-
摘要:
红树林具有多重生态系统服务功能,是减缓和适应气候变化的战略要地,其对未来全球变化的响应可通过重建过去红树林的演化来实现,进而为制定适应不同战略需求的短期/长期红树林保护和修复方案奠定科学基础。本文归纳了红树植物花粉、有机碳氮及其稳定同位素和三萜类化合物等红树林演化示踪指标的优缺点,并对红树林有机碳来源定量判识方法进行了介绍;重点从长时间尺度(晚白垩世以来和全新世以来)和短时间尺度(近百年来和近几十年来)回顾和总结了红树林起源、进化、灭绝、迁移、兴衰和演替等多样化的演化历史;揭示了自然环境(构造运动、海平面、气候和水文环境等)和人类活动(海水养殖、围垦、伐木、工程建设和人工保护修复等)对红树林演化的控制作用;最后提出了未来在深化红树林演化研究领域的关键科学目标。
Abstract:Mangroves provide multiple ecosystem services and are strategic locations for climate change mitigation and adaptation. The response of mangrove forests to future global changes can be understood by reconstructing the mangrove development in the past. Over the years, scholars from different disciplinary fields have conducted in-depth studies on mangrove development and its constraints in different time scales, which has greatly contributed to the development of palaeoecological studies on coastal vegetated habitats represented by mangroves, and laid the scientific foundation for the formulation of short-term/long-term mangrove protection and restoration programs for different strategic needs. We summarized the tracing indicators and key methods of mangrove development in different time scales, reviewed the history of mangrove dynamics at long time scales (i.e., since the Late Cretaceous and since the Holocene) and short time scales (i.e., in the last hundred years and in the last few decades), deeply revealed the controlling roles of changes in natural environments and anthropogenic factors on mangrove forests, and finally proposed key scientific objectives for future research in the field of mangrove development.
-
-
图 2 全新世中晚期波多黎各Flamenco潟湖红树林演化模式[26]
Figure 2.
图 3 广西钦州湾3000 年以来的红树林演化及其制约因素[78]
Figure 3.
表 1 红树林演化的主要示踪指标对比
Table 1. Comparison of major tracers of mangrove development
示踪指标 所需仪器/方法 优势 劣势 红树植物花粉 显微镜 指代明确,可直接有效地识别红树林的
生长发育和群落演替变化时间成本高,数据存在主观性,对样品的适用性要求严格,不利于高分辨率研究 有机碳氮及其稳定同位素 元素分析仪
同位素质谱仪测试技术成熟,数据获取成本低,
易于推广,适用于高分辨率研究难以进行群落演替研究,指标可能受早期成岩作用影响 三萜类化合物 气相色谱-质谱 不易受早期成岩作用影响,反应灵敏,
适用于高分辨率研究群落指代不明确,实验过程繁琐,测试成本较高 红树林面积/范围 卫星/航空遥感影像 直观性强,指标数据与年代数据对应准确,节约野外成本 难以进行群落演替研究,起步较晚,不适用于长时间尺度研究 表 2 红树林埋藏有机碳潜在端元的C/N、δ13C和δ15N端元值
Table 2. C/N, δ13C and δ15N values of potential end-members of buried organic carbon in mangrove forests
