南海西南部马来盆地新生代构造沉降特征及其成因分析

刘璐, 施小斌, 赵鹏, 刘唐伟, 赵俊峰. 南海西南部马来盆地新生代构造沉降特征及其成因分析[J]. 海洋地质与第四纪地质, 2024, 44(2): 171-182. doi: 10.16562/j.cnki.0256-1492.2023042601
引用本文: 刘璐, 施小斌, 赵鹏, 刘唐伟, 赵俊峰. 南海西南部马来盆地新生代构造沉降特征及其成因分析[J]. 海洋地质与第四纪地质, 2024, 44(2): 171-182. doi: 10.16562/j.cnki.0256-1492.2023042601
LIU Lu, SHI Xiaobin, ZHAO Peng, LIU Tangwei, ZHAO Junfeng. Cenozoic tectonic subsidence and its mechanism of the Malay Basin, southwest South China Sea[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 171-182. doi: 10.16562/j.cnki.0256-1492.2023042601
Citation: LIU Lu, SHI Xiaobin, ZHAO Peng, LIU Tangwei, ZHAO Junfeng. Cenozoic tectonic subsidence and its mechanism of the Malay Basin, southwest South China Sea[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 171-182. doi: 10.16562/j.cnki.0256-1492.2023042601

南海西南部马来盆地新生代构造沉降特征及其成因分析

  • 基金项目: 国家自然科学基金项目“南海西南部西巴兰线东西两侧热状态差异性及其对区域构造演化的制约”(42076075),“南海西沙海域新生代岩石圈热状态、热演化及其对地壳变形的制约”(42276074),“深部地热资源勘探开发中多层介质热传导反问题的建模与计算”(42264007)
详细信息
    作者简介: 刘璐(1997—),男,硕士,主要从事海洋地质与地热地质研究,E-mail:liulu3707@163.com
    通讯作者: 施小斌(1970—),男,博士,研究员,主要从事地热地质与盆地定量分析研究,E-mail:xbshi@scsio.ac.cn
  • 中图分类号: P736.1

Cenozoic tectonic subsidence and its mechanism of the Malay Basin, southwest South China Sea

More Information
  • 南海西南部是南海构造复杂程度最高的区域之一,为深入认识马来盆地及南海西南部构造演化过程,本文基于最近公开发表的地震剖面和钻井资料,对马来盆地内69个模拟井进行系统的构造沉降史重建,发现马来盆地构造沉降史可以分为张裂期快速沉降、裂后早期异常快速沉降、裂后中期慢速沉降以及裂后晚期缓慢沉降等4个阶段。分析表明马来盆地属于叠加了翼部小幅断裂走滑作用的张裂型沉积盆地,马来盆地裂后早期的快速构造沉降很可能是因加载作用导致的岩石圈非弹性屈服的结果。

  • 加载中
  • 图 1  研究区构造概况[17-19]

    Figure 1. 

    图 2  马来盆地莫霍面埋深(a)、基底埋深及超压分布(b)、拉张因子分布(c)和构造沉降分析模拟井位置图(d)

    Figure 2. 

    图 3  马来盆地地层、沉积相和构造相综合柱状图[3]

    Figure 3. 

    图 4  6条测线的地震时间剖面(上)与深度剖面(下)

    Figure 4. 

    图 5  模拟井F8在不同超压带的构造沉降史对比

    Figure 5. 

    图 6  中央坳陷构造沉降史

    Figure 6. 

    图 7  北部坳陷构造沉降史

    Figure 7. 

    图 8  马来盆地与典型张裂盆地、走滑盆地构造沉降史曲线图[34]

    Figure 8. 

    表 1  模型参数值

    Table 1.  Parameter symbols and values in the model

    参数 参数物理含义 参数值
    a/km 岩石圈初始厚度 125
    Tc/km 地壳初始厚度 31.2
    ρw/(km∙m−3) 海水密度 1030
    ρc/(km∙m−3) 地壳密度(0℃) 2800
    ρm/(km∙m−3) 地幔密度(0℃) 3330
    ρa/(km∙m−3) 软流圈密度(1333℃) 3185
    α/℃−1 热膨胀系数 3.28×10−5
    岩石初始孔隙度
    ϕ0
    砂岩 0.49
    泥岩 0.63
    灰岩 0.60
    岩层压实因子
    c/km
    砂岩 0.27×10−3
    泥岩 0.51×10−3
    灰岩 0.53×10−3
    岩石骨架密度
    ρ/(km∙m−3)
    砂岩 2650
    泥岩 2720
    灰岩 2710
    下载: 导出CSV
  • [1]

    Mazlan M, Peter A, Jamaal H M, et al. The Petroleum Geology and Resources of Malaysia[M]. Kuala Lumpur: Petronas, 1999: 171-218.

