细菌藿四醇异构体BHT-x:海洋水体缺氧的新型代用指标

朱犇, 董良. 细菌藿四醇异构体BHT-x:海洋水体缺氧的新型代用指标[J]. 海洋地质与第四纪地质, 2024, 44(6): 152-162. doi: 10.16562/j.cnki.0256-1492.2023032501
引用本文: 朱犇, 董良. 细菌藿四醇异构体BHT-x:海洋水体缺氧的新型代用指标[J]. 海洋地质与第四纪地质, 2024, 44(6): 152-162. doi: 10.16562/j.cnki.0256-1492.2023032501
ZHU Ben, DONG Liang. The application progress of BHT-x as biomarker to marine hypoxia[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 152-162. doi: 10.16562/j.cnki.0256-1492.2023032501
Citation: ZHU Ben, DONG Liang. The application progress of BHT-x as biomarker to marine hypoxia[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 152-162. doi: 10.16562/j.cnki.0256-1492.2023032501

细菌藿四醇异构体BHT-x:海洋水体缺氧的新型代用指标

  • 基金项目: 国家“十三五”重点研发计划“近海脱氧环境微型生物代谢对碳源汇的影响”(2020YFA06083002);国家自然科学基金“海洋奇古菌完整极性细胞膜脂GDGTs与氨氧化速率关系研究”(42072332)
详细信息
    作者简介: 朱犇(1997—),男,硕士研究生,主要从事海洋地球化学研究,E-mail:zhuben9@sjtu.edu.cn
    通讯作者: 董良(1986—),男,博士,副研究员,主要从事生物有机地球化学研究,E-mail:dongliang@sjtu.edu.cn
  • 中图分类号: P736.4

The application progress of BHT-x as biomarker to marine hypoxia

More Information
  • 海洋缺氧是当前人类面临的重大生态环境问题之一,对海洋生物、元素循环及全球气候变化都产生了重要影响。细菌藿多醇(bacteriohopanepolyols,BHPs)是一种来源于细菌细胞膜的五环三萜类化合物,也是地质体中普遍存在的藿烷类化合物的生物前体物质,作为生物标志物被广泛应用于示踪陆源有机质,指示好氧甲烷氧化等生态过程。本文聚焦于BHPs中重要的一种脂类化合物—BHT-x(细菌藿四醇异构体之一),总结了其生物来源及验证过程,并简介了目前BHT-x ratio作为水体缺氧代用指标在海洋环境中的应用研究。利用BHT-x来重建长时间尺度的缺氧现象,可以帮助我们更好地认识海洋缺氧过程,为我们预测和应对未来海洋环境的变化提供更多的理论依据。

  • 加载中
  • 图 1  应用于海洋环境的4类常见BHPs的化学结构(BHT-x立体结构尚未确定)[36, 41]

    Figure 1. 

    图 2  地中海腐泥样品BHT、BHT-x超高效液相色谱-质谱分析[58]

    Figure 2. 

    图 3  BHT-x在世界大洋悬浮颗粒物和沉积物中的现有应用分布

    Figure 3. 

    图 4  BHT-x ratio与相关指标比较以示踪氧化还原条件变化、厌氧氨氧化过程

    Figure 4. 

    表 1  不同缺氧环境下的BHT-x ratio

    Table 1.  BHT-x ratio in different hypoxic environments

    海域 缺氧海区水体DO浓度/μM 样品类型 BHT-x ratio 来源文献
    东海 <62.5 表层沉积物 0.02~0.46 [23]
    东海 <62.5 沉积柱 0.20~0.76 [80]
    东海 <62.5 沉积柱 0.03~0.50 [80]
    本格拉上升流区 约20~40 悬浮颗粒物 0.04~0.55 [27]
    阿拉伯海 <25 表层沉积物 0.22~0.30 [57]
    黑海 约8~90 悬浮颗粒物 0.01~0.21 [79]
    下载: 导出CSV
  • [1]

    Breitburg D, Levin L A, Oschlies A, et al. Declining oxygen in the global ocean and coastal waters[J]. Science, 2018, 359(6371): eaam7240. doi: 10.1126/science.aam7240

    [2]

    Diaz R J, Rosenberg R. Spreading dead zones and consequences for marine ecosystems[J]. Science, 2008, 321(5891): 926-929. doi: 10.1126/science.1156401

    [3]

    Middelburg J J, Levin L A. Coastal hypoxia and sediment biogeochemistry[J]. Biogeosciences, 2009, 6(7): 1273-1293. doi: 10.5194/bg-6-1273-2009

    [4]

    Conley D J, Carstensen J, Aigars J, et al. Hypoxia is increasing in the coastal zone of the Baltic Sea[J]. Environmental Science & Technology, 2011, 45(16): 6777-6783.