潜在端元 区域(样本数) C/N δ13C/‰ δ15N/‰ 参考文献 均值 范围 均值 范围 均值 范围 红树林源 红树林叶片 广西英罗湾(16) 38.2±12.6 20.6~71.9 −28.7±0.8 −29.9~−27.1 10.6±1.8 8.5~14.8 文献[32],笔者未发表数据 红树林叶片 广西钦州湾(16) 33.3±11.5 20.3~68.1 −28.6±0.8 −30.0~−27.0 12.8±1.9 7.6~15.3 文献[33],笔者未发表数据 红树林叶片 广西南流江口(26) 48.3±6.4 − −29.6±1.4 − 7.8±1.4 − 文献[48] 红树林叶片 海南文昌河口(5) − − −28.6±1.9 − 3.3±2.2 − 文献[49] 红树林叶片 波多黎各(7) 34.6±11.1 20.1~52.4 −30.5±1.5 −32.2~−28.4 − 文献[50] 红树林叶片 印度尼西亚(4) 33.6±6.3 − −31.7±0.5 − 2.7±0.6 − 文献[51] 红树林枝干 波多黎各(7) 135.5±45.0 82.3~203.8 −26.0±1.6 −28.7~−24.1 − 文献[50] 红树林枝干 印度尼西亚(4) 298.0±22.0 − −29.4±0.4 − 2.0±0.1 − 文献[51] 红树林根系 波多黎各(7) 72.1±18.1 48.6~96.5 −26.0±1.5 −28.5~−24.5 − 文献[50] 红树林根系 印度尼西亚(4) 91.7±16.8 − −29.7±0.6 − 3.0±0.6 − 文献[51] 红树林凋落物 印度尼西亚(4) 69.1±1.1 − −30.5±0.3 − 2.5±0.6 − 文献[51] 陆源 河流沉积物 钦江和茅岭江(7) 12.6±1.85 10.4~16.5 −24.3±0.6 −25.1~−23.3 8.4±0.7 7.3~9.3 文献[32] 河流沉积物 珠江(8) 12.5±2.2 9.8~17.2 −23.9±1.4 −25.6~−21.2 − − 文献[52] 河流悬浮体 钦江和茅岭江(8) 19.0±3.7 11.0~24.9 −25.6±0.3 −26.1~−25.2 0.5±1.2 −1.2~2.6 文献[53] 河流悬浮体 南流江(30) 7.1±1.5 − −26.3±1.3 − 7.5±2.2 − 文献[48] 海岸带坡积物 广西北海(5) 13.3±1.8 10.6~15.8 −20.0±2.4 −23.0~−18.0 8.9±1.1 7.6~10.2 笔者未发表数据 海源 浮游植物 南海北部 6.5±0.1 − −16.1±0.8 − − − 文献[54] 浮游植物 雷州半岛 − − −18.2±0.6 −18.8~−17.7 8.9±1.3 7.6~10.1 文献[55] 浮游动物 雷州半岛 − − −17.7±1.2 −19.0~−16.9 9.1±1.3 8.1~10.6 文献[55] 大型藻类 雷州半岛 − − −15.7±2.8 −20.4~−10.1 10.1±1.3 6.9~11.5 文献[55] 大型藻类 波多黎各(3) 19.0±14.2 6.4~38.8 −17.5±1.1 −18.9~−16.3 − − 文献[50] 大型藻类 广西北海(4) − − −14.8±0.7 −15.7~−13.9 10.1±1.7 8.0~12.6 文献[56] 海草 广西铁山港(19) 27.2±11.9 16.6~51.5 −13.5±0.7 −14.5~−11.7 5.9±1.3 1.9~7.6 邱广龙未发表数据 海草 波多黎各(3) 22.7±1.1 21.7~24.2 −10.2±0.9 −11.1~−9.0 − − 文献[50] -
[1] Giri C, Ochieng E, Tieszen L L, et al. Status and distribution of mangrove forests of the world using earth observation satellite data[J]. Global Ecology and Biogeography, 2011, 20(1):154-159. doi: 10.1111/j.1466-8238.2010.00584.x
[2] Duke N C, Meynecke J O, Dittmann S, et al. A world without mangroves?[J]. Science, 2007, 317(5834):41-42.
[3] Lee S Y, Primavera J H, Dahdouh-Guebas F, et al. Ecological role and services of tropical mangrove ecosystems: a reassessment[J]. Global Ecology and Biogeography, 2014, 23(7):726-743. doi: 10.1111/geb.12155
[4] Himes-cornell A, Grose S O, Pendleton L. Mangrove ecosystem service values and methodological approaches to valuation: where do we stand?[J]. Frontiers in Marine Science, 2018, 5:376. doi: 10.3389/fmars.2018.00376
[5] Nellemann C, Corcoran E, Duarte C M, et al. Blue Carbon: the Role of Healthy Oceans in Binding Carbon[M]. United Nations Environment Programme, Arendal, Norway, 2009: 11-65.
