基于机器学习的大洋玄武岩构造环境判别研究

徐堃, 关馨儿, 吕豪哲, 赵霄, 热则耶·如孜, 陈艳虹. 基于机器学习的大洋玄武岩构造环境判别研究[J]. 海洋地质与第四纪地质, 2024, 44(4): 190-199. doi: 10.16562/j.cnki.0256-1492.2023041101
引用本文: 徐堃, 关馨儿, 吕豪哲, 赵霄, 热则耶·如孜, 陈艳虹. 基于机器学习的大洋玄武岩构造环境判别研究[J]. 海洋地质与第四纪地质, 2024, 44(4): 190-199. doi: 10.16562/j.cnki.0256-1492.2023041101
XU Kun, GUAN Xiner, LV Haozhe, ZHAO Xiao, Rezeye RUZI, CHEN Yanhong. Tectonic discrimination of oceanic basalt by machine learning[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 190-199. doi: 10.16562/j.cnki.0256-1492.2023041101
Citation: XU Kun, GUAN Xiner, LV Haozhe, ZHAO Xiao, Rezeye RUZI, CHEN Yanhong. Tectonic discrimination of oceanic basalt by machine learning[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 190-199. doi: 10.16562/j.cnki.0256-1492.2023041101

基于机器学习的大洋玄武岩构造环境判别研究

  • 基金项目: 中国地质大学(北京)创新创业训练计划项目(S202211415138);中央高校基本科研业务费专项资金(2652021007)
详细信息
    作者简介: 徐堃(2001—),女,本科,海洋科学专业,E-mail:1011201201@email.cugb.edu.cn
    通讯作者: 陈艳虹(1990—),女,博士,主要从事大洋岩石圈的岩石学、地球化学和全球构造研究,E-mail:chenyh@cugb.edu.cn
  • 中图分类号: P736.3

Tectonic discrimination of oceanic basalt by machine learning

More Information
  • 玄武岩的地球化学成分与其产出构造环境密切相关,是研究地球深部物质组成与动力学过程的重要岩石。为了判别玄武岩形成的构造环境,前人根据玄武岩的地球化学特征建立了一系列构造判别图,然而这些判别图仅限于二维或三维判别。随着全球玄武岩样品地球化学数据的爆发性增长,这些构造判别图逐渐暴露出其局限性强、准确率较低的缺点。在地学与大数据结合发展的背景下,利用机器学习方法有利于更全面和深入分析数据,建立高准确率和高效率的构造环境判别模型。因此,本文利用GEOROC和PetDB数据库,经过一系列数据下载、处理等步骤,建立了全球现代大洋玄武岩数据集。通过支持向量机(SVM)和随机森林(RF)机器学习算法,训练出高准确率的高维判别模型。本文分析了不同机器学习算法和不同地球化学成分数据集对现代大洋玄武岩构造环境判别的影响,并将各个判别模型应用于蛇绿岩数据当中,探讨机器学习模型在判别古老大洋岩石圈(蛇绿岩)形成构造环境下的应用前景。这项工作为大洋玄武岩形成的构造环境判别提供了更高维度的判别手段,是大数据时代下机器学习如何在地球科学领域应用的一次有益尝试。

  • 加载中
  • 图 1  基于机器学习的大洋玄武岩构造环境判别总思路流程图

    Figure 1. 

    图 2  下载的全球玄武岩数据分布

    Figure 2. 

    图 3  数据处理前后数据统计图

    Figure 3. 

    图 4  现代大洋玄武岩数据集IAB、MORB、OIB数据在Ti/1000-V图解和Th-Hf/3-Ta图解上的投影

    Figure 4. 

    图 5  本文使用的蛇绿岩数据在Ti-V及Th-Hf/3-Ta判别图上的投影图

    Figure 5. 

