南黄海SYS90-1A孔第四纪沉积物磁性地层学研究

陆凯, 孙军, 李广雪, 杨慧良, 王忠蕾, 梅西, 陈晓辉, 祁江豪, 朱晓青, 强小科. 南黄海SYS90-1A孔第四纪沉积物磁性地层学研究[J]. 海洋地质与第四纪地质, 2024, 44(2): 97-109. doi: 10.16562/j.cnki.0256-1492.2023052203
引用本文: 陆凯, 孙军, 李广雪, 杨慧良, 王忠蕾, 梅西, 陈晓辉, 祁江豪, 朱晓青, 强小科. 南黄海SYS90-1A孔第四纪沉积物磁性地层学研究[J]. 海洋地质与第四纪地质, 2024, 44(2): 97-109. doi: 10.16562/j.cnki.0256-1492.2023052203
LU Kai, SUN Jun, LI Guangxue, YANG Huiliang, WANG Zhonglei, MEI Xi, CHEN Xiaohui, QI Jianghao, ZHU Xiaoqing, QIANG Xiaoke. Magnetostratigraphy of Quaternary sediments from borehole SYS90-1A in the South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 97-109. doi: 10.16562/j.cnki.0256-1492.2023052203
Citation: LU Kai, SUN Jun, LI Guangxue, YANG Huiliang, WANG Zhonglei, MEI Xi, CHEN Xiaohui, QI Jianghao, ZHU Xiaoqing, QIANG Xiaoke. Magnetostratigraphy of Quaternary sediments from borehole SYS90-1A in the South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 97-109. doi: 10.16562/j.cnki.0256-1492.2023052203

南黄海SYS90-1A孔第四纪沉积物磁性地层学研究

  • 基金项目: 中国地质调查局地质调查项目“深海调查-测量”(DD20230643,DD20191003),“东部重点海域海洋区域地质调查”(DD20221710),“1:25万锦西、日照和霞浦县等图幅海洋区域地质调查”(DD20160139)
详细信息
    作者简介: 陆凯(1978—),男,博士研究生,正高级工程师,从事海洋地质学研究,E-mail:qimg_luk@163.com
    通讯作者: 孙军(1989—),男,博士研究生,助理研究员,从事沉积学与古海洋学研究,E-mail:sunjun607@126.com 李广雪(1962—),男,博士,教授,从事海洋沉积学、古环境与古气候研究,E-mail:gxli1962@ouc.edu.cn
  • 中图分类号: P736

Magnetostratigraphy of Quaternary sediments from borehole SYS90-1A in the South Yellow Sea

More Information
  • 可靠的年代地层框架是开展南黄海地区第四纪环境演变研究的基础。目前南黄海南部地区缺乏可靠年代学控制的长序列钻孔。通过对南黄海南部SYS90-1A孔( 孔深 90.1 m) 沉积物开展详细的磁性地层学研究,并结合AMS14C测年结果及区域已有磁性地层学结果,建立南黄海南部地区第四纪沉积物年代地层框架。结果显示,SYS90-1A孔岩芯记录了从布容(Brunhes) 正极性时至松山(Matuyama) 负极性时上部,包括Kamikatsura和Santa Rosa地磁漂移事件。早、中更新世界线即布容正极性时与松山负极性时界线(B/M界线)深度位于74.2 m,Kamikatsura和Santa Rosa地磁漂移事件深度分别位于79.75~82.47 m和85.25~87.74 m。根据Kamikatsura和Santa Rosa地磁漂移事件的年代控制点和平均沉积速率,推算钻孔底部年龄为0.96 Ma。南黄海SYS90-1A孔早更新世晚期的沉积速率约为8.66 cm/ka,中更新世以来的沉积速率约为9.5 cm/ka,而全新世以来的沉积速率为12.8 cm/ka,沉积速率自早更新世晚期以来呈增加趋势。这一结果不仅为南黄海南部第四纪沉积物研究提供了有效的年代学约束,而且为南黄海地区第四纪地层划分和对比、沉积环境与气候变化、物源示踪等研究提供了重要的时间标尺。

  • 加载中
  • 图 1  南黄海环流体系及钻孔位置图

    Figure 1. 