[6] Duarte C M, Losada I J, Hendriks I E, et al. The role of coastal plant communities for climate change mitigation and adaptation[J]. Nature Climate Change, 2013, 3(11):961-968. doi: 10.1038/nclimate1970
[7] Alongi D M. Carbon cycling and storage in mangrove forests[J]. Annual Review of Marine Science, 2014, 6:195-219. doi: 10.1146/annurev-marine-010213-135020
[8] Lovelock C E, Reef R. Variable impacts of climate change on blue carbon[J]. One Earth, 2020, 3(2):195-211. doi: 10.1016/j.oneear.2020.07.010
[9] Alongi D M. Mangrove forests: resilience, protection from tsunamis, and responses to global climate change[J]. Estuarine, Coastal and Shelf Science, 2008, 76(1):1-13. doi: 10.1016/j.ecss.2007.08.024
[10] Jennerjahn T C. Biogeochemical response of tropical coastal systems to present and past environmental change[J]. Earth-Science Reviews, 2012, 114(1-2):19-41. doi: 10.1016/j.earscirev.2012.04.005
[11] Ellison J C. Vulnerability assessment of mangroves to climate change and sea-level rise impacts[J]. Wetlands Ecology and Management, 2015, 23(2):115-137. doi: 10.1007/s11273-014-9397-8
[12] Lovelock C E, Cahoon D R, Friess D A, et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise[J]. Nature, 2015, 526(7574):559-563. doi: 10.1038/nature15538
[13] Woodroffe C D, Rogers K, Mckee K L, et al. Mangrove sedimentation and response to relative sea-level rise[J]. Annual Review of Marine Science, 2016, 8:243-266. doi: 10.1146/annurev-marine-122414-034025
[14] Friess D A, Rogers K, Lovelock C E, et al. The state of the world’s mangrove forests: past, present, and future[J]. Annual Review of Environment and Resources, 2019, 44:89-115. doi: 10.1146/annurev-environ-101718-033302
[15] Veettil B K, Ward R D, Quang N X, et al. Mangroves of Vietnam: historical development, current state of research and future threats[J]. Estuarine, Coastal and Shelf Science, 2019, 218:212-236. doi: 10.1016/j.ecss.2018.12.021
[16] Ellison J C. Long-term retrospection on mangrove development using sediment cores and pollen analysis: a review[J]. Aquatic Botany, 2008, 89(2):93-104. doi: 10.1016/j.aquabot.2008.02.007
[17] Rull V. Rise and fall of Caribbean mangroves[J]. Science of the Total Environment, 2023, 885:163851. doi: 10.1016/j.scitotenv.2023.163851
[18] Giri C. Observation and monitoring of mangrove forests using remote sensing: opportunities and challenges[J]. Remote Sensing, 2016, 8(9):783. doi: 10.3390/rs8090783
[19] Caratini C, Bentaleb I, Fontugne M, et al. A less humid climate since ca. 3500 yr B. P. from marine cores off Karwar, western India[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 109(2-4):371-384. doi: 10.1016/0031-0182(94)90186-4
[20] 王开发, 张玉兰, 李珍. 海滨红树林花粉与古环境研究进展[J]. 地球科学进展, 1997, 12(6):541-545
WANG Kaifa, ZHANG Yulan, LI Zhen. Development of the study on paleoenvironment and coastal mangrove pollen[J]. Advance in Earth Sciences, 1997, 12(6):541-545.]
[21] 张玉兰, 封卫青, 王开发, 等. 从海南岛全新世孢粉研究看海滨红树林的演化[J]. 海洋学报, 2000, 22(3):117-122
ZHANG Yulan, FENG Weiqing, WANG Kaifa, et al. The evolution of mangrove forest on the basis of palynological study of Holocene in Hainan Island[J]. Acta Oceanologica Sinica, 2000, 22(3):117-122.]