    [2]

    Madon M. Analysis of tectonic subsidence and heat flow in the Malay Basin (offshore Peninsular Malaysia)[J]. Bulletin of the Geological Society of Malaysia, 1997, 41:95-108. doi: 10.7186/bgsm41199709

    [3]

    Madon M. Five decades of petroleum exploration and discovery in the Malay Basin (1968-2018) and remaining potential[J]. Bulletin of the Geological Society of Malaysia, 2021, 72:63-88. doi: 10.7186/bgsm72202106

    [4]

    Lee T Y, Lawver L A. Cenozoic plate reconstruction of Southeast Asia[J]. Tectonophysics, 1995, 251(1-4):85-138. doi: 10.1016/0040-1951(95)00023-2

    [5]

    Leloup P H, Arnaud N, Lacassin R, et al. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia[J]. Journal of Geophysical Research:Solid Earth, 2001, 106(B4):6683-6732. doi: 10.1029/2000JB900322

    [6]

    Morley C K. A tectonic model for the Tertiary evolution of strike–slip faults and rift basins in SE Asia[J]. Tectonophysics, 2002, 347(4):189-215. doi: 10.1016/S0040-1951(02)00061-6

    [7]

    Tapponnier P, Peltzer G, Armijo R. On the mechanics of the collision between india and Asia[J]. Geological Society, London, Special Publications, 1986, 19(1):113-157. doi: 10.1144/GSL.SP.1986.019.01.07

    [8]

    Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 1982, 10(12):611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

    [9]

    Mansor Y, Rahman A H A, Menier D, et al. Structural evolution of Malay Basin, its link to Sunda Block tectonics[J]. Marine and Petroleum Geology, 2014, 58:736-748. doi: 10.1016/j.marpetgeo.2014.05.003

    [10]

    Morley C K. Combined escape tectonics and subduction rollback-back arc extension: a model for the evolution of Tertiary rift basins in Thailand, Malaysia and Laos[J]. Journal of the Geological Society, 2001, 158(3):461-474. doi: 10.1144/jgs.158.3.461

    [11]

    Pubellier M, Morley C K. The basins of Sundaland (SE Asia): Evolution and boundary conditions[J]. Marine and Petroleum Geology, 2014, 58:555-578. doi: 10.1016/j.marpetgeo.2013.11.019

    [12]

    陈梅, 施小斌, 刘凯, 等. 南海北缘珠三坳陷新生代构造沉降特征[J]. 海洋地质与第四纪地质, 2017, 37(6):47-56

    CHEN Mei, SHI Xiaobin, LIU Kai, et al. Cenozoic tectonic subsidence of the Zhu Ⅲ depression in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology & Quaternary Geology, 2017, 37(6):47-56.]

    [13]

    Shi X B, Xu H H, Qiu X L, et al. Numerical modeling on the relationship between thermal uplift and subsequent rapid subsidence: Discussions on the evolution of the Tainan Basin[J]. Tectonics, 2008, 27(6):TC6003.

    [14]

    Hassaan M, Bhattacharya S K, Mathew M J, et al. Cenozoic development of southwestern Malay Basin: new insights from subsidence analysis and thermal history[J]. Arabian Journal of Geosciences, 2017, 10(8):192. doi: 10.1007/s12517-017-2971-7

    [15]

    Madon M B, Watts. Gravity anomalies, subsidence history and the tectonic evolution of the Malay and Penyu Basins (offshore Peninsular Malaysia)[J]. Basin Research, 1998, 10(4):375-392. doi: 10.1046/j.1365-2117.1998.00074.x

    [16]

    Ngah K, Madon M and Tjia H D. Role of pre-Tertiary fractures in formation and development of the Malay and Penyu basins[J]. Geological Society, London, Special Publications, 1996, 106(1):281-289. doi: 10.1144/GSL.SP.1996.106.01.18

    [17]

    Zhou D, Yao B C. Tectonics and sedimentary basins of the South China Sea: Challenges and progresses[J]. Journal of Earth Science, 2009, 20(1):1-12. doi: 10.1007/s12583-009-0001-8

    [18]

    许志琴, 王勤, 李忠海, 等. 印度-亚洲碰撞: 从挤压到走滑的构造转换[J]. 地质学报, 2016, 90(1):1-23 doi: 10.3969/j.issn.0001-5717.2016.01.001

    XU Zhiqin, WANG Qin, LI Zhonghai, et al. Indo-Asian collision: tectonic transition from compression to strike slip[J]. Acta Geologica Sinica, 2016, 90(1):1-23.] doi: 10.3969/j.issn.0001-5717.2016.01.001

    [19]

    姚永坚, 吕彩丽, 王利杰, 等. 南沙海区万安盆地构造演化与成因机制[J]. 海洋学报, 2018, 40(5):62-74

    YAO Yongjian, LYU Caili, WANG Lijie, et al. Tectonic evolution and genetic mechanism of the Wan'an Basin, southern South China Sea[J]. Haiyang Xuebao, 2018, 40(5):62-74.]