    图 2  SYS90-1A孔典型沉积物样品退磁正交矢量投影图与归一化剩磁强度衰减图

    Figure 2. 

    图 3  南黄海SYS90-1A孔岩石地层和磁性地层分析结果

    Figure 3. 

    图 4  南黄海SYS90-1A孔沉积年代-深度曲线及沉积速率模式图

    Figure 4. 

    图 5  南黄海SYS90-1A孔与南黄海地区其他主要钻孔磁性地层结果对比

    Figure 5. 

    表 1  南黄海SYS90-1A孔AMS14C测年结果

    Table 1.  The AMS14C dating results for the SYS90-1A core in the southern Yellow Sea

    深度/m 测试材料 δ13C /‰ 常规年龄 日历年龄/cal.aBP 样品编号
    (14C/ aBP) 中值 范围(1σ)
    1.14~1.16 底栖有孔虫 −0.9 11050 ±30 BP 10702 10656~10748 520560
    2.44~2.46 底栖有孔虫 −2 16110 ±40 BP 17097 17012~17182 520562
    3.82~3.84 底栖有孔虫 −1.3 16830±40 BP 17996 17894~18099 520563
    4.58~4.60 底栖有孔虫 −4 17820±60 BP 19206 19072~19341 520564
    下载: 导出CSV

    表 2  南黄海地区主要钻孔M/B界线深度

    Table 2.  Depth of the M/B boundary in major boreholes in the South Yellow Sea

    钻 孔水深/m进尺/m取芯率/%B/M界线深度/m地理坐标文献来源
    SYS90-1A69.390.19374.233°49′N、123°44′E本文
    DLC70-37371.29359.0836°38′N 、23°33′E[7]
    NHH0173125.69168.6435°13′N、123°13′E[20]
    EY02-2797086.563.2934°30′N、123°30′E[19]
    QC249108.890.479.9534°18′N、122°16′E[18]
    CSDP-152.5300.18073.6834°18′N、122°22′E[13]
    CSDP-2222809.8891.765.2334°33′N 、21°15′E[21]
    下载: 导出CSV
  • [1]

    Song J M. Biogeochemical Processes of Biogenic Elements in China Marginal Seas[M]. Berlin, Heidelberg: Springer, 2010.

    [2]

    秦蕴珊, 赵一阳, 陈丽蓉, 等. 黄海地质[M]. 北京: 海洋出版社, 1989: 1-289

    QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology of the Yellow Sea[M]. Beijing: China Ocean Press, 1989.]

    [3]

    王中波, 张江勇, 梅西, 等. 中国陆架海MIS5(74~128 ka)以来地层及其沉积环境[J]. 中国地质, 2020, 47(5):1370-1394 doi: 10.12029/gc20200506

    WANG Zhongbo, ZHANG Jiangyong, MEI Xi, et al. The stratigraphy and depositional environments of China’s sea shelves since MIS5(74-128) ka[J]. Geology in China, 2020, 47(5):1370-1394.] doi: 10.12029/gc20200506

    [4]

    Clark P U, Archer D, Pollard D, et al. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2[J]. Quaternary Science Reviews, 2006, 25(23-24):3150-3184. doi: 10.1016/j.quascirev.2006.07.008

    [5]

    郑光膺. 黄海第四纪地质[M]. 北京: 科学出版社, 1991

    ZHENG Guangying. Quaternary Geology of the Yellow Sea[M]. Beijing: Science Press, 1991.]

    [6]

    刘健, 李绍全, 王圣洁, 等. 末次冰消期以来黄海海平面变化与黄海暖流的形成[J]. 海洋地质与第四纪地质, 1999, 19(1):13-24

    LIU Jian, LI Shaoquan, WANG Shengjie, et al. Sea level changes of the Yellow Sea and formation of the Yellow Sea Warm Current since the last deglaciation[J]. Marine Geology & Quaternary Geology, 1999, 19(1):13-24.]