    [5]

    Diaz R J. Overview of hypoxia around the world[J]. Journal of Environmental Quality, 2001, 30(2): 275-281. doi: 10.2134/jeq2001.302275x

    [6]

    Levin L A, Ekau W, Gooday A J, et al. Effects of natural and human-induced hypoxia on coastal benthos[J]. Biogeosciences, 2009, 6(10): 2063-2098. doi: 10.5194/bg-6-2063-2009

    [7]

    Penn J L, Deutsch C, Payne J L, et al. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction[J]. Science, 2018, 362(6419): eaat1327. doi: 10.1126/science.aat1327

    [8]

    Pohl A, Ridgwell A, Stockey R G, et al. Continental configuration controls ocean oxygenation during the Phanerozoic[J]. Nature, 2022, 608(7923): 523-527. doi: 10.1038/s41586-022-05018-z

    [9]

    Breitburg D L, Hondorp D W, Davias L A, et al. Hypoxia, nitrogen, and fisheries: integrating effects across local and global landscapes[J]. Annual Review of Marine Science, 2009, 1: 329-349. doi: 10.1146/annurev.marine.010908.163754

    [10]

    Fennel K, Testa J M. Biogeochemical controls on coastal hypoxia[J]. Annual Review of Marine Science, 2019, 11: 105-130. doi: 10.1146/annurev-marine-010318-095138

    [11]

    Keeling R F, Körtzinger A, Gruber N. Ocean deoxygenation in a warming world[J]. Annual Review of Marine Science, 2010, 2: 199-229. doi: 10.1146/annurev.marine.010908.163855

    [12]

    Pitcher G C, Aguirre-Velarde A, Breitburg D, et al. System controls of coastal and open ocean oxygen depletion[J]. Progress in Oceanography, 2021, 197: 102613. doi: 10.1016/j.pocean.2021.102613

    [13]

    Rabalais N N, Díaz R J, Levin L A, et al. Dynamics and distribution of natural and human-caused hypoxia[J]. Biogeosciences, 2010, 7(2): 585-619. doi: 10.5194/bg-7-585-2010

    [14]

    Algeo T J, Owens J D, Morford J L, et al. New developments in geochemical proxies for paleoceanographic research[J]. Geochimica et Cosmochimica Acta, 2020, 287: 1-7. doi: 10.1016/j.gca.2020.07.010

    [15]

    Fujisaki W, Sawaki Y, Yamamoto S, et al. Tracking the redox history and nitrogen cycle in the pelagic Panthalassic deep ocean in the Middle Triassic to Early Jurassic: insights from redox-sensitive elements and nitrogen isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 397-420. doi: 10.1016/j.palaeo.2016.01.039

    [16]

    Reckhardt A, Beck M, Greskowiak J, et al. Cycling of redox-sensitive elements in a sandy subterranean estuary of the southern North Sea[J]. Marine Chemistry, 2017, 188: 6-17. doi: 10.1016/j.marchem.2016.11.003

    [17]

    Guo X Y, Xu B C, Burnett W C, et al. A potential proxy for seasonal hypoxia: LA-ICP-MS Mn/Ca ratios in benthic foraminifera from the Yangtze River Estuary[J]. Geochimica et Cosmochimica Acta, 2019, 245: 290-303. doi: 10.1016/j.gca.2018.11.007

    [18]

    Goswami V, Singh S K, Bhushan R, et al. Spatial distribution of Mo and δ98Mo in waters of the northern Indian Ocean: role of suboxia and particle-water interactions on lighter Mo in the Bay of Bengal[J]. Geochimica et Cosmochimica Acta, 2022, 324: 174-193. doi: 10.1016/j.gca.2022.03.010

    [19]

    Nelsen T A, Blackwelder P, Hood T, et al. Time-based correlation of biogenic, lithogenic and authigenic sediment components with anthropogenic inputs in the Gulf of Mexico NECOP study area[J]. Estuaries, 1994, 17(4): 873-885. doi: 10.2307/1352755

    [20]

    Emmings J F, Poulton S W, Walsh J, et al. Pyrite mega-analysis reveals modes of anoxia through geological time[J]. Science Advances, 2022, 8(11): eabj5687. doi: 10.1126/sciadv.abj5687

