Changes in sediment sources in the southern slope of Iceland since the Last Glacial Maximum and their response to the adjacent ice sheets
-
摘要:
冰岛南部陆坡岩芯沉积物记录的末次盛冰期以来海洋沉积物来源可以反映千年尺度的冰盖及洋流变化。本文利用冰岛南部陆坡ARC05/IS-2A岩芯沉积物浮游有孔虫AMS14C测年数据构建年代框架,并进行了粒度、颜色反射率以及高分辨率X射线荧光光谱仪元素地球化学测试。根据X射线荧光光谱仪分析结果,通过因子分析方法确定了IS-2A岩芯沉积物的主要物质来源;结合前人对冰盖及洋流变化的研究,重建了末次盛冰期以来冰岛南部陆坡沉积物来源的演化过程,讨论了沉积物来源变化及其与周边主要冰盖活动之间的关系。结果表明,末次盛冰期以来IS-2A岩芯沉积物以陆源输入为主。 其中,末次盛冰期研究区碎屑沉积物主要来自冰岛冰盖、不列颠-爱尔兰冰盖和斯堪的纳维亚冰盖。而在末次冰消期初期,陆源碎屑物质整体增加,它们主要来自近源冰岛冰盖、斯堪的纳维亚冰盖和不列颠-爱尔兰冰盖以及远端劳伦德冰盖。末次冰消期中后期,由于搬运条件的减弱,劳伦德冰盖的陆源输入有所减少,反映了冰盖活动对研究区沉积物来源的制约。进入全新世后,现代洋流体系形成,在冰岛-苏格兰溢流水和北大西洋暖流的共同作用下,沉积物主要来自冰岛和欧洲西部,拉布拉多半岛的碎屑物质也有部分输入。
Abstract:Changes of marine sedimentary environment since the Last Glacial Maximum (LGM) recorded in the core sediments of the southern slope of Iceland reflect millennial-scale changes in ice sheets and ocean currents. The age framework was established with AMS14C dating data of the ARC05/IS-2A core sediments in the southern slope of Iceland, and the grain size, color reflectance and high-resolution XRF element geochemical tests were carried out. According to the XRF spectrometer analysis results, the main material source of the IS-2A core sediment was determined through factor analysis method. Combined with previous studies on the changes of ice sheets and ocean currents in North Atlantic, the evolution of sediment sources on the southern slope of Iceland since the LGM was reconstructed, and the relationship between the changes of sediment sources and activities of the surrounding major ice sheets was discussed. Results show that the sediments of IS-2A core are mainly terrigenous since the LGM. Detritus in sediment indicate the main source areas from the Iceland Ice Sheet (IIS), the British-Irish Ice Sheet (BIIS), and the Finnoscandia Ice Sheet (FIS). In the early last deglaciation, terrigenous detritus were increased as a whole, came mainly from IIS, FIS and BIIS, as well as the distal Laurent ice sheet (LIS). In the middle and late period of the last deglaciation, due to the weakening of transport conditions, the terrestrial input of LIS decreased, reflecting the restriction of ice sheet on the sediments supply to the study area. In the Holocene, the modern ocean current system was formed. Under the combined action of the Iceland-Scotland Overflow Water and the North Atlantic Current, sediments mainly came from Iceland and western Europe, and partially from the detritus of the Labrador Peninsula.