[22] Versteegh G J M, Schefuß E, Dupont L, et al. Taraxerol and Rhizophora pollen as proxies for tracking past mangrove ecosystems[J]. Geochimica et Cosmochimica Acta, 2004, 68(3):411-422. doi: 10.1016/s0016-7037(03)00456-3
[23] Li Z. Palynological assemblage and coastal evolution within the last hundred years in Guangxi, China[J]. Quaternary International, 2012, 279-280:278-279. doi: 10.1016/j.quaint.2012.08.722
[24] Guimarães J T F, Cohen M C L, Pessenda L C R, et al. Mid- and late-Holocene sedimentary process and palaeovegetation changes near the mouth of the Amazon River[J]. The Holocene, 2012, 22(3):359-370. doi: 10.1177/0959683611423693
[25] França M C, Alves I C C, Castro D F, et al. A multi-proxy evidence for the transition from estuarine mangroves to deltaic freshwater marshes, Southeastern Brazil, due to climatic and sea-level changes during the late Holocene[J]. Catena, 2015, 128:155-166. doi: 10.1016/j.catena.2015.02.005
[26] Cohen M C L, Lara R J, Cuevas E, et al. Effects of sea-level rise and climatic changes on mangroves from southwestern littoral of Puerto Rico during the middle and late Holocene[J]. CATENA, 2016, 143:187-200. doi: 10.1016/j.catena.2016.03.041
[27] Wooller M, Smallwood B, Scharler U, et al. A taphonomic study of δ13C and δ15N values in Rhizophora mangle leaves for a multi-proxy approach to mangrove palaeoecology[J]. Organic Geochemistry, 2003, 34(9):1259-1275. doi: 10.1016/s0146-6380(03)00116-5
[28] Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews, 2006, 75(1-4):29-57. doi: 10.1016/j.earscirev.2005.10.003
[29] Tue N T, Hamaoka H, Sogabe A, et al. The application of δ13C and C/N ratios as indicators of organic carbon sources and paleoenvironmental change of the mangrove ecosystem from Ba Lat Estuary, Red River, Vietnam[J]. Environmental Earth Sciences, 2011, 64(5):1475-1486. doi: 10.1007/s12665-011-0970-7
[30] Thimdee W, Deein G, Sangrungruang C, et al. Sources and fate of organic matter in Khung Krabaen Bay (Thailand) as traced by δ13C and C/N atomic ratiosand C/N atomic ratios[J]. Wetlands, 2003, 23(4):729-738. doi: 10.1672/0277-5212(2003)023[0729:SAFOOM]2.0.CO;2
[31] Xia P, Meng X W, Zhang Y, et al. The potential of mangrove-derived organic matter in sediments for tracing mangrove development during the Holocene[J]. Estuaries and Coasts, 2021, 44(4):1020-1035. doi: 10.1007/s12237-020-00826-w
[32] Xia P, Meng X W, Li Z, et al. Mangrove development and its response to environmental change in Yingluo Bay (SW China) during the last 150years: stable carbon isotopes and mangrove pollen[J]. Organic Geochemistry, 2015, 85:32-41. doi: 10.1016/j.orggeochem.2015.04.003
[33] Meng X W, Xia P, Li Z, et al. Mangrove degradation and response to anthropogenic disturbance in the Maowei Sea (SW China) since 1926 AD: mangrove-derived OM and pollen[J]. Organic Geochemistry, 2016, 98:166-175. doi: 10.1016/j.orggeochem.2016.06.001
[34] Zhang Y, Meng X W, Xia P, et al. High-frequency mangrove degradation events during the Holocene climatic optimum in the Maowei Sea of tropical China[J]. Journal of Sea Research, 2023, 194:102390. doi: 10.1016/j.seares.2023.102390
[35] Koch B P, Souza Filho P W M, Behling H, et al. Triterpenols in mangrove sediments as a proxy for organic matter derived from the red mangrove (Rhizophora mangle)[J]. Organic Geochemistry, 2011, 42(1):62-73. doi: 10.1016/j.orggeochem.2010.10.007
[36] Williams L A D. Rhizophora mangle (Rhizophoraceae) triterpenoids with insecticidal activity[J]. Naturwissenschaften, 1999, 86(9):450-452. doi: 10.1007/s001140050652
