6): 423-427. doi: 10.1038/ngeo2156

    [4]

    Leonte M, Kessler J D, Kellermann M Y, et al. Rapid rates of aerobic methane oxidation at the feather edge of gas hydrate stability in the waters of Hudson Canyon, US Atlantic Margin [J]. Geochimica et Cosmochimica Acta, 2017, 204: 375-387. doi: 10.1016/j.gca.2017.01.009

    [5]

    Han J S, Mahanty B, Yoon S U, et al. Activity of a methanotrophic consortium isolated from landfill cover soil: response to temperature, pH, CO2, and porous adsorbent [J]. Geomicrobiology Journal, 2016, 33(10): 878-885. doi: 10.1080/01490451.2015.1123330

    [6]

    Oshkin I Y, Belova S E, Danilova O V, et al. Methylovulum psychrotolerans sp. nov., a cold-adapted methanotroph from low-temperature terrestrial environments, and emended description of the genus Methylovulum [J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(6): 2417-2423. doi: 10.1099/ijsem.0.001046

    [7]

    张瑞林, 任学清. 不同压力及氧环境条件下微生物降解煤层瓦斯实验研究[J]. 煤矿安全, 2014, 45(11):1-4

    ZHANG Ruilin, REN Xueqing. Experimental study on coal seam gas degradation by microorganism under different pressure and oxygen environment conditions [J]. Safety in Coal Mines, 2014, 45(11): 1-4.

    [8]

    Li J, Liu C L, He X L, et al. Aerobic microbial oxidation of hydrocarbon gases: Implications for oil and gas exploration [J]. Marine and Petroleum Geology, 2019, 103: 76-86. doi: 10.1016/j.marpetgeo.2019.02.013

    [9]

    Karthikeyan O P, Chidambarampadmavathy K, Nadarajan S, et al. Influence of nutrients on oxidation of low level methane by mixed methanotrophic consortia [J]. Environmental Science and Pollution Research, 2016, 23(5): 4346-4357. doi: 10.1007/s11356-016-6174-7

    [10]

    马若潺, 魏晓梦, 何若. 低氧生境中好氧甲烷氧化菌的缺氧耐受机理及种群结构研究进展[J]. 应用生态学报, 2017, 28(6):2047-2054

    MA Ruochan, WEI Xiaomeng, HE Ruo. Mechanism of hypoxia-tolerance and community structure of aerobic methanotrophs in O2-limited environments: A review [J]. Chinese Journal of Applied Ecology, 2017, 28(6): 2047-2054.

    [11]

    Wilshusen J H, Hettiaratchi J P A, De Visscher A, et al. Methane oxidation and formation of EPS in compost: effect of oxygen concentration [J]. Environmental Pollution, 2004, 129(2): 305-314. doi: 10.1016/j.envpol.2003.10.015

    [12]

    Henckel T, Roslev P, Conrad R. Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil [J]. Environmental Microbiology, 2000, 2(6): 666-679. doi: 10.1046/j.1462-2920.2000.00149.x

    [13]

    Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades [J]. Nature, 2017, 542(7641): 335-339. doi: 10.1038/nature21399

    [14]

    Valentine D L, Kessler J D, Redmond M C, et al. Propane respiration jump-starts microbial response to a deep oil spill [J]. Science, 2010, 330(6001): 208-211. doi: 10.1126/science.1196830

    [15]

    Kessler J D, Valentine D L, Redmond M C, et al. A persistent oxygen anomaly reveals the fate of spilled methane in the Deep Gulf of Mexico [J]. Science, 2011, 331(6015): 311-315.

    [16]

    Okita N, Hoaki T, Suzuki S, et al. Characteristics of aerobic methane-oxidising bacterial community at the sea-floor surface of the Nankai Trough [J]. Marine and Freshwater Research, 2020, 71(10): 1252-1258. doi: 10.1071/MF19317

    [17]

    Vekeman B, Dumolin C, De Vos P, et al. Improved enrichment culture technique for methane-oxidizing bacteria from marine ecosystems: the effect of adhesion material and gas composition [J]. Antonie van Leeuwenhoek, 2017, 110(2): 281-289. doi: 10.1007/s10482-016-0787-1

    [18]

    Llanillo P J, Karstensen J, Pelegrí J L, et al. Physical and biogeochemical forcing of oxygen and nitrate changes during El Niño/El Viejo and La Niña/La Vieja upper-ocean phases in the tropical eastern South Pacific along 86° W [J]. Biogeosciences, 2013, 10(10): 6339-6355. doi: 10.5194/bg-10-6339-2013

    [19]

    Wegener G, Boetius A. An experimental study on short-term changes in the anaerobic oxidation of methane in response to varying methane and sulfate fluxes [J]. Biogeosciences, 2009, 6(5): 867-876. doi: 10.5194/bg-6-867-2009

    [20]

    Barbier B A, Dziduch I, Liebner S, et al. Methane-cycling communities in a permafrost-affected soil on Herschel Island, Western Canadian Arctic: active layer profiling of mcrA and pmoA genes [J]. FEMS Microbiology Ecology, 2012, 82(2): 287-302. doi: 10.1111/j.1574-6941.2012.01332.x

    [21]

    Reim A, Lüke C, Krause S, et al. One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic–anoxic interface in a flooded paddy soil [J]. The ISME Journal, 2012, 6(11): 2128-2139. doi: 10.1038/ismej.2012.57

    [22]

    Kalyuzhnaya M G, Yang S, Rozova O N, et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium [J]. Nature Communications, 2013, 4(1): 2785. doi: 10.1038/ncomms3785

    [23]

    Dannemiller K C, Lang-Yona N, Yamamoto N, et al. Combining real-time pcr and next-generation dna sequencing to provide quantitative comparisons of fungal aerosol populations [J]. Atmospheric Environment, 2014, 84: 113-121. doi: 10.1016/j.atmosenv.2013.11.036

    [24]

    Zhang Z J, Qu Y Y, Li S Z, et al. Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa [J]. Scientific Reports, 2017, 7(1): 4837. doi: 10.1038/s41598-017-05260-w

    [25]

    Bowman J P. Methylobacter[M]//Whitman W B. Bergey's Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Inc., 2015: 1-9.

    [26]

    Bussmann I, Rahalkar M, Schink B. Cultivation of methanotrophic bacteria in opposing gradients of methane and oxygen [J]. FEMS Microbiology Ecology, 2006, 56(3): 331-344. doi: 10.1111/j.1574-6941.2006.00076.x

  • 加载中

(4)

(4)

计量
  • 文章访问数:  1202
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2021-01-19
修回日期:  2021-02-19
刊出日期:  2021-06-28

目录