-
Key words:
- slope sediments /
- sediment provenance /
- factor analysis /
- southern Iceland /
- Last Glacial Maximum
-
-
表 1 IS-2A岩芯 AMS14C测年数据及地层年代框架
Table 1. AMS14C dating data and stratigraphic age framework of IS-2A core
层位/cm AMS14C年龄/aBP 日历年龄/cal.aBP±1σ 0~2 5280 ±303225 ±15.010~12 6200 ±304280 ±32.520~22 9910 ±308401 ±64.550~52 14400 ±4014422 ±97.590~92 15700 ±5016153 ±75.5110~112 16480 ±5016960 ±61.5140~142 16640 ±5017132 ±85.0170~172 17080 ±5017687 ±93.0190~192 17480 ±5018165 ±93.5210~212 17600 ±5018306 ±91.5230~232 17870 ±5018632 ±83.5250~252 18270 ±5019127 ±114.5270~272 18350 ±5019246 ±91.5290~292 18950 ±5019538 ±107.5350~352 19980 ±6020660 ±103.5450~452 20910 ±6021790 ±116表 2 IS-2A岩芯主成分及方差分析
Table 2. Principal component and variance analysis for IS-2A sediments
元素 F1 F2 F3 F4 Al 0.894 −0.050 0.162 −0.073 Si 0.932 −0.047 0.151 −0.115 S 0.001 0.095 0.069 0.941 K 0.711 −0.596 −0.044 −0.097 Ca 0.502 0.031 0.769 −0.036 Ti −0.136 0.939 0.139 −0.002 Mn −0.723 0.089 −0.280 0.031 Fe 0.011 0.937 −0.170 0.013 Ni 0.354 0.006 0.718 0.042 Sr −0.045 −0.038 0.875 −0.066 Cl −0.490 −0.144 −0.261 0.629 方差贡献 30.303 19.629 19.316 11.965 累计方差贡献 30.303 49.932 69.248 81.213 -
[1] Larsen H C, Saunders A D, Clift P D, et al. Seven Million Years of Glaciation in Greenland[J]. Science, 1994, 264(5161):952-955. doi: 10.1126/science.264.5161.952
[2] Jansen E, Sjøholm J. Reconstruction of glaciation over the past 6 Myr from ice-borne deposits in the Norwegian Sea[J]. Nature, 1991, 349(6310):600-603. doi: 10.1038/349600a0
[3] Flesche K H, Jansen E, Fronval T, et al. Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5–2.4 Ma) -ice-rafted detritus evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 184(3):213-223.
[4] Maslin M A, Li X S, Loutre M F, et al. The Contribution of Orbital Forcing to the Progressive Intensification of Northern Hemisphere Glaciation[J]. Quaternary Science Reviews, 1998, 17(4):411-426.
[5] Shackleton N J, Backman J, Zimmerman H, et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region[J]. Nature, 1984, 307(5952):620-623. doi: 10.1038/307620a0
[6] Hodell D, Channell J. Mode transitions in Northern Hemisphere glaciation: Co-evolution of millennial and orbital variability in Quaternary climate[J]. Climate of the Past, 2016, 12(9):1805-1828. doi: 10.5194/cp-12-1805-2016
[7] Stein R, Fahl K, Müller J. Proxy Reconstruction of Cenozoic Arctic Ocean Sea-Ice History - from IRD to IP25-[J]. Polarforschung, 2012, 82(1):37-71.
[8] Justwan A, Koc N, Jennings A E. Evolution of the Irminger and East Icelandic Current systems through the Holocene, revealed by diatom-based sea surface temperature reconstructions[J]. Quaternary Science Reviews, 2008, 27(15):1571-1582.
[9] Revel M, Cremer M, Grousset F E, et al. Grain-size and Sr Nd isotopes as tracer of paleo-bottom current strength, Northeast Atlantic Ocean[J]. Marine Geology, 1996, 131(3):233-249.
[10] Clarke G, Marshall S, Hillarire-M C, et al. Mechanisms of Global Climate Change at Millennial Time Scales[M]. 1999:243-262.
[11] Andrews J T, Cooper T A, Jennings A E, et al. Late Quaternary iceberg-rafted detritus events on the Denmark Strait-Southeast Greenland continental slope (~65°N): related to North Atlantic Heinrich events?[J]. Marine Geology, 1998, 149(1):211-228.
[12] Heinrich H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130, 000 years[J]. Quaternary Research, 1988, 29(2):142-152. doi: 10.1016/0033-5894(88)90057-9
[13] Struve T, Roberts N L, Frank M, et al. Ice-sheet driven weathering input and water mass mixing in the Nordic Seas during the last 25, 000 years[J]. Earth and Planetary Science Letters, 2019, 514(15):108-118.
[14] 赵嵩, 董林森, 王湘芹, 等. 北冰洋门捷列夫海岭富锰棕色层稀土元素组成特征与来源初步分析[J]. 海洋学报(中文版), 2020, 42(7):78-92
ZHAO Song, DONG Linsen, WANG Xiangqin, et al. Composition and provenance analysis of rare-earth elements in the manganese-rich brown layers of the Mendeleev Ridge, Arctic Ocean[J]. Haiyang Xuebao, 2020, 42(7):78-92.]