    [7]

    Mei X, Li R H, Zhang X H, et al. Evolution of the Yellow Sea warm current and the Yellow Sea cold water mass since the middle Pleistocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 442:48-60. doi: 10.1016/j.palaeo.2015.11.018

    [8]

    Liu J, Saito Y, Kong X H, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea[J]. Marine Geology, 2010, 278(1-4):54-76. doi: 10.1016/j.margeo.2010.09.003

    [9]

    Liu J, Zhang X H, Mei X, et al. The sedimentary succession of the last ~3.50 Myr in the western South Yellow Sea: paleoenvironmental and tectonic implications[J]. Marine Geology, 2018, 399:47-65. doi: 10.1016/j.margeo.2017.11.005

    [10]

    Yang J C, Li G X, Liu Y, et al. Evolution of sedimentary mode since Pleistocene in the central South Yellow Sea, China, based on seismic stratigraphy analysis[J]. Quaternary International, 2018, 482:157-170. doi: 10.1016/j.quaint.2018.03.018

    [11]

    业渝光, 刁少波, 和杰, 等. 南黄海QC2孔的ESR年代学[J]. 海洋地质与第四纪地质, 1996, 16(1):95-102

    YE Yuguang, DIAO Shaobo, HE Jie, et al. ESR chronology of well QC2 in the South Yellow Sea[J]. Marine Geology & Quaternary Geology, 1996, 16(1):95-102.]

    [12]

    刘建兴, 刘青松, 石学法, 等. 黄海第四纪年代学研究进展[J]. 海洋地质前沿, 2015, 31(2):17-25

    LIU Jianxing, LIU Qingsong, SHI Xuefa, et al. Progress of quaternary chronological research in the Yellow Sea[J]. Marine Geology Frontiers, 2015, 31(2):17-25.]

    [13]

    Liu J X, Liu Q S, Zhang X H, et al. Magnetostratigraphy of a long Quaternary sediment core in the South Yellow Sea[J]. Quaternary Science Reviews, 2016, 144:1-15. doi: 10.1016/j.quascirev.2016.05.025

    [14]

    Wang L Y, Li G X, Liu J, et al. Astronomical dating of Quaternary strata in the South Yellow Sea and its indication for paleoclimatic evolution[J]. Marine Geology, 2021, 439:106557. doi: 10.1016/j.margeo.2021.106557

    [15]

    赵一飞, 徐敏, 刘晴, 等. 苏北辐射沙洲岸滩沉积物元素地球化学记录的百年尺度环境变化[J]. 海洋学报, 2021, 43(8):66-80

    ZHAO Yifei, XU Min, LIU Qing, et al. Centennial scale environmental changes in the elemental geochemistry of tidal flat sediments in the northern Jiangsu radial sand ridges[J]. Haiyang Xuebao, 2021, 43(8):66-80.]

    [16]

    张军强, 刘健, 孔祥淮, 等. 南黄海西部陆架区SYS-0804孔MIS 6以来地层和沉积演化[J]. 海洋地质与第四纪地质, 2015, 35(1):1-12

    ZHANG Junqiang, LIU Jian, KONG Xianghuai, et al. Stratigraphic sequence and depositional environment since marine isotope stage 6 in the continental shelf of the western south yellow sea: a case of SYS-0804 core[J]. Marine Geology & Quaternary Geology, 2015, 35(1):1-12.]

    [17]

    陈筱林. 南黄海泥质区西北缘B01孔沉积地球化学记录及源—汇效应研究[D]. 中国海洋大学硕士学位论文, 2015

    CHEN Xiaolin. Geochemical records of sediments and source to sink effect of B01 core in northwest margin of South Yellow Sea mud area[D]. Master Dissertation of Ocean University of China, 2015.]

    [18]

    周墨清, 葛宗诗. 南黄海及相邻陆区松散沉积层磁性地层的研究[J]. 海洋地质与第四纪地质, 1990, 10(4):21-33

    ZHOU Moqing, GE Zongshi. Magnetostratigraphic study of loose sediments in southern yellow sea and its adjacent land area[J]. Marine Geology & Quaternary Geology, 1990, 10(4):21-33.]

    [19]

    葛淑兰, 石学法, 朱日祥, 等. 南黄海EY02-2孔磁性地层及古环境意义[J]. 科学通报, 2005, 50(22): 2531-2540

    GE Shulan, SHI Xuefa, ZHU Rixiang, et al. Magnetostratigraphy of borehole EY02-2 in the southern Yellow Sea and its paleoenvironmental significance[J]. Chinese Science Bulletin, 2006, 51(7): 855-865.]