    [21]

    Raven M R, Fike D A, Bradley A S, et al. Paired organic matter and pyrite δ34S records reveal mechanisms of carbon, sulfur, and iron cycle disruption during Ocean Anoxic Event 2[J]. Earth and Planetary Science Letters, 2019, 512: 27-38. doi: 10.1016/j.jpgl.2019.01.048

    [22]

    Huang Y G, Chen Z Q, Algeo T J, et al. Two-stage marine anoxia and biotic response during the Permian–Triassic transition in Kashmir, northern India: pyrite framboid evidence[J]. Global and Planetary Change, 2019, 172: 124-139. doi: 10.1016/j.gloplacha.2018.10.002

    [23]

    Yin M L, Duan L Q, Song J M, et al. Bacteriohopanepolyols signature in sediments of the East China Sea and its indications for hypoxia and organic matter sources[J]. Organic Geochemistry, 2021, 158: 104268. doi: 10.1016/j.orggeochem.2021.104268

    [24]

    Li X X, Bianchi T S, Yang Z S, et al. Historical trends of hypoxia in Changjiang River estuary: applications of chemical biomarkers and microfossils[J]. Journal of Marine Systems, 2011, 86(3-4): 57-68. doi: 10.1016/j.jmarsys.2011.02.003

    [25]

    Zimmerman A R, Canuel E A. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition[J]. Marine Chemistry, 2000, 69(1-2): 117-137. doi: 10.1016/S0304-4203(99)00100-0

    [26]

    Elling F J, Hemingway J D, Kharbush J J, et al. Linking diatom-diazotroph symbioses to nitrogen cycle perturbations and deep-water anoxia: insights from Mediterranean sapropel events[J]. Earth and Planetary Science Letters, 2021, 571: 117110. doi: 10.1016/j.jpgl.2021.117110

    [27]

    van Kemenade Z R, Villanueva L, Hopmans E C, et al. Bacteriohopanetetrol-x: constraining its application as a lipid biomarker for marine anammox using the water column oxygen gradient of the Benguela upwelling system[J]. Biogeosciences, 2022, 19(1): 201-221. doi: 10.5194/bg-19-201-2022

    [28]

    Brinkmann I, Ni S, Schweizer M, et al. Foraminiferal Mn/Ca as bottom-water hypoxia proxy: an assessment of Nonionella stella in the Santa Barbara Basin, USA[J]. Paleoceanography and Paleoclimatology, 2021, 36(11): e2020PA004167.

    [29]

    Wang F F, Liu J, Qiu J D, et al. Historical evolution of hypoxia in the East China Sea off the Changjiang (Yangtze River) estuary for the last ~13, 000 years: evidence from the benthic foraminiferal community[J]. Continental Shelf Research, 2014, 90: 151-162. doi: 10.1016/j.csr.2014.02.013

    [30]

    Ren F H, Fan D D, Wu Y J, et al. The evolution of hypoxia off the Changjiang Estuary in the last 3000 years: evidence from benthic foraminifera and elemental geochemistry[J]. Marine Geology, 2019, 417: 106039. doi: 10.1016/j.margeo.2019.106039

    [31]

    Sen Gupta B K, Eugene Turner R, Rabalais N N. Seasonal oxygen depletion in continental-shelf waters of Louisiana: historical record of benthic foraminifers[J]. Geology, 1996, 24(3): 227-230. doi: 10.1130/0091-7613(1996)024<0227:SODICS>2.3.CO;2

    [32]

    van Dongen B E, Talbot H M, Schouten S, et al. Well preserved palaeogene and cretaceous biomarkers from the Kilwa area, Tanzania[J]. Organic Geochemistry, 2006, 37(5): 539-557. doi: 10.1016/j.orggeochem.2006.01.003

    [33]

    Rush D, Sinninghe Damsté J S, Poulton S W, et al. Anaerobic ammonium-oxidising bacteria: a biological source of the bacteriohopanetetrol stereoisomer in marine sediments[J]. Geochimica et Cosmochimica Acta, 2014, 140: 50-64. doi: 10.1016/j.gca.2014.05.014

    [34]

    Ourisson G, Albrecht P. Hopanoids. 1. Geohopanoids: the most abundant natural products on Earth?[J]. Accounts of Chemical Research, 1992, 25(9): 398-402. doi: 10.1021/ar00021a003

    [35]

    Ourisson G, Rohmer M. Hopanoids. 2. Biohopanoids: a novel class of bacterial lipids[J]. Accounts of Chemical Research, 1992, 25(9): 403-408. doi: 10.1021/ar00021a004