    表 1  SVM、RF算法下现代大洋玄武岩分类模型准确率

    Table 1.  Accuracy of modern oceanic basalt classification models using SVM and RF algorithms

    Basic_DataM&TEMETERIAverage
    SVM0.940.9490.9790.9520.9750.959
    RF0.9970.9940.9140.9930.9820.976
    下载: 导出CSV

    表 2  蛇绿岩中玄武岩构造环境预测准确率

    Table 2.  Prediction accuracy of ophiolite using SVM and RF algorithms

    Basic_DataM&TEMETERIAverage
    细分类模型SVM0.2060.2350.0590.2940.2060.200
    RF0.1180.2650.0880.2940.2650.206
    大类分类模型SVM0.7650.8240.7650.7940.7650.783
    RF0.7060.7940.7060.8530.7650.765
    下载: 导出CSV

    表 3  RF算法下各数据集的分类精确率、召回率与F1分数

    Table 3.  Classification accuracy, recall, and F1 score of each dataset using RF algorithm

    BABBIABMORBOPBOIB数据集
    精确率110.9910.99Basic_Data
    召回率0.990.9910.960.99
    F1分数0.990.9910.980.99
    精确率10.990.990.980.99M&TE
    召回率0.980.9910.920.99
    F1分数0.990.990.990.950.99
    精确率0.820.840.90.920.91ME
    召回率0.590.780.970.50.91
    F1分数0.690.810.930.650.91
    精确率0.990.990.990.980.99TE
    召回率0.970.9910.930.99
    F1分数0.980.990.990.960.99
    精确率0.960.970.990.990.98RI
    召回率0.970.960.990.940.97
    F1分数0.970.960.990.960.96
    下载: 导出CSV

    表 4  特征重要性度量

    Table 4.  The feature importance metric

    排名 特征 特征重要性度量 排名 特征 特征重要性度量 排名 特征 特征重要性度量
    1 Pb208/Pb204 0.0997 19 Gd 0.0182 37 Ba 0.0013
    2 Pb206/Pb204 0.0848 20 Pr 0.0157 38 Ni 0.0012
    3 Sr87/Sr86 0.0845 21 La 0.0143 39 Sm 0.0011
    4 Nd143/Nd144 0.0826 22 Nd 0.0124 40 Zr 0.0011
    5 Ta 0.0689 23 Nb 0.0112 41 FeOT 0.0011
    6 Li 0.0529 24 Dy 0.0108 42 SiO2 0.001
    7 Ga 0.0492 25 Eu 0.0104 43 P2O5 0.0009
    8 Cs 0.0458 26 Sc 0.0096 44 Al2O3 0.0009
    9 Lu 0.0443 27 Ce 0.0072 45 K2O 0.0009
    10 Pb 0.0432 28 Co 0.0063 46 K 0.0008
    11 Tm 0.0352 29 Cu 0.0057 47 MgO 0.0008
    12 Yb 0.03 30 Sr 0.0048 48 CaO 0.0006
    13 U 0.0264 31 Zn 0.0046 49 Rb 0.0006
    14 Tb 0.0209 32 Th 0.002 50 Y 0.0006
    15 Pb207/Pb204 0.0204 33 Ti 0.0017 51 Mg# 0.0005
    16 Er 0.0193 34 Cr 0.0017 52 Na2O 0.0005
    17 Hf 0.0189 35 TiO2 0.0015 53 P 0.0004
    18 Ho 0.0187 36 V 0.0014 54 MnO 0.0004
    下载: 导出CSV
  • [1]

    White W M. Probing the Earth’s deep interior through geochemistry[J]. Geochemical Perspectives, 2015, 4(2):95-96.

    [2]

    Doucet L S, Tetley M G, Li Z X, et al. Geochemical fingerprinting of continental and oceanic basalts: A machine learning approach[J]. Earth-Science Reviews, 2022, 233:104192. doi: 10.1016/j.earscirev.2022.104192

    [3]

    Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[M]//Hawkesworth C J, Norry M J. Continental Basalts and Mantle Xenoliths. Nantwich, Cheshire: Shiva Publications, 1983: 230-249.