    [20]

    Liu J X, Shi X F, Liu Q S, et al. Magnetostratigraphy of a greigite‐bearing core from the South Yellow Sea: implications for remagnetization and sedimentation[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(10):7425-7441. doi: 10.1002/2014JB011206

    [21]

    刘健, 段宗奇, 梅西, 等. 南黄海中部隆起晚新近纪—第四纪沉积序列的地层划分与沉积演化[J]. 海洋地质与第四纪地质, 2021, 41(5):25-43

    LIU Jian, DUAN Zongqi, MEI Xi, et al. Stratigraphic classification and sedimentary evolution of the late Neogene to Quaternary sequence on the Central Uplift of the South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(5):25-43.]

    [22]

    杨继超. 南黄海盆地中部第四纪地震层序与地层学[D]. 中国海洋大学博士学位论文, 2014

    YANG Jichao. Quaternary seismic sequence and stratigraphy in the central South Yellow Sea Basin[D]. Doctor Dissertation of Ocean University of China, 2014.]

    [23]

    Wang L Y, Li G X, Xu J S, et al. Strata sequence and paleochannel response to tectonic, sea-level, and Asian monsoon variability since the late Pleistocene in the South Yellow Sea[J]. Quaternary Research, 2019, 92(2):450-468. doi: 10.1017/qua.2019.29

    [24]

    Tauxe L, Stickley C E, Sugisaki S, et al. Chronostratigraphic framework for the IODP Expedition 318 cores from the Wilkes Land Margin: constraints for paleoceanographic reconstruction[J]. Paleoceanography, 2012, 27(2):PA2214.

    [25]

    易亮, 姜兴钰, 田立柱, 等. 渤海盆地演化的年代学研究[J]. 第四纪研究, 2016, 36(5):1075-1087 doi: 10.11928/j.issn.1001-7410.2016.05.05

    YI Liang, JIANG Xingyu, TIAN Lizhu, et al. Geochronological study on Plio-Pleistocene evolution of Bohai basin[J]. Quaternary Sciences, 2016, 36(5):1075-1087.] doi: 10.11928/j.issn.1001-7410.2016.05.05

    [26]

    孙军, 杨慧良, 何磊, 等. 渤海海峡BHS01孔沉积物磁性地层学研究[J]. 现代地质, 2019, 33(2):315-324 doi: 10.19657/j.geoscience.1000-8527.2019.02.07

    SUN Jun, YANG Huiliang, HE Lei, et al. Quaternary magnetostratigraphy record in sediments from borehole BHS01 in the Bohai strait[J]. Geoscience, 2019, 33(2):315-324.] doi: 10.19657/j.geoscience.1000-8527.2019.02.07

    [27]

    蔡锋, 曹超, 周兴华, 等. 中国近海海洋: 海底地形地貌[M]. 北京: 海洋出版社, 2013

    CAI Feng,CAO Chao, ZHOU Xinghua, et al. China Offshore Ocean-Submarine Topography and Geomorphology[M]. Beijing: Ocean Press, 2013.]

    [28]

    Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean: A Global Synthesis[M]. Cambridge: Cambridge University Press, 2011.

    [29]

    Zhang J, Wan S M, Clift P D, et al. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5 Ma: tectonic or climate forcing?[J]. Quaternary Science Reviews, 2019, 216:74-88. doi: 10.1016/j.quascirev.2019.06.002

    [30]

    梅西. 南黄海DLC70-3孔晚更新世以来的沉积记录与环境响应[D]. 中国科学院研究生院博士学位论文, 2012

    MEI Xi. Sedimentary record and environmental implications since the late Pleistocene from the core DLC70-3 in South Yellow Sea[D]. Doctor Dissertation of University of Chinese Academy of Sciences, 2012.]

    [31]

    王忠蕾, 陆凯, 孙军, 等. 南黄海中部泥质区沉积物碎屑锆石U-Pb年龄物源判别[J]. 海洋地质与第四纪地质, 2022, 42(5):70-82

    WANG Zhonglei, LU Kai, SUN Jun, et al. Detrital zircon U-Pb age and provenance discrimination in sediments of the central mud area in the South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2022, 42(5):70-82.]