    [36]

    Kusch S, Rush D. Revisiting the precursors of the most abundant natural products on Earth: a look back at 30+ years of bacteriohopanepolyol (BHP) research and ahead to new frontiers[J]. Organic Geochemistry, 2022, 172: 104469. doi: 10.1016/j.orggeochem.2022.104469

    [37]

    Ourisson G, Rohmer M, Poralla K. Prokaryotic hopanoids and other polyterpenoid sterol surrogates[J]. Annual Review of Microbiology, 1987, 41: 301-333. doi: 10.1146/annurev.mi.41.100187.001505

    [38]

    Rohmer M, Bouvier-Nave P, Ourisson G. Distribution of hopanoid triterpenes in prokaryotes[J]. Microbiology, 1984, 130(5): 1137-1150. doi: 10.1099/00221287-130-5-1137

    [39]

    Sáenz J P, Sezgin E, Schwille P, et al. Functional convergence of hopanoids and sterols in membrane ordering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(35): 14236-14240.

    [40]

    Cooke M P, Talbot H M, Farrimond P. Bacterial populations recorded in bacteriohopanepolyol distributions in soils from Northern England[J]. Organic Geochemistry, 2008, 39(9): 1347-1358. doi: 10.1016/j.orggeochem.2008.05.003

    [41]

    尹美玲, 段丽琴, 宋金明, 等. 藿类生物标志物及其对海洋碳氮循环过程的指示[J]. 中国环境科学, 2022, 42(8): 3890-3902 doi: 10.3969/j.issn.1000-6923.2022.08.048

    YIN Meiling, DUAN Liqin, SONG Jinming, et al. Hopanoids biomarkers and their indications in the marine carbon and nitrogen cycles[J]. China Environmental Science, 2022, 42(8): 3890-3902.] doi: 10.3969/j.issn.1000-6923.2022.08.048

    [42]

    Talbot H M, Farrimond P. Bacterial populations recorded in diverse sedimentary biohopanoid distributions[J]. Organic Geochemistry, 2007, 38(8): 1212-1225. doi: 10.1016/j.orggeochem.2007.04.006

    [43]

    Förster H J, Biemann K, Haigh W G, et al. The structure of novel C35 pentacyclic terpenes from Acetobacter xylinum[J]. Biochemical Journal, 1973, 135(1): 133-143. doi: 10.1042/bj1350133

    [44]

    Matys E D, Sepúlveda J, Pantoja S, et al. Bacteriohopanepolyols along redox gradients in the Humboldt Current System off northern Chile[J]. Geobiology, 2017, 15(6): 844-857. doi: 10.1111/gbi.12250

    [45]

    Talbot H M, Summons R E, Jahnke L L, et al. Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings[J]. Organic Geochemistry, 2008, 39(2): 232-263. doi: 10.1016/j.orggeochem.2007.08.006

    [46]

    Summons R E, Jahnke L L, Hope J M, et al. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis[J]. Nature, 1999, 400(6744): 554-557. doi: 10.1038/23005

    [47]

    Naafs B D A, Bianchini G, Monteiro F M, et al. The occurrence of 2-methylhopanoids in modern bacteria and the geological record[J]. Geobiology, 2022, 20(1): 41-59. doi: 10.1111/gbi.12465

    [48]

    Blumenberg M, Berndmeyer C, Moros M, et al. Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea[J]. Biogeosciences, 2013, 10(4): 2725-2735. doi: 10.5194/bg-10-2725-2013

    [49]

    Rush D, Villanueva L, van der Meer M T J, et al. Aerobic methanotrophy in North Sea sediment and Baltic Sea water column as revealed by bacteriohopanepolyol lipids and genomic approaches[C]//Proceedings of the 29th International Meeting on Organic Geochemistry. Gothenburg: European Association of Geoscientists & Engineers, 2019.