    [4]

    Pearce J A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 2008, 100(1-4):14-48. doi: 10.1016/j.lithos.2007.06.016

    [5]

    Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50(1):11-30. doi: 10.1016/0012-821X(80)90116-8

    [6]

    Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letters, 1982, 59(1):101-118. doi: 10.1016/0012-821X(82)90120-0

    [7]

    Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[M]//Thorpe R S. Orogenic Andesites and Related Rocks. Chichester, England: John Wiley and Sons, 1982: 528-548.

    [8]

    Rollinson H, Pease V. Using Geochemical Data: To Understand Geological Processes[M]. 2nd ed. Cambridge: Cambridge University Press, 2021: 226-278.

    [9]

    第鹏飞, 王金荣, 张旗, 等. 玄武岩构造环境判别图评估—全体数据研究的启示[J]. 矿物岩石地球化学通报, 2017, 36(6):891-896,879

    DI Pengfei, WANG Jinrong, ZHANG Qi, et al. The evaluation of basalt tectonic discrimination diagrams: Constraints on the research of global basalt data[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(6):891-896,879.]

    [10]

    Vermeesch P. Tectonic discrimination of basalts with classification trees[J]. Geochimica et Cosmochimica Acta, 2006, 70(7):1839-1848. doi: 10.1016/j.gca.2005.12.016

    [11]

    周永章, 王俊, 左仁广, 等. 地质领域机器学习、深度学习及实现语言[J]. 岩石学报, 2018, 34(11):3173-3178

    ZHOU Yongzhang, WANG Jun, ZUO Renguang, et al. Machine learning, deep learning and Python language in field of geology[J]. Acta Petrologica Sinica, 2018, 34(11):3173-3178.]

    [12]

    Bergen K J, Johnson P A, De Hoop M V, et al. Machine learning for data-driven discovery in solid Earth geoscience[J]. Science, 2019, 363(6433):eaau0323. doi: 10.1126/science.aau0323

    [13]

    周志华. 机器学习[M]. 北京: 清华大学出版社, 2016

    ZHOU Zhihua. Machine Learning[M]. Beijing: Tsinghua University Press, 2016.]

    [14]

    刘坤, 刘文波. 机器学习与大陆板内玄武岩构造环境判别[J]. 工程技术与管理, 2017, 1(2):188-191

    LIU Kun, LIU Wenbo. Machine learning and identification of the tectonic environment of basalt in the continental plate[J]. Engineering Technology & Management, 2017, 1(2):188-191.]

    [15]

    焦守涛, 周永章, 张旗, 等. 基于GEOROC数据库的全球辉长岩大数据的大地构造环境智能判别研究[J]. 岩石学报, 2018, 34(11):3189-3194

    JIAO Shoutao, ZHOU Yongzhang, ZHANG Qi, et al. Study on intelligent discrimination of tectonic settings based on global gabbro data from GEOROC[J]. Acta Petrologica Sinica, 2018, 34(11):3189-3194.]

    [16]

    任秋兵, 李明超, 李玉琼, 等. 基于全球橄榄石数据的玄武岩构造环境智能判别方法及其验证[J]. 大地构造与成矿学, 2020, 44(2):212-221

    REN Qiubing, LI Mingchao, LI Yuqiong, et al. An intelligent method for geochemical discrimination of tectonic settings of basalt based on olivine composition: GWO-SVM method and its verification[J]. Geotectonica et Metallogenia, 2020, 44(2):212-221.]

    [17]

    Guo P, Yang T, Xu W L, et al. Machine learning reveals source compositions of intraplate basaltic rocks[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(9):e2021GC009946. doi: 10.1029/2021GC009946

    [18]

    余星. 海底岩石地球化学研究中的"大数据": PetDB及其应用[J]. 地球科学进展, 2014, 29(2):306-314

    YU Xing. The big data tool for seabed petrogeochemistry research-PetDB and its application in geoscience[J]. Advances in Earth Science, 2014, 29(2):306-314.]

    [19]

    葛粲, 汪方跃, 李永东, 等. 基于GEOROC大数据分析地壳厚度地球化学指标[J]. 岩石学报, 2018, 34(11):3179-3188

    GE Can, WANG Fangyue, LI Yongdong, et al. Analysis of geochemical indices of crustal thickness based on GEOROC big data[J]. Acta Petrologica Sinica, 2018, 34(11):3179-3188.]