[37] Koch B P, Rullkötter J, Lara R J. Evaluation of triterpenols and sterols as organic matter biomarkers in a mangrove ecosystem in northern Brazil[J]. Wetlands Ecology and Management, 2003, 11(4):257-263. doi: 10.1023/A:1025063516054
[38] Xu Y P, Holmes C W, Jaffé R. Paleoenvironmental assessment of recent environmental changes in Florida Bay, USA: a biomarker based study[J]. Estuarine, Coastal and Shelf Science, 2007, 73(1-2):201-210. doi: 10.1016/j.ecss.2007.01.002
[39] He D, Nemiah ladd S, Park J, et al. Carbon and hydrogen isotopes of taraxerol in mangrove leaves and sediment cores: implications for paleo-reconstructions[J]. Geochimica et Cosmochimica Acta, 2022, 324:262-279. doi: 10.1016/j.gca.2022.02.018
[40] Chu M F, Sachs J P, Peng P, et al. Temporal variations of mangrove-derived organic carbon storage in two tropical estuaries in Hainan, China since 1960 CE[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 627:111726. doi: 10.1016/j.palaeo.2023.111726
[41] Basyuni M, Oku H, Baba S, et al. Isoprenoids of Okinawan mangroves as lipid input into estuarine ecosystem[J]. Journal of Oceanography, 2007, 63(4):601-608. doi: 10.1007/s10872-007-0053-2
[42] 张道来, 王许玲, 姜学钧, 等. 超声提取/气相色谱-质谱法测定红树林沉积物中蒲公英萜醇[J]. 分析测试学报, 2015, 34(6):658-663 doi: 10.3969/j.issn.1004-4957.2015.06.005
ZHANG Daolai, WANG Xuling, JIANG Xuejun, et al. Determination of Taraxerol in mangrove sediments by GC-MS with ultrasonic extraction[J]. Journal of Instrumental Analysis, 2015, 34(6):658-663.] doi: 10.3969/j.issn.1004-4957.2015.06.005
[43] Dittmar T, Lara R J, Kattner G. River or mangrove? Tracing major organic matter sources in tropical Brazilian coastal waters[J]. Marine Chemistry, 2001, 73(3-4):253-271. doi: 10.1016/S0304-4203(00)00110-9
[44] Andersson A. A systematic examination of a random sampling strategy for source apportionment calculations[J]. Science of the Total Environment, 2011, 412-413:232-238. doi: 10.1016/j.scitotenv.2011.10.031
[45] Andersson A, Deng J J, Du K, et al. Regionally-varying combustion sources of the January 2013 severe haze events over eastern China[J]. Environmental Science & Technology, 2015, 49(4):2038-2043. doi: 10.1021/es503855e
[46] Yu M, Eglinton T I, Haghipour N, et al. Contrasting fates of terrestrial organic carbon pools in marginal sea sediments[J]. Geochimica et Cosmochimica Acta, 2021, 309:16-30. doi: 10.1016/j.gca.2021.06.018
[47] Wu Y, Eglinton T I, Zhang J, et al. Spatiotemporal variation of the quality, origin, and age of particulate organic matter transported by the Yangtze river (Changjiang)[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(9):2908-2921. doi: 10.1029/2017jg004285
[48] Kaiser D, Unger D, Qiu G L. Particulate organic matter dynamics in coastal systems of the northern Beibu Gulf[J]. Continental Shelf Research, 2014, 82:99-118. doi: 10.1016/j.csr.2014.04.006
[49] Herbeck L S, Unger D, Krumme U, et al. Typhoon-induced precipitation impact on nutrient and suspended matter dynamics of a tropical estuary affected by human activities in Hainan, China[J]. Estuarine, Coastal and Shelf Science, 2011, 93(4):375-388. doi: 10.1016/j.ecss.2011.05.004
[50] Khan N S, Vane C H, Engelhart S E, et al. The application of δ13C, TOC and C/N geochemistry of mangrove sediments to reconstruct Holocene paleoenvironments and relative sea levels, Puerto Rico[J]. Marine Geology, 2019, 415:105963. doi: 10.1016/j.margeo.2019.105963
[51] Sasmito S D, Kuzyakov Y, Lubis A A, et al. Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems[J]. CATENA, 2020, 187:104414. doi: 10.1016/j.catena.2019.104414
