海洋CSEM法探测海底淡水资源可行性初探

吴晓婷, 李予国, 段双敏. 海洋CSEM法探测海底淡水资源可行性初探——以长江口嵊泗古河道为例[J]. 海洋地质与第四纪地质, 2024, 44(6): 204-215. doi: 10.16562/j.cnki.0256-1492.2023071902
引用本文: 吴晓婷, 李予国, 段双敏. 海洋CSEM法探测海底淡水资源可行性初探——以长江口嵊泗古河道为例[J]. 海洋地质与第四纪地质, 2024, 44(6): 204-215. doi: 10.16562/j.cnki.0256-1492.2023071902
WU Xiaoting, LI Yuguo, DUAN Shuangmin. The feasibility of marine CSEM method for detecting offshore freshened groundwater reservoirs[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 204-215. doi: 10.16562/j.cnki.0256-1492.2023071902
Citation: WU Xiaoting, LI Yuguo, DUAN Shuangmin. The feasibility of marine CSEM method for detecting offshore freshened groundwater reservoirs[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 204-215. doi: 10.16562/j.cnki.0256-1492.2023071902

海洋CSEM法探测海底淡水资源可行性初探

  • 基金项目: 国家重点研发计划政府间国际科技创新合作项目“海底淡水资源的海洋地球物理探测技术”(2021YFE0108800);中国博士后科学基金资助项目(2022M712986)
详细信息
    作者简介: 吴晓婷(1998—),女,硕士研究生,地质资源与地质工程专业,E-mail:wu_xiao_ting@163.com
    通讯作者: 李予国(1965—),男,博士,教授,主要从事电磁场正反演方法和海洋电磁法研究,E-mail:yuguo@ouc.edu.cn
  • 中图分类号: P736

The feasibility of marine CSEM method for detecting offshore freshened groundwater reservoirs

More Information
  • 海底淡水是一种天然淡水资源,主要位于近海大陆架区域,来自陆地渗透水或是由海平面升降所形成的古河道中。传统地震方法在储层流体盐度变化的识别中存在一定的局限性,而海洋可控源电磁法(CSEM)对高阻薄层敏感,有利于通过观测淡水储层和围岩电阻率差异引起的电磁异常来探测淡水资源。本文研究区域位于长江口嵊泗古河道,基于“嵊泗一井”水文地球物理测井数据建立长江口嵊泗古河道淡水储层地电模型,并利用数值模拟方法分析该区域淡水储层海洋可控源电磁响应特征。结果表明,利用海洋CSEM方法对高阻薄层强敏感度的特征探测海底淡水资源具有一定的优势,能够有效探测到高阻薄层引起的电磁场异常响应,具有较好的淡水储层识别能力。因此,该方法应用于长江口嵊泗古河道淡水储层探测是可行的。

  • 加载中
  • 图 1  舟山北部海域测井点位图[27]

    Figure 1. 

    图 2  孔隙度和地层电阻率耦合关系

    Figure 2. 

    图 3  长江口嵊泗古河道淡水储层地电模型示意图

    Figure 3. 

    图 4  淡水储层地电模型海洋CSEM响应

    Figure 4. 

    图 5  6个激发频率的淡水储层模型CSEM电场响应曲线

    Figure 5. 

    图 6  不同埋深的淡水储层地电模型示意图

    Figure 6. 

    图 7  不同埋深淡水储层地电模型海洋CSEM可探测度

    Figure 7. 

    图 8  不同层厚的淡水储层地电模型示意图

    Figure 8. 

    图 9  不同层厚淡水储层地电模型海洋CSEM可探测度

    Figure 9. 

    图 10  不同间距的淡水储层地电模型示意图

    Figure 10. 

    图 11  不同间距淡水储层地电模型海洋CSEM可探测度

    Figure 11. 

    表 1  嵊泗一井水文测井解释成果表[30]

    Table 1.  Results of hydrological logging interpretation of Shengsi No. 1 well

    岩性 深度/m 厚度/m $\bar \rho_s $/(Ω·M) $\varPhi $/% 含水层性质
    中细粗砂互层 95.6~139.1 43.5 1.6~4 5.7~48 咸水
    细砂 140.6~142.8 2.2 1.0 5.7~30 咸水
    粉细砂 145.6~151.4 5.8 2 30 咸水
    亚砂土 155.4~158.0 2.6 3 46 咸水
    粉细砂夹亚黏土 158.0~173.3 15.3 6.6~10.6 7~25 淡(微咸)水
    中砂 173.3~179.6 6.3 14 20 淡(微咸)水
    粉细砂 179.6~180.8 1.2 10.50 15 淡(微咸)水
    中细砂 180.8~184.4 3.6 12 15~20 淡(微咸)水
    粉细砂 184.4~185.0 0.6 6 15 淡(微咸)水
    粉细砂 186.1~192.3 6.2 6 10~29 淡(微咸)水
    亚砂土 192.3~198.4 6.1 3 28 咸水
    中粗砂 198.4~219.0 20.6 1.2~2.8 20.9 咸水
    粉砂(土) 229.0~231.4 2.4 2.40 0~32 咸水
    细砂 231.4~233.1 1.7 8.80 0~53 咸水
    粉砂(土) 233.1~234.5 1.4 4 23 咸水
    砂砾石 234.5~245.0 10.5 76 13~32 淡水
    含砾粗砂 246.2~248.0 1.8 20 27~45 淡水
    中细砂 248.0~250.8 2.8 11 6~27 淡水
    砂砾石 250.80~256.00 5.2 76 6~30 淡水
    泥质粗砂 263.0~266.6 3.6 16 0~27 咸水
    泥质中砂 266.6~270.8 4.2 10 13~40 咸水
    含砾泥质中砂 270.8~274.2 3.4 15 13 咸水
    下载: 导出CSV
  • [1]