    [20]

    Xie X N, Li S T, Dong W L, et al. Evidence for episodic expulsion of hot fluids along faults near diapiric structures of the Yinggehai Basin, South China Sea[J]. Marine and Petroleum Geology, 2001, 18(6):715-728. doi: 10.1016/S0264-8172(01)00024-1

    [21]

    Madon M, Jong J. Geothermal gradient and heat flow maps of offshore Malaysia: some updates and observations[J]. Bulletin of the Geological Society of Malaysia, 2021, 71:159-183. doi: 10.7186/bgsm71202114

    [22]

    Hoesni M J. Origins of overpressure in the Malay Basin and its influence on petroleum systems[D]. Doctor Dissertation of Durham University, 2004.

    [23]

    Madon M. Overpressure development in rift basins: an example from the Malay Basin, offshore Peninsular Malaysia[J]. Petroleum Geoscience, 2007, 13(2):169-180. doi: 10.1144/1354-079307-744

    [24]

    Satti I A, Yusoff W I W, Ghosh D. Overpressure in the Malay Basin and prediction methods[J]. Geofluids, 2016, 16(2):301-313. doi: 10.1111/gfl.12149

    [25]

    Allen P A, Allen R J. Basin Analysis: Principles and Applications to Petroleum Play Assessment[M]. 3nd ed. UK: Wiley & Sons, 2013: 326-342.

    [26]

    谢辉, 周蒂, 陈广浩, 等. 盆地沉降史回剥分析的不确定性及参数影响[J]. 热带海洋学报, 2014, 33(5):50-59 doi: 10.3969/j.issn.1009-5470.2014.05.007

    XIE Hui, ZHOU Di, CHEN Guanghao, et al. Uncertainty and parameterization in backstripping of basin subsidence analysis[J]. Journal of Tropical Oceanography, 2014, 33(5):50-59.] doi: 10.3969/j.issn.1009-5470.2014.05.007

    [27]

    赵中贤, 孙珍, 毛云华, 等. 南海北部陆缘不均匀伸展及脉动式构造升降史[J]. 热带海洋学报, 2023, 42(3):96-115 doi: 10.11978/2022133

    ZHAO Zhongxian, SUN Zhen, MAO Yunhua, et al. Heterogeneous extension and pulsed tectonic subsidence in the northern South China Sea margin[J]. Journal of Tropical Oceanography, 2023, 42(3):96-115.] doi: 10.11978/2022133

    [28]

    裴健翔, 施小斌, 王丽芳, 等. 南海礼乐盆地新生代构造沉降特征及其成因分析[J]. 海洋地质与第四纪地质, 2020, 40(4):17-29

    Pei Jianxiang, Shi Xiaobin, Wang Lifang, et al. Tectonic subsidence and its mechanism of the Liyue Basin, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(4):17-29.]

    [29]

    Watts A B. Tectonic subsidence, flexure and global changes of sea level[J]. Nature, 1982, 297(5866):469-474. doi: 10.1038/297469a0

    [30]

    Shi X B, Kirby J, Yu C H, et al. Spatial variations in the effective elastic thickness of the lithosphere in Southeast Asia[J]. Gondwana Research, 2017, 42:49-62. doi: 10.1016/j.gr.2016.10.005

    [31]

    Manshor A, Hassan M H A, Madon M. Tidally-influenced fluvial channel systems from the Miocene Malay Basin, Malaysia: Evidence from core facies and seismic geomorphological analyses[J]. Marine and Petroleum Geology, 2022, 135: 105384. N.

    [32]

    Yakzan A M, Harun A, Nasib B M, et al. Integrated biostratigraphic zonation for the Malay Basin[J]. Bulletin of the Geological Society of Malaysia, 1996, 39:157-184. doi: 10.7186/bgsm39199615

    [33]

    Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the triassic[J]. Science, 1987, 235(4793):1156-1167. doi: 10.1126/science.235.4793.1156

    [34]

    Xie X Y, Heller P L. Plate tectonics and basin subsidence history[J]. GSA Bulletin, 2009, 121(1-2):55-64.