    [20]

    张晓琴, 程誉莹. 基于随机森林模型的成分数据缺失值填补法[J]. 应用概率统计, 2017, 33(1):102-110

    ZHANG Xiaoqin, CHENG Yuying. Imputation of missing values for compositional data based on random forest[J]. Chinese Journal of Applied Probability and Statistics, 2017, 33(1):102-110.]

    [21]

    朱紫怡, 周飞, 王瑀, 等. 基于机器学习的锆石成因分类研究[J]. 地学前缘, 2022, 29(5):464-475

    ZHU Ziyi, ZHOU Fei, WANG Yu, et al. Machine learning-based approach for zircon classification and genesis determination[J]. Earth Science Frontiers, 2022, 29(5):464-475.]

    [22]

    Breiman L. Using iterated bagging to debias regressions[J]. Machine Learning, 2001, 45(3):261-277. doi: 10.1023/A:1017934522171

    [23]

    Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297.

    [24]

    Pearce J A. Immobile element fingerprinting of ophiolites[J]. Elements, 2014, 10(2):101-108. doi: 10.2113/gselements.10.2.101

    [25]

    Dai J G, Wang C S, Stern R J, et al. Forearc magmatic evolution during subduction initiation: Insights from an Early Cretaceous Tibetan ophiolite and comparison with the Izu-Bonin-Mariana forearc[J]. GSA Bulletin, 2021, 133(3-4):753-776. doi: 10.1130/B35644.1

    [26]

    Clarke D B, Cameron B I, Muecke G K, et al. Early Tertiary basalts from the Labrador Sea floor and Davis Strait region[J]. Canadian Journal of Earth Sciences, 1989, 26(5):956-968. doi: 10.1139/e89-077

    [27]

    Deng H, Peng S B, Polat A, et al. Neoproterozoic IAT intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton: evidence for evolving tectonic settings[J]. Precambrian Research, 2017, 289:75-94. doi: 10.1016/j.precamres.2016.12.003

    [28]

    Güneş A, İlbeyli N, Rasimgil S, et al. Petrological and geochemical characteristics of the diabase and metasomatised dikes from the Tekirova ophiolite (SW Anatolia, Turkey): Tectonomagmatic evolution of the southern Neotethys[J]. Geochemistry, 2021, 81(3):125767. doi: 10.1016/j.chemer.2021.125767

    [29]

    熊庆. 蛇绿岩记录的大洋地幔内熔体迁移过程[J]. 矿物岩石地球化学通报, 2021, 40(5):999-1011 doi: 10.19658/j.issn.1007-2802.2021.40.043

    XIONG Qing. Ophiolitic records of melt migration processes in oceanic mantle[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(5):999-1011.] doi: 10.19658/j.issn.1007-2802.2021.40.043

    [30]

    卢泓宇, 张敏, 刘奕群, 等. 卷积神经网络特征重要性分析及增强特征选择模型[J]. 软件学报, 2017, 28(11):2879-2890 doi: 10.13328/j.cnki.jos.005349

    LU Hongyu, ZHANG Min, LIU Yiqun, et al. Convolution neural network feature importance analysis and feature selection enhanced model[J]. Journal of Software, 2017, 28(11):2879-2890.] doi: 10.13328/j.cnki.jos.005349

    [31]

    赵庆媛, 叶春茂, 鲁耀兵. 基于随机森林的微动特征重要性评估研究[J]. 现代防御技术, 2022, 50(4):124-131

    ZHAO Qingyuan, YE Chunmao, LU Yaobing. A micro-motion feature importance evaluation algorithm based on random forest[J]. Modern Defence Technology, 2022, 50(4):124-131.]

  • 加载中

(5)

(4)

计量
  • 文章访问数:  507
  • PDF下载数:  102
  • 施引文献:  0
出版历程
收稿日期:  2023-04-11
修回日期:  2023-06-01
刊出日期:  2024-08-28

目录