    Kohout F A. Cyclic flow of salt water in the Biscayne aquifer of southeastern Florida[J]. Journal of Geophysical Research, 1960, 65(7):2133-2141. doi: 10.1029/JZ065i007p02133

    [2]

    Micallef A, Person M, Berndt C, et al. Offshore freshened groundwater in continental margins[J]. Reviews of Geophysics, 2021, 59(1):e2020RG000706. doi: 10.1029/2020RG000706

    [3]

    Weymer B A, Wernette P A, Everett M E, et al. Multi-layered high permeability conduits connecting onshore and offshore coastal aquifers[J]. Frontiers in Marine Science, 2020, 7:531293. doi: 10.3389/fmars.2020.531293

    [4]

    Bertoni C, Lofi J, Micallef A, et al. Seismic reflection methods in offshore groundwater research[J]. Geosciences, 2020, 10(8):299. doi: 10.3390/geosciences10080299

    [5]

    Lippert K, Tezkan B. On the exploration of a marine aquifer offshore Israel by long‐offset transient electromagnetics[J]. Geophysical Prospecting, 2020, 68(3):999-1015. doi: 10.1111/1365-2478.12875

    [6]

    Dimova N T, Swarzenski P W, Dulaiova H, et al. Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water-seawater interface in two Hawaiian groundwater systems[J]. Journal of Geophysical Research:Oceans, 2012, 117(C2):C02012.

    [7]

    Karabulut S, Cengiz M, Balkaya Ç, et al. Spatio-Temporal Variation of Seawater Intrusion (SWI) inferred from geophysical methods as an ecological indicator; A case study from Dikili, NW İzmir, Turkey[J]. Journal of Applied Geophysics, 2021, 189:104318. doi: 10.1016/j.jappgeo.2021.104318

    [8]

    Constable S. Review paper: instrumentation for marine magnetotelluric and controlled source electromagnetic sounding[J]. Geophysical Prospecting, 2013, 61(S1):505-532. doi: 10.1111/j.1365-2478.2012.01117.x

    [9]

    De Biase M, Chidichimo F, Micallef A, et al. Past and future evolution of the onshore-offshore groundwater system of a carbonate archipelago: the case of the Maltese Islands, central Mediterranean Sea[J]. Frontiers in Water, 2023, 4:1068971. doi: 10.3389/frwa.2022.1068971

    [10]

    Cambareri T C, Eichner E M. Watershed delineation and ground water discharge to a coastal embayment[J]. Groundwater, 1998, 36(4):626-634. doi: 10.1111/j.1745-6584.1998.tb02837.x

    [11]

    Levi E, Goldman M, Tibor G, et al. Delineation of subsea freshwater extension by marine geoelectromagnetic soundings (SE Mediterranean sea)[J]. Water Resources Management, 2018, 32(11):3765-3779. doi: 10.1007/s11269-018-2018-1

    [12]

    Pondthai P, Everett M E, Micallef A, et al. 3D characterization of a coastal freshwater aquifer in SE Malta (Mediterranean Sea) by time-domain electromagnetics[J]. Water, 2020, 12(6):1566. doi: 10.3390/w12061566

    [13]

    Attias E, Thomas D, Sherman D, et al. Marine electrical imaging reveals novel freshwater transport mechanism in Hawai'i[J]. Science Advances, 2020, 6(48):eabd4866. doi: 10.1126/sciadv.abd4866

    [14]

    Attias E, Constable S, Taylor B, et al. Deep submarine fresh water: a new resource for volcanic islands?[J]. Eos, 2021, 102:1-6.

