中新世中低纬度海道变化对大西洋经圈翻转流和气候变化影响的模拟研究

魏吉林, 刘海龙, 郑伟鹏, 林鹏飞, 赵彦. 中新世中低纬度海道变化对大西洋经圈翻转流和气候变化影响的模拟研究[J]. 海洋地质与第四纪地质, 2024, 44(4): 32-40. doi: 10.16562/j.cnki.0256-1492.2024060701
引用本文: 魏吉林, 刘海龙, 郑伟鹏, 林鹏飞, 赵彦. 中新世中低纬度海道变化对大西洋经圈翻转流和气候变化影响的模拟研究[J]. 海洋地质与第四纪地质, 2024, 44(4): 32-40. doi: 10.16562/j.cnki.0256-1492.2024060701
WEI Jilin, LIU Hailong, ZHENG Weipeng, LIN Pengfei, ZHAO Yan. Simulation of the mid-to-low latitudes seaways changes and the impact on the Atlantic Meridional Overturning Circulation and climate during the Miocene[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 32-40. doi: 10.16562/j.cnki.0256-1492.2024060701
Citation: WEI Jilin, LIU Hailong, ZHENG Weipeng, LIN Pengfei, ZHAO Yan. Simulation of the mid-to-low latitudes seaways changes and the impact on the Atlantic Meridional Overturning Circulation and climate during the Miocene[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 32-40. doi: 10.16562/j.cnki.0256-1492.2024060701

中新世中低纬度海道变化对大西洋经圈翻转流和气候变化影响的模拟研究

  • 基金项目: 国家重点研发计划项目课题“关键构造事件影响气候转型的数值模拟和机理分析”(2023YFF0803904)
详细信息
    作者简介: 魏吉林(1995—),男,博士,主要从事古气候数值模拟研究,E-mail: weijilin@mail.iap.ac.cn
    通讯作者: 郑伟鹏(1980—),男,正高级工程师,主要从事古气候数值模拟研究,E-mail: zhengwp@mail.iap.ac.cn
  • 中图分类号: P736

Simulation of the mid-to-low latitudes seaways changes and the impact on the Atlantic Meridional Overturning Circulation and climate during the Miocene

More Information
  • 自中中新世以来,特提斯海道和巴拿马海道的开合状态可能直接影响了大西洋经圈翻转流(AMOC)的强度和空间形态演变。但是,当前对这两处关键的中低纬度海道与AMOC之间联系的系统性研究较少。本研究基于中中新世时期的边界条件,利用耦合气候模式开展了中中新世气候模拟试验,以及特提斯海道和巴拿马海道先后关闭的敏感性试验。模拟结果显示,开放的特提斯海道和巴拿马海道分别为热带印度洋和太平洋海水进入北大西洋提供了“捷径”,同时分别向北大西洋输运高盐度海水和低盐度海水,对AMOC强度的变化起着相反的作用。特提斯海道开放增强了AMOC,这抵消了巴拿马海道开放导致的对AMOC的减弱。这两处中低纬度海道的关闭均能引起全球海表温度的南北不对称响应,分界线大致位于巴拿马海道所在纬度。本研究表明,只有特提斯海道和巴拿马海道关闭时,才会形成现代意义上的AMOC空间结构,因此这两处中低纬度海道的关闭时间对研究AMOC演变具有重要意义。

  • 加载中
  • 图 1  全球热盐环流示意图 [3]

    Figure 1. 

    图 2  MMCO地形

    Figure 2. 

    图 3  各试验模拟的北大西洋经圈流函数

    Figure 3. 

    图 4  大西洋地区相关断面的上层1380 m的海水体积输送垂直廓线

    Figure 4. 

    图 5  年平均海表温度和海表盐度差异

    Figure 5. 

    表 1  试验设计

    Table 1.  The experiment design.