    [32]

    孙效功, 方明, 黄伟. 黄、东海陆架区悬浮体输运的时空变化规律[J]. 海洋与湖沼, 2000, 31(6):581-587 doi: 10.3321/j.issn:0029-814X.2000.06.001

    SUN Xiaogong, FANG Ming, HUANG Wei. Spatial and temporal variations in suspended particulate matter transport on the Yellow and East China Sea shelf[J]. Oceanologia et Limnologia Sinica, 2000, 31(6):581-587.] doi: 10.3321/j.issn:0029-814X.2000.06.001

    [33]

    刘庚, 韩喜彬, 陈燕萍, 等. 南黄海沉积物磁性特征及其对物源变化的指示: 以南黄海中部泥质区YSC-10孔为例[J]. 沉积学报, 2021, 39(2):383-394

    LIU Geng, HAN Xibin, CHEN Yanping, et al. Magnetic Characteristics of core YSC-10 sediments in the central Yellow Sea mud area and implications for provenance changes[J]. Acta Sedimentologica Sinica, 2021, 39(2):383-394.]

    [34]

    Pang Y M, Guo X W, Han Z Z, et al. Mesozoic–Cenozoic denudation and thermal history in the Central Uplift of the South Yellow Sea Basin and the implications for hydrocarbon systems: constraints from the CSDP-2 borehole[J]. Marine and Petroleum Geology, 2019, 99:355-369. doi: 10.1016/j.marpetgeo.2018.10.027

    [35]

    黄龙, 耿威, 陆凯, 等. 南黄海中部MIS6期以来沉积物稀土元素组成及其物源指示意义[J]. 海洋地质与第四纪地质, 2023, 43(2):92-105

    HUANG Long, GENG Wei, LU Kai, et al. Rare earth element composition and provenance implication of sediments in the Central South Yellow Sea since MIS6[J]. Marine Geology & Quaternary Geology, 2023, 43(2):92-105.]

    [36]

    Yang S Y, Jung H S, Lim D I, et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews, 2003, 63(1-2):93-120. doi: 10.1016/S0012-8252(03)00033-3

    [37]

    郑求根, 蔡立国, 丁文龙, 等. 黄海海域盆地的形成与演化[J]. 石油与天然气地质, 2005, 26(5):647-654 doi: 10.11743/ogg20050515

    ZHENG Qiugen, CAI Liguo, DING Wenlong, et al. Development and evolution of basins in Yellow Sea[J]. Oil & Gas Geology, 2005, 26(5):647-654.] doi: 10.11743/ogg20050515

    [38]

    金翔龙, 喻普之. 东海大陆架地磁场与地质构造的初步研究[J]. 海洋科学, 1979(S1):94-96

    JIN Xianglong, YU Puzhi. Preliminary study on geomagnetic field and tectonics of continental shelf of the East China Sea[J]. Marine Sciences, 1979(S1):94-96.]

    [39]

    Yi L, Ye X Y, Chen J B, et al. Magnetostratigraphy and luminescence dating on a sedimentary sequence from northern East China Sea: constraints on evolutionary history of eastern marginal seas of China since the Early Pleistocene[J]. Quaternary International, 2014, 349:316-326. doi: 10.1016/j.quaint.2014.07.038

    [40]

    Zhao D B, Wan S M, Jiang S J, et al. Quaternary sedimentary record in the northern Okinawa Trough indicates the tectonic control on depositional environment change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516:126-138. doi: 10.1016/j.palaeo.2018.12.001

    [41]

    杨子赓. 中国东部陆架第四纪时期的演变及其环境效应[M]//梁名胜, 张吉林. 中国海陆第四纪对比研究. 北京: 科学出版社, 1991: 1-22

    YANG Zigeng. Evolution of eastern shelf of China in quaternary and its environmental consequences[M]//LIANG Mingsheng, ZHANG Jilin. Correlation of Onshore and Offshore Quaternary in China. Beijing: Science Press, 1991: 1-22.]

    [42]

    Southon J, Kashgarian M, Fontugne M, et al. Marine reservoir corrections for the Indian Ocean and Southeast Asia[J]. Radiocarbon, 2002, 44(1):167-180. doi: 10.1017/S0033822200064778

    [43]

    Stuiver M, Reimer P J, Reimer R W, 2017. CALIB 7.1[EB/OL]. [2017-11-16]. http://calib.org.

