Variation history and dynamic evolution of the Mesozoic marine petroleum in the Papuan Fold Belt
-
摘要:
巴布亚盆地是处于澳大利亚板块北移和太平洋板块西移的活动边缘的中、新生代前陆盆地,巴布亚褶皱带是盆地西北部的次级构造单元,中生界油气资源丰富,勘探潜力巨大,但由于构造活动频繁使得油气聚集-调整过程复杂,严重制约了该地区油气勘探工作。在油气地球化学特征及来源分析的基础上,利用多种古温标的联合反演模拟了单井埋藏史和热史,基于储层流体包裹体分析了充注史,恢复油气成藏动态演化过程。结果表明:①巴布亚褶皱带中生界油气主要分布于褶皱带西段和中段,呈“西气东油”式分布。②油气充注期次可划分为“2期4幕”,早期3幕油气充注时间为105~85、78~53和47~32 Ma,表现为低熟油、高熟油和天然气的连续充注过程,包裹体捕获的原油成熟度更高、规则甾烷ααα(20R)-C27相对含量更为丰富,油气来源于侏罗系烃源岩;晚期1幕油气充注时间为4~0 Ma,油气表现为“高熟油-天然气”混合充注并有低熟油补充的特征,现今储层原油成熟度低于早期原油且富含奥利烷,油气来源于侏罗系—白垩系烃源岩。③油气成藏受多期构造运动影响的烃源岩类型及演化程度、大规模圈闭发育、高效垂向-侧向输导体系和保存条件的控制,通过以构造演化为线索建立的“双源垂向侧向短距供烃-聚集调整过程动态平衡”油气成藏动态演化模式,提出了位于挤压推覆构造带下盘的白垩系烃源岩对中生代含油气系统同样具有烃源贡献的认识,以期为该地区下一步的油气勘探提供参考。
Abstract:The Papuan Basin, positioned in the dynamic boundary where the Australian Plate shifts northward and the Pacific Plate moves westward, is a Mesozoic and Cenozoic foreland basin. Within this basin, the Papuan Fold Belt stands out as a secondary structural unit rich in Mesozoic oil and gas reserves, harboring immense exploration potential. However, frequent tectonic activity in the area complicated the aggregation and adjustment of oil and gas, posing significant challenges to hydrocarbon exploration. By analyzing the geochemical characteristics and sources of oil and gas, the joint inversion of multiple ancient temperature scales was used to simulate the burial history and thermal history of a single well. Additionally, by analyzing reservoir fluid inclusions, the dynamic evolution of hydrocarbon formation was restored. The results indicate that: (1) the Mesozoic oil and gas in the Papuan Fold Belt situated predominantly in the western and central sections, following a "gas in the west and oil in the east" distribution pattern. (2) The oil and gas filling epochs could be categorized into "two phases and four episodes." During the first three episodes, spanning 105~85 Ma, 78~53 Ma, and 47~32 Ma, the filling process progressed from low-maturity oil to high-maturity oil and then to natural gas. The crude oil trapped in inclusions during these periods exhibited higher maturity, containing an abundant amount of regular steranes ααα(20R)-C27, pointing to a Jurassic source rock. The later filling episode during 4~0 Ma, showed a mixed filling of highly mature oil and natural gas, with traces of low-maturity oil. The crude oil currently stored in the reservoir displayed lower maturity than its predecessors and is enriched with oleanane, suggesting the Jurassic and Cretaceous source rocks as its origin. (3) The formation of oil and gas reservoirs was influenced by multiple tectonic movements, including the types and evolutionary degrees of source rocks, the development of large-scale traps, efficient vertical lateral transport systems, and preservation conditions. This study introduced a dynamic evolution model called "dynamic equilibrium of dual-source vertical and lateral short-distance hydrocarbon supply accumulation adjustment", based on clues from structural evolution. This study proposed an understanding that the Cretaceous source rocks located in the lower plate of the compression thrust belt also have hydrocarbon source contributions to the Mesozoic oil and gas system, and provided insight to the future oil and gas exploration in the region.