    试验 PI MMCO_400 MMCO_B1 MMCO_B2
    CO2浓度/10−6 280 400 400 400
    陆地海拔 现代 中中新世 中中新世 中中新世
    海洋水深 现代 中中新世 中中新世 中中新世
    特提斯海道 关闭 开放 关闭 关闭
    巴拿马海道 关闭 开放 开放 关闭
    陆地植被 现代 中中新世 中中新世 中中新世
    偏心率 0.016724 与PI相同
    轨道倾角 23.446°
    岁差 102.04°
    下载: 导出CSV

    表 2  各试验的北大西洋淡水收支中的各项

    Table 2.  The freshwater budget of the North Atlantic in each experiment /(109 kg/s)

    参数 PI MMCO_400 MMCO_B1 MMCO_B2
    $ \dfrac{\mathrm{d}\mathrm{F}\mathrm{W}\mathrm{C}}{\mathrm{d}t} $ −0.092 −0.095 −0.067 −0.086
    FWF 0.175 −0.265 −0.215 −0.262
    FWTE −0.015 −0.392 −0.161 −0.163
    FWTN 0.026 0.084 0.066 0.076
    FWTS −0.230 0.410 0.123 0.163
    FWres −0.048 0.068 0.120 0.100
    AMOC强度 45.06 57.73 51.46 54.97
    FWTS 0-1000m −0.947 −0.617 −0.611 −1.160
    FWTS 1000−5000m 0.717 1.027 0.734 1.323
    注:淡水含量的时间倾向($ \dfrac{\mathrm{d}\mathrm{F}\mathrm{W}\mathrm{C}}{\mathrm{d}t} $)、淡水通量(FWF)、东边界(直布罗陀海峡)处的淡水输运(FWTE)、南北边界处的淡水输运(FWTS和FWTN)和残差项(FWres)。AMOC强度(北大西洋500 m以下的经圈流函数最大值,单位:Sv)和北大西洋南边界上层1000 m和1000 m至海底的淡水输运。
    下载: 导出CSV
  • [1]

    Broecker W S. The great ocean conveyor[J]. Oceanography, 1991, 4(2):79-89. doi: 10.5670/oceanog.1991.07

    [2]

    Speich S, Blanke B, Madec G. Warm and cold water routes of an O. G. C. M. thermohaline conveyor belt[J]. Geophysical Research Letters, 2001, 28(2):311-314. doi: 10.1029/2000GL011748

    [3]

    Gordon A L. Interocean exchange of thermocline water[J]. Journal of Geophysical Research: Oceans, 1986, 91(C4):5037-5046. doi: 10.1029/JC091iC04p05037

    [4]

    Coxall H K, Huck C E, Huber M, et al. Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation[J]. Nature Geoscience, 2018, 11(3):190-196. doi: 10.1038/s41561-018-0069-9

    [5]

    Hague A M, Thomas D J, Huber M, et al. Convection of North Pacific deep water during the early Cenozoic[J]. Geology, 2012, 40(6):527-530. doi: 10.1130/G32886.1

    [6]

    McKinley C C, Thomas D J, Levay L J, et al. Nd isotopic structure of the Pacific Ocean 40-10 Ma, and evidence for the reorganization of deep North Pacific Ocean circulation between 36 and 25 Ma[J]. Earth and Planetary Science Letters, 2019, 521:139-149. doi: 10.1016/j.jpgl.2019.06.009

    [7]

    Thomas D J, Korty R, Huber M, et al. Nd isotopic structure of the Pacific Ocean 70-30 Ma and numerical evidence for vigorous ocean circulation and ocean heat transport in a greenhouse world[J]. Paleoceanography, 2014, 29(5):454-469. doi: 10.1002/2013PA002535

    [8]

    Frigola A, Prange M, Schulz M. Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0)[J]. Geoscientific Model Development, 2018, 11(4):1607-1626. doi: 10.5194/gmd-11-1607-2018

    [9]

    Herold N, Seton M, Müller R D, et al. Middle Miocene tectonic boundary conditions for use in climate models[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(10):Q10009.

    [10]

    Steinthorsdottir M, Coxall H K, de Boer A M, et al. The miocene: the future of the past[J]. Paleoceanography and Paleoclimatology, 2021, 36(4):e2020PA004037. doi: 10.1029/2020PA004037

    [11]

    Butzin M, Lohmann G, Bickert T. Miocene ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records[J]. Paleoceanography, 2011, 26(1):PA1203.

    [12]

    Lunt D J, Valdes P J, Haywood A, et al. Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation[J]. Climate Dynamics, 2008, 30(1):1-18.

    [13]

    Rögl F. Mediterranean and paratethys. Facts and hypotheses of an Oligocene to Miocene Paleogeography (short overview)[J]. Geologica Carpathica, 1999, 50(4):339-349.