[15] Leone S, Palcu D V, Srevastava P, et al. Changing sediment supply during glacial-interglacial intervals in the North Atlantic revealed by particle size characterization and environmental magnetism[J]. Global and Planetary Change, 2023, 220(12):104022.
[16] 陈漪馨, 刘焱光, 姚政权, 等. 末次盛冰期以来挪威海北部陆源物质输入对气候变化的响应[J]. 海洋地质与第四纪地质, 2015, 35(3):95-108
CHEN Yixin, LIU Yanguang, YAO Zhenquan, DONG Linsen, LI Chaoxin. Response of Terrigenous Input to the Climatic Changes of Northern Norwegian Sea since the Last Glacilal Maximum[J]. Marine Geology & Quaternary Geology, 2015, 35(3):95-108.]
[17] Depaolo D J, Maher K, Christensen J N, et al. Sediment transport time measured with U-series isotopes: Results from ODP North Atlantic drift site 984[J]. Earth and Planetary Science Letters, 2006, 248(1):394-410.
[18] Hemming S R, Broecker W S, Sharp W D, et al. Provenance of Heinrich layers in core V28-82, northeastern Atlantic: 40Ar/39Ar ages of ice-rafted hornblende, Pb isotopes in feldspar grains, and Nd-Sr-Pb isotopes in the fine sediment fraction[J]. Earth and Planetary Science Letters, 1998, 164(1):317-333.
[19] Grousset F, Labeyrie L, Sinko J, et al. Patterns of Ice-Rafted Detritus in the Glacial North Atlantic (40-55°N)[J]. Paleoceanography, 1993, 8(2):175-192. doi: 10.1029/92PA02923
[20] Grousset F, Pujol C, Labeyrie L, et al. Were the North Atlantic Heinrich events triggered by the behaviour of the European Ice Sheets?[J]. Geology, 2000, 28(2):123-126. doi: 10.1130/0091-7613(2000)28<123:WTNAHE>2.0.CO;2
[21] Schmitz W J, Mccartney M S. On the North Atlantic Circulation[J]. Reviews of Geophysics, 1993, 31(1):29-49. doi: 10.1029/92RG02583
[22] Ferreira D C, Luiza M, Kerr, et al. Source water distribution and quantification of North Atlantic Deep Water and Antarctic Bottom Water in the Atlantic Ocean[J]. Progress in Oceanography, 2017, 153:66-83. doi: 10.1016/j.pocean.2017.04.003
[23] Bourgeois O, Dauteuil O, Vliet-L B V. Geothermal control on flow patterns in the Last Glacial Maximum ice sheet of Iceland[J]. Earth Surface Processes and Landforms, 2000, 25(1):59-76. doi: 10.1002/(SICI)1096-9837(200001)25:1<59::AID-ESP48>3.0.CO;2-T
[24] Pini R, Furlanetto G, Vallé F, et al. Linking North Atlantic and Alpine Last Glacial Maximum climates via a high-resolution pollen-based subarctic forest steppe record[J]. Quaternary Science Reviews, 2022, 294(15):1-18.
[25] Swift J H. The circulation of the Denmark Strait and Iceland-Scotland overflow waters in the North Atlantic[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1984, 31(11):1339-1355. doi: 10.1016/0198-0149(84)90005-0
[26] Farmer G L, Barber D, Andrews J. Provenance of Late Quaternary ice-proximal sediments in the North Atlantic: Nd, Sr and Pb isotopic evidence[J]. Earth and Planetary Science Letters, 2003, 209(1):227-243.
[27] Hemming S. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[J]. Reviews of Geophysics, 2004, 42(1):1-43.
[28] Jenner K A, Campbell D C, Piper D J W. Along-slope variations in sediment lithofacies and depositional processes since the Last Glacial Maximum on the northeast Baffin margin, Canada[J]. Marine Geology, 2018, 405(1):92-107.