-
-
表 1 巴布亚褶皱带中生界储层流体包裹体特征
Table 1. Characteristics of fluid inclusions in the Mesozoic reservoirs in the Papua Fold Belt
样品编号 井号 取样层位 深度/m 宿主矿物 显微观测结果 与油包裹体相邻(含烃)盐水包裹体平均均一温度/℃ 与气相包裹体相邻(含烃)盐水包裹体平均均一温度/℃ PFB-1 PP1 Toro 1858 石英 穿石英颗粒成岩裂纹以及石英颗粒内成岩裂纹中检测到大量发弱荧光纯气相、富气相包裹体 25.9、52.7、83.1、96.4、119.0、135.1 PFB-2 PP1 Toro 1859 石英 石英颗粒内成岩裂纹中检测到一期发黄色、一期发蓝色和一期发黄绿色荧光油包裹体以及大量发弱荧光纯气相包裹体 74.3、100.1、124.4 PFB-3 PP1 Toro 1861.3 石英 石英颗粒内成岩裂纹中检测到一期发黄色和一期发蓝色荧光油包裹体;穿石英颗粒成岩裂纹中检测到大量发弱荧光纯气相包裹体 93.3 122.8、141.2 PFB-4 PP1 Toro 1862 石英 石英颗粒内成岩裂纹中检测到一期发蓝色以及大量发弱荧光纯气相包裹体 77.0、87.8 PFB-5 PP2 Toro 3574 石英 穿石英颗粒成岩裂纹中以及石英颗粒内成岩裂纹中检测到大量发蓝绿色荧光油包裹体,同时石英颗粒粒间孔隙中检测到大量发蓝色荧光油浸染 123.3、123.4、125.1 PFB-6 PP3 Toro 3203 石英 石英颗粒内成岩裂纹中检测到一期发蓝色、蓝绿色、一期发黄色和一期发黄绿色荧光油包裹体和大量纯气相包裹体 57.1、75.5、84.2、105.1、116.3、138.0、155.6 PFB-7 PP3 Toro 3212.9 石英 石英颗粒粒间孔隙以及石英颗粒加大边中检测到发橙黄色荧光反射,可能为油浸染;同时石英颗粒内成岩裂纹中检测到大量纯气相包裹体 92.3、120.0、127.5、139.3 PFB-8 PP3 Toro 3220.9 石英 石英颗粒内成岩裂纹中检测到发蓝绿色荧光油
包裹体,同时粒间孔隙中检测到发黄绿色荧光
油浸染72.4、78.4 PFB-9 PP3 Toro 3221 石英 石英颗粒粒间孔隙中检测到橙黄色荧光油浸染;同时石英颗粒内成岩裂纹中检测到纯气相包裹体 PFB-10 PP3 Toro 3221.5 石英 石英颗粒粒间孔隙中检测到发橙黄色荧光油浸染;同时在穿石英颗粒成岩裂纹中和石英颗粒内成岩裂纹中检测到发蓝绿色荧光油包裹体 64.4、66.8、91.3、108.6、117.4、 PFB-11 PP4 Imburu 2316.5 石英 石英颗粒内成岩裂纹中检测到大量发弱荧光纯气相包裹体 58.0、96.1、122.7 -
[1] Hill K C. Structural styles and hydrocarbons in the Papuan Fold Belt, a review[C]. Proceedings of the First Png Petroleum Convention, 1990.
[2] Hill K C, Lucas K, Bradey K. Structural styles in the Papuan Fold Belt, Papua New Guinea: constraints from analogue modelling[J]. 2010, 348(1): 33-56.
[3] Hill K C. Structure of the Papuan Fold Belt, Papua New Guinea (1)[J]. Aapg Bulletin American Association of Petroleum Geologists, 1991, 75(5):857-872.
[4] 骆宗强, 阳怀忠, 刘铁树, 等. 巴布亚盆地构造差异演化及其对油气成藏的控制[J]. 地球科学——中国地质大学学报, 2012, 37(S1): 143-150
LUO Zongqiang, YANG Huaizhong, LIU Tieshu, et al. Distinct tectonic evolutions and its effect on hydrocarbon accumulation of the Papuan basin[J]. Earth Science, 2012, 37: 143-150.]
