CO2海底咸水层封存波及范围地震监测方法研究:以Sleipner CCS项目为例

彭文睿, 邢磊, 李倩倩, 王旭. CO2海底咸水层封存波及范围地震监测方法研究:以Sleipner CCS项目为例[J]. 海洋地质与第四纪地质. doi: 10.16562/j.cnki.0256-1492.2024040401
引用本文: 彭文睿, 邢磊, 李倩倩, 王旭. CO2海底咸水层封存波及范围地震监测方法研究:以Sleipner CCS项目为例[J]. 海洋地质与第四纪地质. doi: 10.16562/j.cnki.0256-1492.2024040401
PENG Wenrui, XING Lei, LI Qianqian, WANG Xu. On seismic monitoring of the scope of CO2 storage in the seabed saline aquifers: Taking the Sleipner CCS project as an example[J]. Marine Geology & Quaternary Geology. doi: 10.16562/j.cnki.0256-1492.2024040401
Citation: PENG Wenrui, XING Lei, LI Qianqian, WANG Xu. On seismic monitoring of the scope of CO2 storage in the seabed saline aquifers: Taking the Sleipner CCS project as an example[J]. Marine Geology & Quaternary Geology. doi: 10.16562/j.cnki.0256-1492.2024040401

CO2海底咸水层封存波及范围地震监测方法研究:以Sleipner CCS项目为例

  • 基金项目: 中央高校基本科研业务费专项(202261021,202262008);青岛市科技惠民示范专项项目(23-2-8-cspz-5-nsh);青岛新能源山东省实验室开放基金项目(QNESLOP202304)
详细信息
    作者简介: 彭文睿(1999—),女,硕士研究生,研究方向为海洋地震勘探,E-mail:pwr@stu.ouc.edu.cn
    通讯作者: 李倩倩(1985—),女,博士研究生,主要从事海洋地质研究,E-mail:lqqbqt@163.com
  • 中图分类号: P736

On seismic monitoring of the scope of CO2 storage in the seabed saline aquifers: Taking the Sleipner CCS project as an example

More Information
  • 咸水层封存占CO2封存潜力的98%,过去针对CO2海底咸水层波及范围四维地震监测的研究多是通过时延地震资料之间的差异性进行定性分析,缺少测井资料的约束。本文基于Sleipner咸水层CO2封存项目采集的测井和四维地震资料,对CO2海底咸水层封存波及范围地震监测方法进行研究。通过岩石物理建模,应用井控地震属性分析技术研究CO2注入过程中CO2-盐水两相介质变化引起的各向异性响应特征,优选对CO2饱和度变化敏感的地震属性,通过地震正反演相结合的多属性分析实现对时移CO2咸水层封存波及范围监测。研究发现随着CO2饱和度的增加,饱和岩石的体积模量、体积密度、纵波速度和横波速度均有所下降,正演模拟结果中总体振幅升高,且随着CO2注入量的增加,其振幅变化幅度减小,均方根振幅属性对CO2饱和度变化最为敏感。在注入期间,CO2在层内主要沿SSW-NNE运移,并在构造高部位聚集;垂向上,CO2从注入点向上层运移,下层达到最大波及范围的时间早于上层,结合储层性质和构造解释结果,CO2在储层内的波及范围主要受各项异性渗透率和构造高低控制。

  • 加载中
  • 图 1  Sleipner项目CO2封存点及Utsira地层注入示意图[21]

    Figure 1. 

    图 2  CO2日均注入体积及累计注入量

    Figure 2. 

    图 3  Utsira储层区域剖面[27]

    Figure 3. 

    图 4  15/9-13井GR测井曲线图(a)及2010年Inline 187地震剖面(b)

    Figure 4. 

    图 5  15/9-13井砂泥岩速度分析图

    Figure 5. 

    图 6  温度、压力、CO2密度随深度的变化曲线[27]

    Figure 6. 

    图 7  四维地震剖面对比显示3个可能的CO2羽流烟囱

    Figure 7. 

    图 8  不同CO2饱和度的纵波(a)及横波(b)速度曲线对比

    Figure 8. 

    图 9  随CO2饱和度升高纵横波均方根速度变化趋势

    Figure 9. 

    图 10  不同CO2饱和度的地震记录

    Figure 10. 

    图 11  不同CO2饱和度均方根振幅属性(a)及均方根振幅属性差(b)

    Figure 11. 

    图 12  不同CO2饱和度瞬时频率属性(a)及瞬时频率属性差(b)

    Figure 12. 

    图 13  不同CO2饱和度瞬时相位属性(a)及 瞬时相位属性差(b)

    Figure 13. 