[29] Mao L, Piper D J W, Saint-A F, et al. Labrador Current fluctuation during the last glacial cycle[J]. Marine Geology, 2018, 395:234-246. doi: 10.1016/j.margeo.2017.10.012
[30] Xiao X, Zhao M, Knudsen K L, et al. Deglacial and Holocene sea-ice variability north of Iceland and response to ocean circulation changes[J]. Earth and Planetary Science Letters, 2017, 472(15):14-24.
[31] Thornalley D J, Elderfield H, McCave I. Intermediate and deep water paleoceanography of the northern North Atlantic over the past 21, 000 years[J]. Paleoceanography, 2010, 25(1):1211-1226.
[32] 吴东, 刘焱光, Eiríksson J, 等. 3万年以来挪威海南部冰岛-苏格兰溢流变化及其对海冰活动的响应[J]. 第四纪研究, 2019, 39(4):845-862 doi: 10.11928/j.issn.1001-7410.2019.04.06
WU Dong, LIU Yanguang, Eiríksson Jón, et al. Changes of Iceland-Scotland overflow water in Southern Norwegian Sea and the responses to sea ice activities since 30 kaBP[J]. Quaternary Sciences, 2019, 39(4):845-862.] doi: 10.11928/j.issn.1001-7410.2019.04.06
[33] 朱爱美, 刘季花, 邹建军, 等. 亚北极太平洋边缘海表层沉积物地球化学特征[J]. 海洋科学进展, 2019, 37(4):601-612
ZHU Aimei, LIU Jihua, ZOU Jianjun, et al. Characteristics of Sedimentary Geochemistry of Surface Sediments in the Subarctic Pacific Marginal Seas.[J]. Advances in Marine Science, 2019, 37(4):601-612.]
[34] Weltje G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4):503-549. doi: 10.1007/BF02775085
[35] Mccave I N. Chapter 8: Size Sorting During Transport and Deposition of Fine Sediments: Sortable Silt and Flow Speed[M]. 2008: 121-142.
[36] 豆汝席, 邹建军, 石学法, 等. 3万年以来日本海西部海冰活动变化[J]. 第四纪研究, 2020, 40(3):690-703 doi: 10.11928/j.issn.1001-7410.2020.03.08
DOU Ruxi, ZOU Jianjun, SHI Xuefa, et al. Reconstructed changes in sea ice in the western Sea of Japan over the last 30000 years[J]. Quaternary Sciences, 2020, 40(3):690-703.] doi: 10.11928/j.issn.1001-7410.2020.03.08
[37] 王昆山, 石学法, 王国庆. 南黄海陆架沉积物颜色反射率的初步研究[J]. 海洋科学进展, 2006, 24(1): 30-38
WANG Kunshan, SHI Xuefa, WANG Guoqing, A Preliminary Study on the Sediment Color Reflectancein the Southern Yellow Sea Shelf Area[J]. Advances in Marine Science, 2006, 24(1): 29-38.]
[38] Rad U, Schaaf M, Michels K, et al. A 5000-yr Record of Climate Change in Varved Sediments from the Oxygen Minimum Zone off Pakistan, Northeastern Arabian Sea[J]. Quaternary Research, 1999, 51(1):39-53. doi: 10.1006/qres.1998.2016
[39] Kïg I, Drodt M, Suess E, et al. Iron reduction through the tan-green color transition in deep-sea sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(8):1679-1683. doi: 10.1016/S0016-7037(97)00007-0
[40] Chen P, Li F, Wu C. Research on Intrusion Detection Method Based on Pearson Correlation Coefficient Feature Selection Algorithm[J]. Journal of Physics: Conference Series, 2021, 1757(1):12010-12054. doi: 10.1088/1742-6596/1757/1/012010
[41] Ziegler C L, Murray R W. Geochemical evolution of the central Pacific Ocean over the past 56 Myr[J]. Paleoceanography, 2007, 22(2):2203-2224.