[5] 卢景美, 闵才政, 于圣杰, 等. 巴布亚盆地构造研究新认识及勘探意义[J]. 中国海上油气, 2022, 34(3):20-27 doi: 10.11935/j.issn.1673-1506.2022.03.003
LU Jingmei, MIN Caizheng, YU Shengjie, et al. New understanding and exploration significance of Papuan Basin structural research[J]. China Offshore Oil and Gas, 2022, 34(3):20-27.] doi: 10.11935/j.issn.1673-1506.2022.03.003
[6] 陈景阳, 张洋, 王涛, 等. 巴布亚褶皱带油气藏类型与成藏模式[J]. 特种油气藏, 2015, 22(5):55-59,153 doi: 10.3969/j.issn.1006-6535.2015.05.011
CHEN Jingyang, ZHANG Yang, WANG Tao, et al. Reservoir types and accumulation modes in Papuan folded belt[J]. Special Oil and Gas Reservoirs, 2015, 22(5):55-59,153.] doi: 10.3969/j.issn.1006-6535.2015.05.011
[7] 张洋. 巴布亚盆地巴布亚复杂褶皱带构造综合解释技术及应用[J]. 地质科技情报, 2019, 38(1):29-34
ZHANG Yang. Structual Comprehensive Interpretation Technology and Application in Papuan Complex Fold Belt of Papuan Basin[J]. Geological Science and Technology Information, 2019, 38(1):29-34.]
[8] 张义娜, 蔡文杰, 杨松岭, 等. 巴布亚盆地侏罗系陆架边缘三角洲沉积特征及其油气勘探方向[J]. 地学前缘, 2021, 28(1):167-176
ZHANG Yina, CAI Wenjie, YANG Songling, et al. Sedimentary characteristics of the Jurassic shelf-edge delta and oil and gas exploration in the Papuan Basin[J]. Earth Science Frontiers, 2021, 28(1):167-176.]
[9] 王涛, 陈景阳, 张洋, 等. 巴布亚盆地褶皱带构造特征[J]. 地质学刊, 2016, 40(1): 31-36
WANG Tao, CHEN Jingyang, ZHANG Yang, et al. Structural characteristics of the fold belts in the Papuan Basin[J]. Journal of Geology, 2016, 40(1): 31-36.]
[10] 刘湘, 郭建华, 刘辰生, 等. 巴布亚盆地东部中侏罗统—下白垩统烃源岩评价及勘探建议[J]. 中南大学学报:自然科学版, 2019, 50(3):607-618
LIU Xiang, GUO Jianhua, LIU Chensheng, et al. Evaluation and exploration suggestion of source rocks from Middle Jurassic to Lower Cretaceous in eastern Papuan Basin[J]. Journal of Central South University (Science and Technology), 2019, 50(3):607-618.]
[11] 尹新义, 胡孝林, 方勇, 等. 印尼-巴新中-古生代盆地群油气地质特征及差异性[J]. 地质科技情报, 2017, 36(6):224-231
YIN Xinyi, HU Xiaolin, FANG Yong, et al. Hydrocarbon Features of Mesozoic- Paleozoic Basins in Indonesia and Papua New Guinea[J]. Geological Science and Technology Information, 2017, 36(6):224-231.]
[12] 刘湘, 郭建华, 张琳婷, 等. 巴布亚盆地晚古生代—新生代构造演化与油气成藏条件[J]. 中南大学学报: 自然科学版, 2018, 49(1):131-140
LIU Xiang, GUO Jianhua, ZHANG Linying, et al. Late Paleozoic—Cenozoic tectonic evolutions and hydrocarbon accumulation conditions of Papuan basin[J]. Journal of Central South University (Science and Technology), 2018, 49(1):131-140.]