    图 14  不同CO2饱和度瞬时Q值属性(a)及瞬时相位属性差(b)

    Figure 14. 

    图 15  解释层位Xline 1164

    Figure 15. 

    图 16  构造解释结果

    Figure 16. 

    图 17  Sleipner咸水层封存第5层四维地震均方根振幅属性

    Figure 17. 

    图 18  挪威Sleipner咸水层封存项目CO2平面波及范围四维地震属性预测结果

    Figure 18. 

    表 1  15/9-A-16井不同深度岩芯样本主要岩石和碎屑成分百分比

    Table 1.  Percentage of major rock and debris compositions in core samples from Wells 15/9-16 at different depths

    碎屑含量/%
    850~860 m 890~900 m 10001010 m
    石英 50.7 66.7 76.7
    长石 7.3 3.7 2.7
    方解石 18 17 7.7
    页岩 4.3 1 4.7
    下载: 导出CSV

    表 2  储层中矿物成分和流体的弹性模量及密度

    Table 2.  Elastic modulus and density of mineral components and fluids in reservoirs

    体积模量/GPa 剪切模量/GPa 密度/(g/cm3)
    石英 37.00 44.00 2.65
    长石 37.50 15.00 2.70
    方解石 76.80 32.00 2.71
    盐水 2.30 0 1.03
    CO2 0.075 0 0.70
    下载: 导出CSV
  • [1]

    IPCC. 2023: Summary for policymakers[C]//Core Writing Team, Lee H, Romero J. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC, 2023:1-34.

    [2]

    Herzog H, Eliasson B, Kaarstad O. Capturing greenhouse gases[J]. Scientific American, 2000, 282(2):72-79. doi: 10.1038/scientificamerican0200-72

    [3]

    Bachu S. CO2 storage in geological media: Role, means, status and barriers to deployment[J]. Progress in Energy and Combustion Science, 2008, 34(2):254-273. doi: 10.1016/j.pecs.2007.10.001

    [4]

    赵改善. 二氧化碳地质封存地球物理监测: 现状、挑战与未来发展[J]. 石油物探, 2023, 62(2):194-211 doi: 10.3969/j.issn.1000-1441.2023.02.002

    ZHAO Gaishan. Geophysical monitoring for geological carbon sequestration: present status, challenges, and future developments[J]. Geophysical Prospecting for Petroleum, 2023, 62(2):194-211.] doi: 10.3969/j.issn.1000-1441.2023.02.002

    [5]

    张国良, 战明君. 板块俯冲和岩浆过程中碳循环及深部碳储库[J]. 海洋地质与第四纪地质, 2019, 39(5):36-45

    ZHANG Guoliang, ZHAN Mingjun. Carbon cycle and deep carbon storage during subduction and magamatic processes[J]. Marine Geology & Quaternary Geology, 2019, 39(5):36-45.]

    [6]

    李海燕, 彭仕宓, 许明阳, 等. CO2在深部咸水层中的埋存机制研究进展[J]. 科技导报, 2013, 31(2):72-79 doi: 10.3981/j.issn.1000-7857.2013.02.010

    LI Haiyan, PENG Shimi, XU Mingyang, et al. CO2 storage mechanism in deep saline aquifers[J]. Science and Technology Review, 2013, 31(2):72-79.] doi: 10.3981/j.issn.1000-7857.2013.02.010

    [7]

    Falcon-Suarez I, Papageorgiou G, Chadwick A, et al. CO2-brine flow-through on an Utsira Sand core sample: experimental and modelling. Implications for the Sleipner storage field[J]. International Journal of Greenhouse Gas Control, 2018, 68:236-246. doi: 10.1016/j.ijggc.2017.11.019

    [8]

    Williams G A, Chadwick R A. Influence of reservoir-scale heterogeneities on the growth, evolution and migration of a CO2 plume at the Sleipner Field, Norwegian North Sea[J]. International Journal of Greenhouse Gas Control, 2021, 106:103260. doi: 10.1016/j.ijggc.2021.103260

    [9]

    李福来, 刘立, 曲希玉, 等. CO2注入砂岩后的典型自生矿物组合[J]. 海洋地质与第四纪地质, 2009, 29(6):103-109

    LI Fulai, LIU Li, QU Xiyu, et al. Typical authigenic mineral assemblages after CO2 injected into sandstone[J]. Marine Geology & Quaternary Geology, 2009, 29(6):103-109.]