[52] Yu F L, Zong Y Q, Lloyd J M, et al. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China[J]. Estuarine, Coastal and Shelf Science, 2010, 87(4):618-630. doi: 10.1016/j.ecss.2010.02.018
[53] Zhang Y, Meng X W, Bai Y Z, et al. Sources and features of particulate organic matter in tropical small mountainous rivers (SW China) under the effects of anthropogenic activities[J]. Ecological Indicators, 2021, 125:107471. doi: 10.1016/j.ecolind.2021.107471
[54] He B, Dai M, Huang W, et al. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions[J]. Biogeosciences, 2010, 7(10):3343-3362. doi: 10.5194/bg-7-3343-2010
[55] 杨国欢, 侯秀琼, 孙省利, 等. 流沙湾食物网结构的初探: 基于稳定同位素方法的分析结果[J]. 水生生物学报, 2013, 37(1):150-156 doi: 10.7541/2013.150
YANG Guohuan, HOU Xiuqiong, SUN Xingli, et al. Construction food web model of Liusha Bay-using stable isotope analysis results[J]. Acta Hydrobiologica Sinica, 2013, 37(1):150-156.] doi: 10.7541/2013.150
[56] Kwan K Y, Bopp J, Huang S Y, et al. Ontogenetic resource use and trophic dynamics of endangered juvenile Tachypleus tridentatus among diversified nursery habitats in the northern Beibu Gulf, China[J]. Integrative Zoology, 2021, 16(6):908-928. doi: 10.1111/1749-4877.12495
[57] Ricklefs R E, Schwarzbach A E, Renner S S, et al. Rate of lineage origin explains the diversity anomaly in the world’s mangrove vegetation[J]. The American Naturalist, 2006, 168(6):805-810. doi: 10.1086/508711
[58] 范航清, 陆露, 阎冰. 广西红树林演化史与研究历程[J]. 广西科学, 2018, 25(4):343-351
FAN Hangqing, LU Lu, YAN Bing. Evolution history and research processes of Guangxi mangroves[J]. Guangxi Sciences, 2018, 25(4):343-351.]
[59] Srivastava J, Prasad V. Evolution and paleobiogeography of mangroves[J]. Marine Ecology, 2019, 40(6):e12571. doi: 10.1111/maec.12571
[60] He Z W, Feng X, Chen Q P, et al. Evolution of coastal forests based on a full set of mangrove genomes[J]. Nature Ecology & Evolution, 2022, 6(6):738-749.
[61] Lambeck K, Rouby H, Purcell A, et al. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(43):15296-15303.
[62] Duke N C. Genetic diversity, distributional barriers and rafting continents—more thoughts on the evolution of mangroves[J]. Hydrobiologia, 1995, 295(1-3):167-181. doi: 10.1007/BF00029124
[63] Licht A, Boura A, De Franceschi D, et al. Late middle Eocene fossil wood of Myanmar: Implications for the landscape and the climate of the Eocene Bengal Bay[J]. Review of Palaeobotany and Palynology, 2015, 216:44-54. doi: 10.1016/j.revpalbo.2015.01.010
[64] Grant K M, Rohling E J, Ramsey C B, et al. Sea-level variability over five glacial cycles[J]. Nature Communications, 2014, 5(1):5076. doi: 10.1038/ncomms6076
[65] Woodroffe C D, Thom B G, Chappell J. Development of widespread mangrove swamps in mid-Holocene times in northern Australia[J]. Nature, 1985, 317(6039):711-713. doi: 10.1038/317711a0
[66] Cohen M C L, Pessenda L C R, Behling H, et al. Holocene palaeoenvironmental history of the Amazonian mangrove belt[J]. Quaternary Science Reviews, 2012, 55:50-58. doi: 10.1016/j.quascirev.2012.08.019
[67] Hait A K, Behling H. Holocene mangrove and coastal environmental changes in the western Ganga–Brahmaputra Delta, India[J]. Vegetation History and Archaeobotany, 2009, 18(2):159-169. doi: 10.1007/s00334-008-0203-5
[68] Setyaningsih C A, Biagioni S, Saad A, et al. Response of mangroves to late Holocene sea-level change: palaeoecological evidence from Sumatra, Indonesia[J]. Wetlands, 2019, 39(5):1103-1118. doi: 10.1007/s13157-019-01142-1
[69] Ellison J C, Stoddart D R. Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications[J]. Journal of Coastal Research, 1991, 7(1):151-165.