[13] 刘湘, 郭建华. 巴布亚盆地构造演化研究[J]. 长江大学学报: 自然科学版, 2014, 11(26):12-15
LIU Xiang, GUO Jianhua. A study on the tectonic evolution of the Papua Basin[J]. Journal of Yangtze University (Science and Technology), 2014, 11(26):12-15.]
[14] 黎彩凤, 旷理雄, 郭建华, 等. 巴布亚盆地中上侏罗统烃源岩油气地球化学特征研究[J]. 长江大学学报: 自科科学版, 2016, 13(7):13-16,3
LI Caifeng, KUANG Lixiong, GUO Jianhua, et al. Geochemical characteristics and evaluation of middle-upper Jurassic hydrocarbon source rock in Papuan Basin[J]. Journal of Yangtze University (Science and Technology), 2016, 13(7):13-16,3.]
[15] Noku S K, Nasinom S, Guru E, et al. Structural Traps and Hydrocarbon Resources of the Papuan Basin: An Overview[C]//1st AAPG/EAGE PNG Geoscience Conference & Exhibition, PNGs Oil and Gas Industry Maturing Through Exploration, Development and Production. 2020.
[16] Noku S K. An Overview of Geochemical Exploration of Hydrocarbons in Papuan Basin, Papua New Guinea[C]//1st AAPG/EAGE PNG Geoscience Conference & Exhibition, PNGs Oil and Gas Industry Maturing Through Exploration, Development and Production. 2020.
[17] Jablonski D, Pono S, Larsen O A. Prospectivity of the deepwater Gulf of Papua and surrounds in Papua New Guinea (PNG) -a new look at a frontier region[J]. Appea Journal, 2006, 46(Pt1):1-22.
[18] Norvick M S, Smith M A, Power M R. The plate tectonic evolution of eastern Australasia guided by the stratigraphy of the Gippsland Basin[C]// In: Hill K C & Bernecker T (eds), Eastern Australasian Basins Symposium: A refocussed energy perspective for the future. Petroleum Exploration Society of Australia Special Publication, 2001: 15-24.
[19] 信石印. 巴布亚盆地主力烃源岩特征及有效性分析[J]. 石油实验地质, 2018, 40(6):843-848 doi: 10.11781/sysydz201806843
XIN Shiyin. Characteristics of main source rocks and their effectiveness in Papuan Basin[J]. Petroleum Geology & Experiment, 2018, 40(6):843-848.] doi: 10.11781/sysydz201806843
[20] 林小云, 余喆, 吴锐, 等. 巴布亚盆地烃源岩分布及生烃潜力评价[J]. 石油地质与程, 2019, 33(3):22-28
LIN Xiaoyun, YU Zhe, WU Rui, et al. Hydrocarbon source rock distribution and hydrocarbon potential evaluation in Papua basin[J]. Petroleum Geology& Engineering, 2019, 33(3):22-28.]
[21] Mahoney L, Mclaren S, Hill K, et al. Late Cretaceous to Oligocene burial and collision in western Papua New Guinea: Indications from low-temperature thermochronology and thermal modelling[J]. Tectonophysics, 2018, 752:81-112.
[22] Edwards D, Zumberge J E. The Oils of Western Australia II[M]. Geoscience Australia, Canberra, 2005.
[23] 胡惕麟, 戈葆雄, 张义纲, 等. 源岩吸附烃和天然气轻烃指纹参数的开发和应用[J]. 石油实验地质, 1990, 12(4):375-394, 450 doi: 10.11781/sysydz199004375
HU Xilin, GE Baoxiong, ZHANG Yigang, et al. The development and application of fingerprint parameters for hydrocarbons absorbed by source rocks and light hydrocarbons in natural gas[J]. Petroleum Geology & Experiment, 1990, 12(4):375-394.] doi: 10.11781/sysydz199004375
[24] 陈建平, 王绪龙, 陈践发, 等. 甲烷碳同位素判识天然气及其源岩成熟度新公式[J]. 中国科学: 地球科学, 2021, 51(4): 560-581
CHEN Jianping, WANG Xvlong, CHEN Jianfa, et al. New equation to decipher the relationship between carbon isotopic composition of methane and maturity of gas source rocks[J]. Science China Earth Sciences, 2021, 64(3): 470-493.]