    [14]

    Torfstein A, Steinberg J. The Oligo-Miocene closure of the Tethys Ocean and evolution of the proto-Mediterranean Sea[J]. Scientific Reports, 2020, 10(1):13817. doi: 10.1038/s41598-020-70652-4

    [15]

    Hamon N, Sepulchre P, Lefebvre V, et al. The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma)[J]. Climate of the Past, 2013, 9(6):2687-2702. doi: 10.5194/cp-9-2687-2013

    [16]

    Frigola A, Prange M, Schulz M. A dynamic ocean driven by changes in CO2 and Antarctic ice-sheet in the middle Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 579:110591. doi: 10.1016/j.palaeo.2021.110591

    [17]

    Herold N, Huber M, Müller R D. Modeling the miocene climatic optimum. Part I: land and atmosphere[J]. Journal of Climate, 2011, 24(24):6353-6372. doi: 10.1175/2011JCLI4035.1

    [18]

    Knorr G, Lohmann G. Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition[J]. Nature Geoscience, 2014, 7(5):376-381. doi: 10.1038/ngeo2119

    [19]

    Krapp M, Jungclaus J H. The Middle Miocene climate as modelled in an atmosphere-ocean-biosphere model[J]. Climate of the Past, 2011, 7(4):1169-1188. doi: 10.5194/cp-7-1169-2011

    [20]

    Nisancioglu K H, Raymo M E, Stone P H. Reorganization of Miocene deep water circulation in response to the shoaling of the Central American Seaway[J]. Paleoceanography, 2003, 18(1):1006.

    [21]

    Steph S, Tiedemann R, Prange M, et al. Changes in Caribbean surface hydrography during the Pliocene shoaling of the Central American Seaway[J]. Paleoceanography, 2006, 21(4):PA4221.

    [22]

    Wei J L, Liu H L, Zhao Y, et al. Simulation of the climate and ocean circulations in the Middle Miocene Climate Optimum by a coupled model FGOALS-g3[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 617:111509. doi: 10.1016/j.palaeo.2023.111509

    [23]

    Kirillova V, Osborne A H, Störling T, et al. Miocene restriction of the Pacific-North Atlantic throughflow strengthened Atlantic overturning circulation[J]. Nature Communications, 2019, 10(1):4025. doi: 10.1038/s41467-019-12034-7

    [24]

    Li L J, Yu Y Q, Tang Y L, et al. The flexible global ocean-atmosphere-land system model grid-point version 3 (FGOALS-g3): description and evaluation[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(9):e2019MS002012. doi: 10.1029/2019MS002012

    [25]

    Lin P F, Zhao B W, Wei J L, et al. The super-large ensemble experiments of CAS FGOALS-g3[J]. Advances in Atmospheric Sciences, 2022, 39(10):1746-1765. doi: 10.1007/s00376-022-1439-1

    [26]

    Zheng W P, Yu Y Q, Luan Y H, et al. CAS-FGOALS datasets for the two interglacial epochs of the holocene and the last interglacial in PMIP4[J]. Advances in Atmospheric Sciences, 2020, 37(10):1034-1044. doi: 10.1007/s00376-020-9290-8

    [27]

    Li L J, Dong L, Xie J B, et al. The GAMIL3: model description and evaluation[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(15):e2020JD032574. doi: 10.1029/2020JD032574

    [28]

    Lin P F, Yu Z P, Liu H L, et al. LICOM model datasets for the CMIP6 ocean model intercomparison project[J]. Advances in Atmospheric Sciences, 2020, 37(3):239-249. doi: 10.1007/s00376-019-9208-5

    [29]

    Xie Z H, Wang L H, Wang Y, et al. Land surface model CAS-LSM: model description and evaluation[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(12):e2020MS002339. doi: 10.1029/2020MS002339

    [30]

    Hunke E C, Lipscomb W H. CICE: the Los Alamos sea ice model documentation and software user's manual version 4.1 LA-CC-06-012[R]. Los Alamos: Los Alamos National Laboratory, 2010.