[42] Reimann C, Filzmoser P, Garrett R G. Factor analysis applied to regional geochemical data: problems and possibilities[J]. Applied Geochemistry, 2002, 17(3):185-206. doi: 10.1016/S0883-2927(01)00066-X
[43] 姚政权, 刘焱光, 王昆山, 等. 日本海末次冰期千年尺度古环境变化的地球化学记录[J]. 矿物岩石地球化学通报, 2010, 29(2):119-126 doi: 10.3969/j.issn.1007-2802.2010.02.002
YAO Zhengquan, LIU Yanguang, WANG Kunshan, et al. Millennial-scale Paleoenvironment Change During the Last GIacial Period Recorded by Geochemical Variations in the Japan Sea[J]. Bulletin of MineraIogy, Petrology and Geochcmistry, 2010, 29(2):119-126.] doi: 10.3969/j.issn.1007-2802.2010.02.002
[44] Ballini M, Kissel C, Colin C, et al. Deep-water mass source and dynamic associated with rapid climatic variations during the last glacial stage in the North Atlantic: A multiproxy investigation of the detrital fraction of deep-sea sediments[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(2):1-16.
[45] Richter T O, Van D G S, Koster B, et al. The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments[J]. Geological Society London Special Publications, 2006, 267(1):39-50. doi: 10.1144/GSL.SP.2006.267.01.03
[46] Yao Z, Liu Y, Shi X, et al. Paleoenvironmental changes in the East/Japan Sea during the last 48 ka: indications from high-resolution X-ray fluorescence core scanning[J]. Journal of Quaternary Science, 2012, 27(9):932-940. doi: 10.1002/jqs.2583
[47] Ziegler M, Jilbert T, de Lange G J, et al. Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(5):1-6.
[48] Andrews J T, Eberl D D. Determination of sediment provenance by unmixing the mineralogy of source-area sediments: The “SedUnMix” program[J]. Marine Geology, 2012, 291-294(1):24-33.
[49] Andrews J T, Kirby M E, Aksu A, et al. Late Quaternary Detrital Carbonate (DC-) Layers in Baffin Bay Marine Sediments (67°-74°N): Correlation with Heinrich Events in the North Atlantic?[J]. Quaternary Science Reviews, 1998, 17(12):1125-1137. doi: 10.1016/S0277-3791(97)00064-4
[50] Patton H, Hubbard A, Bradwell T, et al. The configuration, sensitivity and rapid retreat of the Late Weichselian Icelandic ice sheet[J]. Earth-Science Reviews, 2017, 166:223-245. doi: 10.1016/j.earscirev.2017.02.001
[51] Spagnolo M, Clark C. A geomorphological overview of glacial landforms on the Icelandic continental shelf[J]. Journal of Maps, 2008, 5(1):37-52.
[52] Rørvik K L, Laberg J S, Hald M, et al. Behavior of the northwestern part of the Fennoscandian Ice Sheet during the Last Glacial Maximum-A response to external forcing[J]. Quaternary Science Reviews, 2010, 29(17):2224-2237.
[53] Peck V L, Hall I R, Zahn R, et al. High resolution evidence for linkages between NW European ice sheet instability and Atlantic Meridional Overturning Circulation[J]. Earth and Planetary Science Letters, 2006, 243(3):476-488.
[54] Revel M, Sinko J A, Grousset F E, et al. Sr and Nd isotopes as tracers of North Atlantic lithic particles: Paleoclimatic implications[J]. Paleoceanography, 1996, 11(1):95-113. doi: 10.1029/95PA03199
[55] You D, Stein R, Fahl K, et al. Last deglacial abrupt climate changes caused by meltwater pulses in the Labrador Sea[J]. Communications Earth & Environment, 2023, 4(1):1-13.
[56] Argenio C, Flores J A, Balestra B, et al. Surface water mass dynamics at IODP Site U1313 through Principal Component Analysis: Evidence from coccolith assemblages in the ~25-7 kyr interval[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2024, 635(1):111960.
[57] Jackson R, Frederichs T, Schulz H, et al. Chronology of detrital carbonate events in Baffin Bay reveals different timing but similar average recurrence time of North American-Arctic and Laurentide ice sheet collapse events during MIS 3[J]. Earth and Planetary Science Letters, 2023, 613:1-10.
[58] Ezat M M, Rasmussen T L, Thornalley D J R, et al. Ventilation history of Nordic Seas overflows during the last (de)glacial period revealed by species-specific benthic foraminiferal 14C dates[J]. Paleoceanography, 2017, 32(2):172-181. doi: 10.1002/2016PA003053
[59] Sejrup H P, Clark C D, Hjestuen B O. Rapid ice sheet retreat triggered by ice stream debuttressing: Evidence from the North Sea[J]. Geology, 2016, 44(5):37651-37652.