[25] Thompson K F M. Light hydrocarbons in subsurface sediments[J]. Geochimica et Cosmochimica Acta, 1979, 43(5):657-672. doi: 10.1016/0016-7037(79)90251-5
[26] Thompson K F M. Classification and thermal history of petroleum based on light hydrocarbons[J]. Geochimica et Cosmochimica Acta, 1983, 47(2):303-316. doi: 10.1016/0016-7037(83)90143-6
[27] 王培荣, 徐冠军, 张大江, 等. 常用轻烃参数正、异庚烷值应用中的问题[J]. 石油勘探与开发, 2010, 1(1):121-128
WANG Peirong, XU Guanjun, ZHANG Dajiang, et al. Problems with application of heptane and isoheptane values as light hydrocarbon parameters[J]. Petroleum Exploration and Development, 2010, 1(1):121-128.]
[28] Peters K E, Walters C C, Moldowan J M. Biomarkers and Isotopes in Petroleum Exploration and Earth History[M]. Cambridge, England: Cambridge University Press, 2007.
[29] George S C, Kreiger K F, Eadington P J, et al. Geochemical comparison of oil-bearing fluid inclusions trapped in quartz grain and live oil from the Toro sandstone, Papua New Guinea[J]. Organic Geochemistry, 1995, 26:155-173.
[30] Volk H, George S C, Middleton H, et al. Geochemical comparison of fluid inclusion and present-day oil accumulations in the Papuan Foreland - evidence for previously unrecognised petroleum source rocks[J]. Organic Geochemistry, 2005(1):36.
[31] Nytoft H P, Jørgen A B, Christiansen F G, et al. Oleanane or lupane? Reappraisal of the presence of oleanane in Cretaceous–Tertiary oils and sediments[J]. Organic Geochemistry, 2002, 33(11):1225-1240. doi: 10.1016/S0146-6380(02)00138-9
[32] Ekweozor C M, Udo O T. The oleananes: Origin, maturation and limits of occurrence in Southern Nigeria sedimentary basins[J]. Organic Geochemistry, 1988, 13:131-140. doi: 10.1016/0146-6380(88)90033-2
[33] Moldowan J M, Dahl J, Huizinga B J, et al. The molecular fossil record of oleanane and its relation to angiosperms[J]. Science, 1994, 265(5173):768-771. doi: 10.1126/science.265.5173.768
[34] Wood S, Volk H, Sherwood N, et al. Lacustrine Petroleum Systems in the Papua New Guinea Foreland[C]//Eastern Australasian Basins Symposium III–Energy Security for the 21st Century, PESA, Sydney (2008).
[35] Ahmed M, Volk H, Allan T, et al. Origin of oils in the Eastern Papuan Basin, Papua New Guinea[J]. Organic Geochemistry, 2012, 53:137-152. doi: 10.1016/j.orggeochem.2012.06.002
[36] Xu M, Hou D J, Lin X Y, et al. Organic geochemical signatures of source rocks and oil-source correlation in the Papuan Basin, Papua New Guinea[J]. Journal of Petroleum Science and Engineering, 2021, 109972.
[37] 戴金星. 天然气碳氢同位素特征和各类天然气鉴别[J]. 天然气地球科学, 1993(Z1): 1-40
DAI Jinxing. Carbon and hydrogen isotope characteristics and its application to natural gas[J]. Natural Gas Geoscience, 1993, 3(2-3): 1-41.]
[38] 戴金星. 各类烷烃气的鉴别[J]. 中国科学(B辑), 1992(2):185-193
DAI Jinxing. Identification and distinction of various alkane gases[J]. Science in China(Series B), 1992(2):185-193.]
[39] Hood A, Gutjahr C C M, Heacock R L. Organic metamorphism and the generation Of Petroleum[J]. AAPG Bulletin, 1975, 59(6): 986-996.
-