    [10]

    Zhao M X, Liu H S, Wang W Q, et al. Numerical study on mechanical properties and instability characteristics of sandy reservoir containing hydrate interlayer[J]. Ocean Engineering, 2023, 286:115694. doi: 10.1016/j.oceaneng.2023.115694

    [11]

    Liu H W, Liu H S, Li Q Q, et al. A first-arrival wave recognition method based on the optimal dominant energy spectrum[J]. Geophysical Prospecting, 2024, 72(4):1322-1334. doi: 10.1111/1365-2478.13297

    [12]

    Lin H R, Xu J, Xing L, et al. Random noise attenuation of ocean bottom seismometers based on a substep deep denoising autoencoder[J]. Geophysical Prospecting, 2024, 72(4):1428-1441. doi: 10.1111/1365-2478.13302

    [13]

    Xing L, Li Y, Li Q Q, et al. Prediction of shale gas pressure based on multi‐channel seismic inversion in Fuling[J]. Acta Geologica Sinica‐English Edition, 2022, 96(4):1237-1245. doi: 10.1111/1755-6724.14778

    [14]

    Sambo C, Iferobia C C, Babasafari A A, et al. The role of time lapse (4D) seismic technology as reservoir monitoring and surveillance tool: A comprehensive review[J]. Journal of Natural Gas Science and Engineering, 2020, 80:103312. doi: 10.1016/j.jngse.2020.103312

    [15]

    Huang F, Bergmann P, Juhlin C, et al. The first post‐injection seismic monitor survey at the Ketzin pilot CO2 storage site: results from time‐lapse analysis[J]. Geophysical Prospecting, 2018, 66(1):62-84. doi: 10.1111/1365-2478.12497

    [16]

    Chadwick R A, Noy D J. History-matching flow simulations and time-lapse seismic data from the Sleipner CO2 plume[M]//Vining B A, Pickering S C. Petroleum Geology: From Mature Basins to New Frontiers – Proceedings of the 7th Petroleum Geology Conference. London: The Geological Society, 2010:1171-1182.

    [17]

    Roach L A N, White D J. Evolution of a deep CO2 plume from time-lapse seismic imaging at the Aquistore storage site, Saskatchewan, Canada[J]. International Journal of Greenhouse Gas Control, 2018, 74:79-86. doi: 10.1016/j.ijggc.2018.04.025

    [18]

    Fawad M, Mondol N H. Monitoring geological storage of CO2: A new approach[J]. Scientific Reports, 2021, 11(1):5942. doi: 10.1038/s41598-021-85346-8

    [19]

    Cavanagh A J, Haszeldine R S. The Sleipner storage site: Capillary flow modeling of a layered CO2 plume requires fractured shale barriers within the Utsira Formation[J]. International Journal of Greenhouse Gas Control, 2014, 21:101-112. doi: 10.1016/j.ijggc.2013.11.017

    [20]

    Wierzchowska M, Alnes H, Oukili J, et al. Broadband processing improves 4D repeatability and resolution at the Sleipner CO2 storage project, North Sea[C]//82nd EAGE Annual Conference & Exhibition. Amsterdam: European Association of Geoscientists & Engineers, 2021:1-5.

    [21]

    Arts R, Brevik I, Eiken O, et al. Geophysical methods for monitoring marine aquifer CO2 storage–Sleipner experiences[C]//5th Int Conf. on Greenhouse Gas Control Technologies. Australia: Cairns, 2000.

    [22]

    Chadwick R A, Arts R, Eiken O. 4D seismic quantification of a growing CO2 plume at Sleipner, North Sea[M]//Doré A G, Vining B A. Petroleum Geology: North-West Europe and Global Perspectives—Proceedings of the 6th Petroleum Geology Conference. London: The Geological Society, 2005:1385-1399.

    [23]

    Pelemo-Daniels D, Nwafor B O, Stewart R R. CO2 Injection monitoring: enhancing time-lapse seismic inversion for injected volume estimation in the Utsira Formation, Sleipner Field, North Sea[J]. Journal of Marine Science and Engineering, 2023, 11(12):2275. doi: 10.3390/jmse11122275

    [24]

    Pelemo-Daniels D, Stewart R R. Petrophysical property prediction from seismic inversion attributes using rock physics and machine learning: Volve Field, North Sea[J]. Applied Sciences, 2024, 14(4):1345. doi: 10.3390/app14041345

    [25]

    Baklid A, Korbol R, Owren G. Sleipner vest CO2 disposal, CO2 injection into a shallow underground aquifer[C]//SPE Annual Technical Conference and Exhibition. Colorado: SPE, 1996.

    [26]

    Chadwick R A, Holloway S, Kirby G A, et al. The Utsira Sand, Central North Sea–an assessment of its potential for regional CO2 disposal[C]//Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies (GHGT-5). Collingwood: CSIRO Publishing, 2000: 349-354.