[60] Lekens W A H, Sejrup H P, Haflidason H, et al. Laminated sediments preceding Heinrich event 1 in the Northern North Sea and Southern Norwegian Sea: Origin, processes and regional linkage[J]. Marine Geology, 2005, 216(1):27-50.
[61] Hjelstuen B O, Sejrup H P, Haflidason H. , et al. Late Quaternary seismic stratigraphy and geological development of the south Vøring margin, Norwegian Sea[J]. Quaternary Science Reviews, 2004, 23:1847-1865. doi: 10.1016/j.quascirev.2004.03.005
[62] Marcott S A, Clark P U, Padman L, et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events[J]. Proc Natl Acad Sci U S A, 2011, 108(33):13415-13419. doi: 10.1073/pnas.1104772108
[63] Becker L W, Hjelstuen, B O, Støren E W, et al. Automated counting of sand‐sized particles in marine records[J]. Sedimentology: Journal of the International Association of Sedimentologists, 2018, 65(3):842-850.
[64] Scourse J D, Haapaniemi A I, Colmenero-H E, et al. Growth, dynamics and deglaciation of the last British–Irish ice sheet: the deep-sea ice-rafted detritus record[J]. Quaternary Science Reviews, 2009, 28(27):3066-3084.
[65] Peck V L, Hall I R, Zahn R, et al. The relationship of Heinrich events and their European precursors over the past 60 ka BP: a multi-proxy ice-rafted debris provenance study in the North East Atlantic[J]. Quaternary Science Reviews, 2007, 26(7-8):862-875. doi: 10.1016/j.quascirev.2006.12.002
[66] Patton H, Hubbard A, Andreassen K, et al. Deglaciation of the Eurasian ice sheet complex[J]. Quaternary Science Reviews, 2017, 169(1):148-172.
[67] Max L, Nürnberg D, Chiessi C M, et al. Subsurface ocean warming preceded Heinrich Events[J]. Nature Communications, 2022, 13(1):4217. doi: 10.1038/s41467-022-31754-x
[68] Souchez R. Climate instability during the last interglacial period recorded in the GRIP ice core[J]. Nature, 1993, 364(6434):203-207. doi: 10.1038/364203a0
[69] Eiríksson J, Karen K, Hafidi H, et al. Late-glacial and Holocene paleoceanography of the North Iceland Shelf[J]. Journal of Quaternary Science, 2000, 15(1):23-42. doi: 10.1002/(SICI)1099-1417(200001)15:1<23::AID-JQS476>3.0.CO;2-8
[70] Dyke A. An outline of North American deglaciation with emphasis on central and northern Canada[J]. Developments in Quaternary Sciences, 2004, 2:373-424.
[71] Barber D C, Dyke A, Hillaire-M C, et al. Forcing of the cold event of 8200 years ago by catastrophic drainage of Laurentide lakes[J]. Nature, 1999, 400(6742):344-348. doi: 10.1038/22504
[72] Bini A, Andreson R, Briner J. Rapid early Holocene retreat of a Laurentide outlet glacier through an Arctic fjord[J]. Nature Geoscience, 2009, 2(7):496-499. doi: 10.1038/ngeo556
[73] Clark P, Carlson A. Ice Sheet Sources of Sea Level Rise and Freshwater Discharge during the Last Deglaciation[J]. AGU Fall Meeting Abstracts, 2010, 50(4):371-443.
[74] Kutzbach J, Gallimore R, Harrison S, et al. Climate and biome simulations for the past 21, 000 years[J]. Quaternary Science Reviews, 1998, 17(6):473-506.
[75] Thornalley D J R, Blaschek M, Davies F J, et al. Long-term variations in Iceland–Scotland overflow strength during the Holocene[J]. Climate of the Past, 2013, 9(5):2073-2084. doi: 10.5194/cp-9-2073-2013
[76] Knudsen K L, Jiang H, Jansen E, et al. Environmental changes off North Iceland during the deglaciation and the Holocene: foraminifera, diatoms and stable isotopes[J]. Marine Micropaleontology, 2004, 50(3):273-305.
-