    [44]

    Zijderveld J D A. A. C. Demagnetization of rocks: analysis of results[M]//Collinson D W, Creer K M, Runcorn S K. Methods in Palaeomagnetism. Amsterdam: Elsevier, 1967.

    [45]

    Jones C H. User-driven integrated software lives: "Paleomag" paleomagnetics analysis on the Macintosh[J]. Computers & Geosciences, 2002, 28(10):1145-1151.

    [46]

    Chang H, An Z S, Liu W G, et al. Magnetostratigraphic and paleoenvironmental records for a Late Cenozoic sedimentary sequence drilled from Lop Nor in the eastern Tarim Basin[J]. Global and Planetary Change, 2012, 80-81:113-122. doi: 10.1016/j.gloplacha.2011.09.008

    [47]

    Shi X F, Yao Z Q, Liu J X, et al. Dominant role of sea level on the sedimentary environmental evolution in the Bohai and Yellow Seas over the last 1 million years[J]. Frontiers in Earth Science, 2021, 9:229.

    [48]

    Hilgen F J, Lourens L J, van Dam J A, et al. The neogene period[M]//Gradstein F M, Ogg J G, Schmitz M D, et al. The Geologic Time Scale. Amsterdam: Elsevier, 2012: 923-978.

    [49]

    Ogg J G. Geomagnetic polarity time scale[J]. Geologic Time Scale, 2020, 2020,1:159-192.

    [50]

    刘建兴. 南黄海中部泥质区NHH01孔磁性地层学研究[D]. 国家海洋局第一海洋研究所硕士学位论文, 2012

    LIU Jianxing. Magnetostratigraphy of borehole NHH01 in the central southern Yellow Sea mud[D]. Master Dissertation of the First Institute of Oceanography, SOA, 2012.]

    [51]

    Gao X B, Ou J, Guo S Q, et al. Sedimentary history of the coastal plain of the south Yellow Sea since 5.1 Ma constrained by high-resolution magnetostratigraphy of onshore borehole core GZK01[J]. Quaternary Science Reviews, 2020, 239:106355. doi: 10.1016/j.quascirev.2020.106355

    [52]

    王昆山, 石学法, 李珍, 等. 东海DGKS9617岩心重矿物及自生黄铁矿记录[J]. 海洋地质与第四纪地质, 2005, 25(4):41-45 doi: 10.16562/j.cnki.0256-1492.2005.04.007

    WANG Kunshan, SHI Xuefa, LI Zhen, et al. Records of heavy mineral and authigenous pyrite in core DGKS9617 from the East China Sea[J]. Marine Geology & Quaternary Geology, 2005, 25(4):41-45.] doi: 10.16562/j.cnki.0256-1492.2005.04.007

    [53]

    王润华, 郭坤一, 于振江, 等. 长江三角洲地区第四纪磁性地层学研究[J]. 地层学杂志, 2005, 29(S1):612-617

    WANG Runhua, GUO Kunyi, YU Zhenjiang, et al. Quaternary magneto-stratigraphy of the Yangtze Delta Area[J]. Journal of Stratigraphy, 2005, 29(S1):612-617.]

    [54]

    郑光膺. 南黄海第四纪层型地层对比[M]. 北京: 科学出版杜, 1989

    ZHENG Guangying. Quaternary Stratigraphic Correlation in the South Yellow Sea[M]. Beijing: Science Press, 1989.]

    [55]

    Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea[J]. Marine Geology, 2007, 240(1-4):169-176. doi: 10.1016/j.margeo.2007.02.008

    [56]

    侯方辉. 南黄海晚第四纪地震地层学与新构造运动研究[D]. 中国海洋大学硕士学位论文, 2006

    HOU Fanghui. The studying on late quaternary seismic stratigraphy and neotectonic movement of the South Yellow Sea[D]. Master Dissertation of Ocean University of China, 2006.]

  • 加载中

(5)

(2)

计量
  • 文章访问数:  498
  • PDF下载数:  46
  • 施引文献:  0
出版历程
收稿日期:  2023-05-22
修回日期:  2023-07-03
刊出日期:  2024-04-28

目录