    [31]

    Craig A P, Vertenstein M, Jacob R. A new flexible coupler for earth system modeling developed for CCSM4 and CESM1[J]. The International Journal of High Performance Computing Applications, 2012, 26(1):31-42. doi: 10.1177/1094342011428141

    [32]

    Eyring V, Bony S, Meehl G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5):1937-1958. doi: 10.5194/gmd-9-1937-2016

    [33]

    Beerling D J, Fox A, Anderson C W. Quantitative uncertainty analyses of ancient atmospheric CO2 estimates from fossil leaves[J]. American Journal of Science, 2009, 309(9):775-787. doi: 10.2475/09.2009.01

    [34]

    Burls N J, Bradshaw C D, De Boer A M, et al. Simulating miocene warmth: insights from an opportunistic multi-model ensemble (MioMIP1)[J]. Paleoceanography and Paleoclimatology, 2021, 36(5):e2020PA004054. doi: 10.1029/2020PA004054

    [35]

    Ji S C, Nie J S, Lechler A, et al. A symmetrical CO2 peak and asymmetrical climate change during the middle Miocene[J]. Earth and Planetary Science Letters, 2018, 499:134-144. doi: 10.1016/j.jpgl.2018.07.011

    [36]

    Steinthorsdottir M, Jardine P E, Rember W C. Near-future pCO2 during the hot miocene climatic optimum[J]. Paleoceanography and Paleoclimatology, 2021, 36(1):e2020PA003900. doi: 10.1029/2020PA003900

    [37]

    Stoll H M, Guitian J, Hernandez-Almeida I, et al. Upregulation of phytoplankton carbon concentrating mechanisms during low CO2 glacial periods and implications for the phytoplankton pCO2 proxy[J]. Quaternary Science Reviews, 2019, 208:1-20. doi: 10.1016/j.quascirev.2019.01.012

    [38]

    Allen M B, Armstrong H A. Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265(1-2):52-58. doi: 10.1016/j.palaeo.2008.04.021

    [39]

    Sun J M, Sheykh M, Ahmadi N, et al. Permanent closure of the Tethyan Seaway in the northwestern Iranian Plateau driven by cyclic sea-level fluctuations in the late Middle Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 564:110172. doi: 10.1016/j.palaeo.2020.110172

    [40]

    Hüsing S K, Zachariasse W J, van Hinsbergen D J J, et al. Oligocene-Miocene basin evolution in SE Anatolia, Turkey: constraints on the closure of the eastern Tethys gateway[J]. Geological Society, London, Special Publications, 2009, 311(1):107-132. doi: 10.1144/SP311.4

    [41]

    Bialik O M, Frank M, Betzler C, et al. Two-step closure of the Miocene Indian Ocean Gateway to the Mediterranean[J]. Scientific Reports, 2019, 9(1):8842. doi: 10.1038/s41598-019-45308-7

    [42]

    Brierley C M, Fedorov A V. Comparing the impacts of Miocene-Pliocene changes in inter-ocean gateways on climate: central American Seaway, Bering Strait, and Indonesia[J]. Earth and Planetary Science Letters, 2016, 444:116-130. doi: 10.1016/j.jpgl.2016.03.010

    [43]

    Hu A X, Meehl G A, Han W Q, et al. Effects of the Bering Strait closure on AMOC and global climate under different background climates[J]. Progress in Oceanography, 2015, 132:174-196. doi: 10.1016/j.pocean.2014.02.004

    [44]

    Steele M, Morley R, Ermold W. PHC: a global ocean hydrography with a high-quality Arctic Ocean[J]. Journal of Climate, 2001, 14(9):2079-2087. doi: 10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2

    [45]

    de Vries P, Weber S L. The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation[J]. Geophysical Research Letters, 2005, 32(9):L09606.

    [46]

    Deshayes J, Curry R, Msadek R. CMIP5 model intercomparison of freshwater budget and circulation in the North Atlantic[J]. Journal of Climate, 2014, 27(9):3298-3317. doi: 10.1175/JCLI-D-12-00700.1

    [47]

    Jüling A, Zhang X, Castellana D, et al. The Atlantic's freshwater budget under climate change in the Community Earth System Model with strongly eddying oceans[J]. Ocean Science, 2021, 17(3):729-754. doi: 10.5194/os-17-729-2021

  • 加载中

(5)

(2)

计量
  • 文章访问数:  797
  • PDF下载数:  60
  • 施引文献:  0
出版历程
收稿日期:  2024-06-07
修回日期:  2024-07-26
刊出日期:  2024-08-28

目录