    [35]

    Morley C K. Discussion of tectonic models for Cenozoic strike-slip fault-affected continental margins of mainland SE Asia[J]. Journal of Asian Earth Sciences, 2013, 76:137-151. doi: 10.1016/j.jseaes.2012.10.019

    [36]

    Fyhn M B W, Boldreel L O, Nielsen L H. Escape tectonism in the Gulf of Thailand: Paleogene left-lateral pull-apart rifting in the Vietnamese part of the Malay Basin[J]. Tectonophysics, 2010, 483(3-4):365-376. doi: 10.1016/j.tecto.2009.11.004

    [37]

    Yang T, Gurnis M, Zahirovic S. Mantle‐induced subsidence and compression in SE Asia since the early Miocene[J]. Geophysical Research Letters, 2016, 43(5):1901-1909. doi: 10.1002/2016GL068050

    [38]

    Doust H, Sumner H S. Petroleum systems in rift basins – a collective approach inSoutheast Asian basins[J]. Petroleum Geoscience, 2007, 13(2):127-144. doi: 10.1144/1354-079307-746

    [39]

    Madon M. The kinematics of extension and inversion in the Malay Basin, offshore Peninsular Malaysia[J]. Bulletin of the Geological Society of Malaysia, 1997, 41:127-138. doi: 10.7186/bgsm41199711

    [40]

    Morley C K, Westaway R. Subsidence in the super-deep Pattani and Malay basins of Southeast Asia: a coupled model incorporating lower-crustal flow in response to post-rift sediment loading[J]. Basin Research, 2006, 18(1):51-84. doi: 10.1111/j.1365-2117.2006.00285.x

    [41]

    Allen M, Jackson J, Walker R. Reply to comment by Rob Westaway on “Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates”[J]. Tectonics, 2004, 23(5):TC5007.

    [42]

    Morley C K. Five anomalous structural aspects of rift basins in Thailand and their impact on petroleum systems[J]. Geological Society, London, Special Publications, 2015, 421(1):143-168. doi: 10.1144/SP421.2

    [43]

    Shi X B, Jiang H Y, Yang J, et al. Models of the rapid post-rift subsidence in the eastern Qiongdongnan Basin, South China Sea: implications for the development of the deep thermal anomaly[J]. Basin Research, 2017, 29(3):340-362. doi: 10.1111/bre.12179

    [44]

    李亚敏, 施小斌, 徐辉龙, 等. 琼东南盆地构造沉降的时空分布及裂后期异常沉降机制[J]. 吉林大学学报:地球科学版, 2012, 42(1):47-57,65

    LI Yamin, SHI Xiaobin, XU Huilong, et al. Temporal and spatial distribution of tectonic subsidence and discussion on formation mechanism of anomalous post-rift tectonic subsidence in the Qiongdongnan Basin[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(1):47-57,65.]

    [45]

    杨军, 施小斌, 王振峰, 等. 琼东南盆地张裂期沉降亏损与裂后期快速沉降成因[J]. 海洋地质与第四纪地质, 2015, 35(1):81-90

    YANG Jun, SHI Xiaobin, WANG Zhenfeng, et al. Origin of syn-rift subsidence deficit and rapid post-rift subsidence in Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2015, 35(1):81-90.]

    [46]

    Royden L, Keen C E. Rifting process and thermal evolution of the continental margin of Eastern Canada determined from subsidence curves[J]. Earth and Planetary Science Letters, 1980, 51(2):343-361. doi: 10.1016/0012-821X(80)90216-2

    [47]

    Davis M, Kusznir N. Depth-dependent lithospheric stretching at rifted continental margins[M]//Karner G, Taylor B, Driscoll N, et al. Rheology and Deformation of the Lithosphere at Continental Margins. New York: Columbia University Press, 2004: 92-136.

    [48]

    Burov E B, Diament M. The effective elastic thickness (Te) of continental lithosphere: What does it really mean?[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B3):3905-3927. doi: 10.1029/94JB02770

    [49]

    Burov E B. Rheology and strength of the lithosphere[J]. Marine and Petroleum Geology, 2011, 28(8):1402-1443. doi: 10.1016/j.marpetgeo.2011.05.008

    [50]

    吴保珍, 施小斌, 杨小秋, 等. 南海北部白云凹陷及其邻区的岩石圈强度分析[J]. 热带海洋学报, 2014, 33(1):62-68 doi: 10.3969/j.issn.1009-5470.2014.01.008

    WU Baozhen, SHI Xiaobin, YANG Xiaoqiu, et al. Analysis on lithospheric strength of the Baiyun Sag and its surrounding area in the northern margin of the South China Sea[J]. Journal of Tropical Oceanography, 2014, 33(1):62-68.] doi: 10.3969/j.issn.1009-5470.2014.01.008

  • 加载中

(8)

(1)

计量
  • 文章访问数:  765
  • PDF下载数:  110
  • 施引文献:  0
出版历程
收稿日期:  2023-04-26
修回日期:  2023-06-27
录用日期:  2023-06-27
刊出日期:  2024-04-28

目录