    [50]

    van Winden J F, Talbot H M, Kip N, et al. Bacteriohopanepolyol signatures as markers for methanotrophic bacteria in peat moss[J]. Geochimica et Cosmochimica Acta, 2012, 77: 52-61. doi: 10.1016/j.gca.2011.10.026

    [51]

    Kusch S, Wakeham S G, Sepúlveda J. Diverse origins of “soil marker” bacteriohopanepolyols in marine oxygen deficient zones[J]. Organic Geochemistry, 2021, 151: 104150. doi: 10.1016/j.orggeochem.2020.104150

    [52]

    Zhu C, Talbot H M, Wagner T, et al. Intense aerobic methane oxidation in the Yangtze Estuary: a record from 35-aminobacteriohopanepolyols in surface sediments[J]. Organic Geochemistry, 2010, 41(9): 1056-1059. doi: 10.1016/j.orggeochem.2010.03.015

    [53]

    Zhu C, Talbot H M, Wagner T, et al. Distribution of hopanoids along a land to sea transect: implications for microbial ecology and the use of hopanoids in environmental studies[J]. Limnology and Oceanography, 2011, 56(5): 1850-1865. doi: 10.4319/lo.2011.56.5.1850

    [54]

    Cooke M P, Talbot H M, Wagner T. Tracking soil organic carbon transport to continental margin sediments using soil-specific hopanoid biomarkers: a case study from the Congo fan (ODP site 1075)[J]. Organic Geochemistry, 2008, 39(8): 965-971. doi: 10.1016/j.orggeochem.2008.03.009

    [55]

    Kusch S, Sepúlveda J, Wakeham S G. Origin of sedimentary BHPs along a mississippi river–gulf of mexico export transect: insights from spatial and density distributions[J]. Frontiers in Marine Science, 2019, 6: 729. doi: 10.3389/fmars.2019.00729

    [56]

    Schwartz-Narbonne R, Schaeffer P, Hopmans E C, et al. A unique bacteriohopanetetrol stereoisomer of marine anammox[J]. Organic Geochemistry, 2020, 143: 103994. doi: 10.1016/j.orggeochem.2020.103994

    [57]

    Sáenz J P, Wakeham S G, Eglinton T I, et al. New constraints on the provenance of hopanoids in the marine geologic record: bacteriohopanepolyols in marine suboxic and anoxic environments[J]. Organic Geochemistry, 2011, 42(11): 1351-1362. doi: 10.1016/j.orggeochem.2011.08.016

    [58]

    Rush D, Talbot H M, van der Meer M T J, et al. Biomarker evidence for the occurrence of anaerobic ammonium oxidation in the eastern Mediterranean Sea during Quaternary and Pliocene sapropel formation[J]. Biogeosciences, 2019, 16(12): 2467-2479. doi: 10.5194/bg-16-2467-2019

    [59]

    Sinninghe Damsté J S, Rijpstra W I C, Schouten S, et al. The occurrence of hopanoids in planctomycetes: implications for the sedimentary biomarker record[J]. Organic Geochemistry, 2004, 35(5): 561-566. doi: 10.1016/j.orggeochem.2004.01.013

    [60]

    Blumenberg M, Seifert R, Michaelis W. Aerobic methanotrophy in the oxic–anoxic transition zone of the Black Sea water column[J]. Organic Geochemistry, 2007, 38(1): 84-91. doi: 10.1016/j.orggeochem.2006.08.011

    [61]

    Talbot H M, Sidgwick F R, Bischoff J, et al. Analysis of non-derivatised bacteriohopanepolyols by ultrahigh-performance liquid chromatography/tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2016, 30(19): 2087-2098. doi: 10.1002/rcm.7696

    [62]

    Hopmans E C, Smit N T, Schwartz-Narbonne R, et al. Analysis of non-derivatized bacteriohopanepolyols using UHPLC-HRMS reveals great structural diversity in environmental lipid assemblages[J]. Organic Geochemistry, 2021, 160: 104285. doi: 10.1016/j.orggeochem.2021.104285

    [63]

    Lengger S K, Rush D, Mayser J P, et al. Dark carbon fixation in the Arabian Sea oxygen minimum zone contributes to sedimentary organic carbon (SOM)[J]. Global Biogeochemical Cycles, 2019, 33(12): 1715-1732. doi: 10.1029/2019GB006282

    [64]

    Rush D, Sinninghe Damsté J S. Lipids as paleomarkers to constrain the marine nitrogen cycle[J]. Environmental Microbiology, 2017, 19(6): 2119-2132. doi: 10.1111/1462-2920.13682

    [65]

    尹美玲, 段丽琴, 宋金明, 等. 长江口邻近海域表层沉积物中的细菌藿多醇及对低氧区的响应判别[J]. 环境科学, 2021, 42(3): 1343-1353 doi: 10.13227/j.hjkx.202007244

    YIN Meiling, DUAN Liqin, SONG Jinming, et al. Response of bacteriohopanepolyols to hypoxic conditions in the surface sediments of the Yangtze Estuary and its adjacent areas[J]. Environmental Science, 2021, 42(3): 1343-1353.] doi: 10.13227/j.hjkx.202007244