    [27]

    Zweigel P, Arts R, Lothe A E, et al. Reservoir geology of the Utsira Formation at the first industrial-scale underground CO2 storage site (Sleipner area, North Sea)[J]. Geological Society, London, Special Publications, 2004, 233:165-180. doi: 10.1144/GSL.SP.2004.233.01.11

    [28]

    Boait F C, White N J, Bickle M J, et al. Spatial and temporal evolution of injected CO2 at the Sleipner Field, North Sea[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B3):B03309.

    [29]

    Mavko G, Mukerji T, Dvorkin J. The Rock Physics Handbook[M]. California: Cambridge University Press, 2020.

    [30]

    Furre A K, Eiken O. Dual sensor streamer technology used in Sleipner CO2 injection monitoring[J]. Geophysical Prospecting, 2014, 62(5):1075-1088. doi: 10.1111/1365-2478.12120

    [31]

    Lindeberg E. Calculation of thermodynamic properties of CO2, CH4, H2O and their mixtures also including salt with the Excel macro “CO2 Thermodynamics”[J]. SINTEF Report, 2013.

    [32]

    Ghaderi A, Landrø M. Estimation of thickness and velocity changes of injected carbon dioxide layers from prestack time-lapse seismic data[J]. Geophysics, 2009, 74(2):O17-O28. doi: 10.1190/1.3054659

    [33]

    Williams G A, Chadwick R A. An improved history-match for layer spreading within the Sleipner plume including thermal propagation effects[J]. Energy Procedia, 2017, 114:2856-2870. doi: 10.1016/j.egypro.2017.03.1406

    [34]

    Chadwick R A, Holloway S, Brook M S, et al. The case for underground CO2 sequestration in northern Europe[J]. Geological Society, London, Special Publications, 2004, 233(1):17-28. doi: 10.1144/GSL.SP.2004.233.01.03

    [35]

    Xing L, Liu X Q, Liu H S, et al. Research on the construction of a petrophysical model of a heterogeneous reservoir in the hydrate test area in the Shenhu area of the South China Sea (SCS)[J]. Geofluids, 2021, 2021(1):5586118.

    [36]

    Xu S Y, White R E. A new velocity model for clay‐sand mixtures[J]. Geophysical Prospecting, 1995, 43(1):91-118. doi: 10.1111/j.1365-2478.1995.tb00126.x

    [37]

    Kuster G T, Toksöz M N. Velocity and attenuation of seismic waves in two-phase media: Part I. Theoretical formulations[J]. Geophysics, 1974, 39(5):587-606. doi: 10.1190/1.1440450

    [38]

    Voigt W. Lehrbuch der Kristallphysik: (Mit Ausschluss der Kristalloptik)[M]. London: B. G. Teubner, 1910:253-253.

    [39]

    Hill R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society. Section A, 1952, 65(5):349-354. doi: 10.1088/0370-1298/65/5/307

    [40]

    Brie A, Pampuri F, Marsala A F, et al. Shear sonic interpretation in gas-bearing sands[C]//SPE Annual Technical Conference and Exhibition. Texas: SPE, 1995.

    [41]

    沙志彬, 梁金强, 郑涛, 等. 地震属性在天然气水合物预测中的应用[J]. 海洋地质与第四纪地质, 2013, 33(5):185-192

    SHA Zhibin, LIANG Jinqiang, ZHENG Tao, et al. The application of seismic attributes to the prediction of gas hydrates[J]. Marine Geology & Quaternary Geology, 2013, 33(5):185-192.]

    [42]

    靳佳澎, 王秀娟, 陈端新, 等. 基于测井与地震多属性分析神狐海域天然气水合物分布特征[J]. 海洋地质与第四纪地质, 2017, 37(5):122-130

    JIN Jiapeng, WANG Xiujuan, CHEN Duanxin, et al. Distribution of gas hydrate in Shenhu area: identified with well log and seismic multi-attributes[J]. Marine Geology & Quaternary Geology, 2017, 37(5):122-130.]

    [43]

    李旭彤, 吴志强, 张训华. 地震属性分析在南黄海盆地北部坳陷白垩系油气地质特征研究中的应用[J]. 海洋地质与第四纪地质, 2015, 35(6):119-126

    LI Xutong, WU Zhiqiang, ZHANG Xunhua. Petroleum Geology of the Cretaceous in the northern Depression of South Yellow Sea Basin: evidence from seismic attribute analysis[J]. Marine Geology & Quaternary Geology, 2015, 35(6):119-126.]

  • 加载中

(18)

(2)

计量
  • 文章访问数:  158
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2024-04-04
修回日期:  2024-05-08
录用日期:  2024-05-08
网络出版日期:  2025-01-17

目录