[70] Proske U. Holocene freshwater wetland and mangrove dynamics in the eastern Kimberley, Australia[J]. Journal of Quaternary Science, 2016, 31(1):1-11. doi: 10.1002/jqs.2827
[71] Cordero-oviedo C, Correa-metrio A, Urrego L E, et al. Holocene establishment of mangrove forests in the western coast of the Gulf of Mexico[J]. CATENA, 2019, 180:212-223. doi: 10.1016/j.catena.2019.04.025
[72] Aragón-moreno A A, Islebe G A, Torrescano-valle N, et al. Middle and late Holocene mangrove dynamics of the Yucatan Peninsula, Mexico[J]. Journal of South American Earth Sciences, 2018, 85:307-311. doi: 10.1016/j.jsames.2018.05.015
[73] Decker V, Falkenroth M, Lindauer S, et al. Collapse of Holocene mangrove ecosystems along the coastline of Oman[J]. Quaternary Research, 2021, 100:52-76. doi: 10.1017/qua.2020.96
[74] Smith C B, Cohen M C L, Pessenda L C R, et al. Holocenic proxies of sedimentary organic matter and the evolution of Lake Arari-Amazon Region[J]. CATENA, 2012, 90:26-38. doi: 10.1016/j.catena.2011.10.002
[75] Meng X W, Xia P, Li Z, et al. Mangrove Development and Its Response to Asian Monsoon in the Yingluo Bay (SW China) over the Last 2000 years[J]. Estuaries and Coasts, 2017, 40(2):540-552. doi: 10.1007/s12237-016-0156-3
[76] Xu Y Q, Li P, Liu J, et al. Response of mangrove development to paleoclimate variation over the past 3, 550years in Phang Nga Province, Thailand[J]. Journal of Asian Earth Sciences, 2024, 262:106003. doi: 10.1016/j.jseaes.2023.106003
[77] Limaye R B, Kumaran K PN. Mangrove vegetation responses to Holocene climate change along Konkan coast of south-western India[J]. Quaternary International, 2012, 263:114-128. doi: 10.1016/j.quaint.2012.01.034
[78] Zhang Y, Meng X W, Xia P, et al. Response of mangrove development to air temperature variation over the past 3000 years in Qinzhou Bay, tropical China[J]. Frontiers in Earth Science, 2021, 9:678189. doi: 10.3389/feart.2021.678189
[79] Steffen W, Grinevald J, Crutzen P, et al. The Anthropocene: conceptual and historical perspectives[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1938):842-867. doi: 10.1098/rsta.2010.0327
[80] Syvitski J, Waters C N, Day J, et al. Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch[J]. Communications Earth & Environment, 2020, 1(1):32.
[81] Crutzen P J, Stoermer E F. The ‘Anthropocene’ (2000)[M]//Benner S, Lax G, Crutzen P J, et al. Paul J. Crutzen and the Anthropocene: A New Epoch in Earth’s History. Cham: Springer, 2021: 19-21.
[82] Miller K G, Schmelz W J, Browning J V, et al. Ancient sea level as key to the future[J]. Oceanography, 2020, 33(2):32-41.
[83] Saintilan N, Khan N S, Ashe E, et al. Thresholds of mangrove survival under rapid sea level rise[J]. Science, 2020, 368(6495):1118-1121. doi: 10.1126/science.aba2656
[84] Bozi B S, Figueiredo B L, Rodrigues E, et al. Impacts of sea-level changes on mangroves from southeastern Brazil during the Holocene and Anthropocene using a multi-proxy approach[J]. Geomorphology, 2021, 390:107860. doi: 10.1016/j.geomorph.2021.107860
[85] Yao Q, Cohen M, Liu K B, et al. Mangrove expansion at poleward range limits in North and South America: Late-Holocene climate variability or Anthropocene global warming?[J]. Catena, 2022, 216:106413. doi: 10.1016/j.catena.2022.106413
[86] Cavanaugh K C, Kellner J R, Forde A J, et al. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(2):723-727.