    [66]

    Pitcher A, Villanueva L, Hopmans E C, et al. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone[J]. The ISME Journal, 2011, 5(12): 1896-1904. doi: 10.1038/ismej.2011.60

    [67]

    Blumenberg M, Mollenhauer G, Zabel M, et al. Decoupling of bio- and geohopanoids in sediments of the Benguela Upwelling System (BUS)[J]. Organic Geochemistry, 2010, 41(10): 1119-1129. doi: 10.1016/j.orggeochem.2010.06.005

    [68]

    Berndmeyer C, Thiel V, Schmale O, et al. Biomarkers for aerobic methanotrophy in the water column of the stratified Gotland Deep (Baltic Sea)[J]. Organic Geochemistry, 2013, 55: 103-111. doi: 10.1016/j.orggeochem.2012.11.010

    [69]

    Wakeham S G, Turich C, Schubotz F, et al. Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer chemocline in the Cariaco Basin[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 63: 133-156. doi: 10.1016/j.dsr.2012.01.005

    [70]

    Jaeschke A, Ziegler M, Hopmans E C, et al. Molecular fossil evidence for anaerobic ammonium oxidation in the Arabian Sea over the last glacial cycle[J]. Paleoceanography, 2009, 24(2): PA2202.

    [71]

    Hemingway J D, Kusch S, Shah Walter S R, et al. A novel method to measure the 13C composition of intact bacteriohopanepolyols[J]. Organic Geochemistry, 2018, 123: 144-147. doi: 10.1016/j.orggeochem.2018.07.002

    [72]

    Talbot H M, Watson D F, Murrell J C, et al. Analysis of intact bacteriohopanepolyols from methanotrophic bacteria by reversed-phase high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry[J]. Journal of Chromatography A, 2001, 921(2): 175-185. doi: 10.1016/S0021-9673(01)00871-8

    [73]

    Talbot H M, Squier A H, Keely B J, et al. Atmospheric pressure chemical ionisation reversed-phase liquid chromatography/ion trap mass spectrometry of intact bacteriohopanepolyols[J]. Rapid Communications in Mass Spectrometry, 2003, 17(7): 728-737. doi: 10.1002/rcm.974

    [74]

    Talbot H M, Rohmer M, Farrimond P. Rapid structural elucidation of composite bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(6): 880-892. doi: 10.1002/rcm.2911

    [75]

    Zindorf M, Rush D, Jaeger J, et al. Reconstructing oxygen deficiency in the glacial Gulf of Alaska: combining biomarkers and trace metals as paleo-redox proxies[J]. Chemical Geology, 2020, 558: 119864. doi: 10.1016/j.chemgeo.2020.119864

    [76]

    Kusch S, Wakeham S G, Dildar N, et al. Bacterial and archaeal lipids trace chemo(auto)trophy along the redoxcline in Vancouver Island fjords[J]. Geobiology, 2021, 19(5): 521-541. doi: 10.1111/gbi.12446

    [77]

    Berndmeyer C, Thiel V, Schmale O, et al. Biomarkers in the stratified water column of the Landsort Deep (Baltic Sea)[J]. Biogeosciences, 2014, 11(23): 7009-7023. doi: 10.5194/bg-11-7009-2014

    [78]

    Kharbush J J, Ugalde J A, Hogle S L, et al. Composite bacterial hopanoids and their microbial producers across oxygen gradients in the water column of the California Current[J]. Applied and Environmental Microbiology, 2013, 79(23): 7491-7501. doi: 10.1128/AEM.02367-13

    [79]

    Kusch S, Wakeham S G, Sepúlveda J. Bacteriohopanepolyols across the Black Sea redoxcline trace diverse bacterial metabolisms[J]. Organic Geochemistry, 2022, 172: 104462. doi: 10.1016/j.orggeochem.2022.104462

    [80]

    Yin M L, Song J M, Duan L Q, et al. North-south differences in hypoxia and nitrogen cycle of the East China Sea over the last century indicated by sedimentary bacteriohopanepolyols[J]. Chemical Geology, 2023, 620: 121340. doi: 10.1016/j.chemgeo.2023.121340

  • 加载中

(4)

(1)

计量
  • 文章访问数:  365
  • PDF下载数:  18
  • 施引文献:  0
出版历程
收稿日期:  2022-03-25
修回日期:  2023-04-07
刊出日期:  2024-12-28

目录