    [15]

    Evans R L, Law L K, St. Louis B, et al. Buried paleo-channels on the New Jersey continental margin: channel porosity structures from electromagnetic surveying[J]. Marine Geology, 2000, 170(3-4):381-394. doi: 10.1016/S0025-3227(00)00081-5

    [16]

    King R B, Danskin W R, Constable S, et al. Identification of fresh submarine groundwater off the coast of San Diego, USA, using electromagnetic methods[J]. Hydrogeology Journal, 2022, 30(3):965-973. doi: 10.1007/s10040-022-02463-y

    [17]

    Hoefel F G, Evans R L. Impact of low salinity porewater on seafloor electromagnetic data: a means of detecting submarine groundwater discharge?[J]. Estuarine, Coastal and Shelf Science, 2001, 52(2):179-189. doi: 10.1006/ecss.2000.0718

    [18]

    Ishizu K, Ogawa Y. Offshore-onshore resistivity imaging of freshwater using a controlled-source electromagnetic method: a feasibility study[J]. Geophysics, 2021, 86(6):E391-E405. doi: 10.1190/geo2020-0906.1

    [19]

    Haroon A, Micallef A, Jegen M, et al. Electrical resistivity anomalies offshore a carbonate coastline: evidence for freshened groundwater?[J]. Geophysical Research Letters, 2021, 48(14):e2020GL091909. doi: 10.1029/2020GL091909

    [20]

    Sherman D, Kannberg P, Constable S. Surface towed electromagnetic system for mapping of subsea Arctic permafrost[J]. Earth and Planetary Science Letters, 2017, 460:97-104. doi: 10.1016/j.jpgl.2016.12.002

    [21]

    Gustafson C, Key K, Evans R L. Aquifer systems extending far offshore on the U. S. Atlantic margin[J]. Scientific Reports, 2019, 9(1):8709. doi: 10.1038/s41598-019-44611-7

    [22]

    Constable S, Kannberg P K, Weitemeyer K. Vulcan: a deep-towed CSEM receiver[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(3):1042-1064. doi: 10.1002/2015GC006174

    [23]

    Dell'Aversana P. Improving interpretation of CSEM in shallow water[J]. The Leading Edge, 2007, 26(3):332-335. doi: 10.1190/1.2715058

    [24]

    Mittet R. Normalized amplitude ratios for frequency-domain CSEM in very shallow water[J]. First Break, 2008, 26(11):47-54.

    [25]

    何良军, 张藻, 楼颂平, 等. 物探在长江水下三角洲勘查淡水资源的重要作用和意义[J]. 上海地质, 2006(1):1-4

    HE Liangjun, ZHANG Zao, LOU Songping, et al. The important function and significance of geophysical surveying technique in freshwater exploration in Changjiang underwater delta[J]. Shanghai Geology, 2006(1):1-4.]

    [26]

    李珍, 李杰, 李贞, 等. 浙江嵊泗海域第四纪沉积层序及承压水层位特征初探[J]. 上海地质, 2008(2):7-13,38

    LI Zhen, LI Jie, LI Zhen, et al. The primary research on the Quaternary stratigraphic sequence and the characteristics of the water-bearing stratum in the sea of Shengsi Area Zhejiang Province[J]. Shanghai Geology, 2008(2):7-13,38.]

    [27]

    韩月. 舟山北部海域海底第四系水文地质条件研究[D]. 中国海洋大学硕士学位论文, 2012

    HAN Yue. Study on quaternary hydrogeology conditions in Northern Zhoushan Sea Area[D]. Master Dissertation of Ocean University of China, 2012.]

    [28]

    孙建国. 阿尔奇(Archie)公式: 提出背景与早期争论[J]. 地球物理学进展, 2007, 22(2):472-486 doi: 10.3969/j.issn.1004-2903.2007.02.020

    SUN Jianguo. Archie's formula: historical background and earlier debates[J]. Progress in Geophysics, 2007, 22(2):472-486.] doi: 10.3969/j.issn.1004-2903.2007.02.020

    [29]

    Salem H S, Chilingarian G V. The cementation factor of Archie's equation for shaly sandstone reservoirs[J]. Journal of Petroleum Science and Engineering, 1999, 23(2):83-93. doi: 10.1016/S0920-4105(99)00009-1

    [30]

    王振宇. 浙江嵊泗海域海底淡水资源初探[J]. 上海地质, 2005(3):16-21

    WANG Zhenyu. The offshore fresh water exploration in Chengsi, Zhejiang Province[J]. Shanghai Geology, 2005(3):16-21.]

    [31]

    韩月, 张志忠, 何兵寿. 舟山北部海域海底淡水资源研究现状[J]. 海洋地质前沿, 2012, 28(8):43-48

    HAN Yue, ZHANG Zhizhong, HE Bingshou. Preliminary research of submarine freshwater resources off northern Zhoushan islands[J]. Marine Geology Frontiers, 2012, 28(8):43-48.]

    [32]

    刘婷婷, 李予国. 海洋可控源电磁法对天然气水合物高阻薄层的可探测度[J]. 海洋地质前沿, 2015, 31(6):17-22

    LIU Tingting, LI Yuguo. Detectivity of high-resistivity gas hydrate layers with marine CSEM method[J]. Marine Geology Frontiers, 2015, 31(6):17-22.]

  • 加载中

(11)

(1)

计量
  • 文章访问数:  147
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2023-07-19
修回日期:  2023-11-01
刊出日期:  2024-12-28

目录