[87] Rodrigues E, Cohen M C L, Pessenda L C R, et al. Poleward mangrove expansion in South America coincides with MCA and CWP: a diatom, pollen, and organic geochemistry study[J]. Quaternary Science Reviews, 2022, 288:107598. doi: 10.1016/j.quascirev.2022.107598
[88] Hapsari K A, Jennerjahn T C, Lukas M C, et al. Intertwined effects of climate and land use change on environmental dynamics and carbon accumulation in a mangrove-fringed coastal lagoon in Java, Indonesia[J]. Global Change Biology, 2020, 26(3):1414-1431. doi: 10.1111/gcb.14926
[89] Punwong P, Sritrairat S, Selby K, et al. An 800 year record of mangrove dynamics and human activities in the upper Gulf of Thailand[J]. Vegetation History and Archaeobotany, 2018, 27(4):535-549. doi: 10.1007/s00334-017-0651-x
[90] Xia P, Meng X W, Yin P, et al. Eighty-year sedimentary record of heavy metal inputs in the intertidal sediments from the Nanliu River estuary, Beibu Gulf of South China Sea[J]. Environmental Pollution, 2011, 159(1):92-99. doi: 10.1016/j.envpol.2010.09.014
[91] Frederikse T, Landerer F, Caron L, et al. The causes of sea-level rise since 1900[J]. Nature, 2020, 584(7821):393-397. doi: 10.1038/s41586-020-2591-3
[92] 黄雪松, 周惠文, 黄梅丽, 等. 广西近50年来气温、降水气候变化[J]. 广西气象, 2005, 26(4):9-11
HUANG Xuesong, ZHOU Huiwen, HUANG Meili, et al. Guangxi temperature, precipitation climatic change in nearly 50 years[J]. Journal of Guangxi Meteorology, 2005, 26(4):9-11.]
[93] Hamilton S E, Casey D. Creation of a high spatio‐temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC‐21)[J]. Global Ecology and Biogeography, 2016, 25(6):729-738. doi: 10.1111/geb.12449
[94] Jia M M, Wang Z M, Mao D H, et al. Spatial-temporal changes of China’s mangrove forests over the past 50 years: An analysis towards the Sustainable Development Goals (SDGs)[J]. Chinese Science Bulletin, 2021, 66(30):3886-3901. doi: 10.1360/TB-2020-1412
[95] Murillo-Sandoval P J, Fatoyinbo L, Simard M. Mangroves cover change trajectories 1984-2020: the gradual decrease of mangroves in Colombia[J]. Frontiers in Marine Science, 2022, 9:892946. doi: 10.3389/fmars.2022.892946
[96] Wang L, Jia M M, Yin D M, et al. A review of remote sensing for mangrove forests: 1956-2018[J]. Remote Sensing of Environment, 2019, 231:111223. doi: 10.1016/j.rse.2019.111223
[97] Maurya K, Mahajan S, Chaube N. Remote sensing techniques: mapping and monitoring of mangrove ecosystem—a review[J]. Complex & Intelligent Systems, 2021, 7(6):2797-2818.
[98] Goldsmith Y, Broecker W S, Xu H, et al. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(8):1817-1821. doi: 10.1073/pnas.1616708114
[99] Mendieta K L, Gerber S, Brenner M. Florida wildfires during the Holocene climatic optimum (9000-5000 cal yr BP)[J]. Journal of Paleolimnology, 2018, 60(1):51-66. doi: 10.1007/s10933-018-0023-2
[100] 相文玺, 王慧, 李文善, 等. 2021年中国沿海海平面变化及影响状况[J]. 气候变化研究进展, 2022, 18(4):516-522
XIANG Wenxi, WANG Hui, LI Wenshan, et al. Coastal sea level change and impacts in China: the state of 2021[J]. Climate Change Research, 2022, 18(4):516-522.]
[101] Bellprat O, Guemas V, Doblas-reyes F, et al. Towards reliable extreme weather and climate event attribution[J]. Nature Communications, 2019, 10(1):1732. doi: 10.1038/s41467-019-09729-2
[102] Yu K F, Zhao J X, Liu T S, et al. High-frequency winter cooling and reef coral mortality during the Holocene climatic optimum[J]. Earth and Planetary Science Letters, 2004, 224(1-2):143-155. doi: 10.1016/j.jpgl.2004.04.036
-