西太平洋洋流系统对海平面高度变化的响应:基于区域海洋模式(ROMS)试验

李振, 覃国金, 朱广坤, 李兴锐, 张彧瑞. 西太平洋洋流系统对海平面高度变化的响应:基于区域海洋模式(ROMS)试验[J]. 海洋地质与第四纪地质, 2025, 45(2): 12-21. doi: 10.16562/j.cnki.0256-1492.2024061301
引用本文: 李振, 覃国金, 朱广坤, 李兴锐, 张彧瑞. 西太平洋洋流系统对海平面高度变化的响应:基于区域海洋模式(ROMS)试验[J]. 海洋地质与第四纪地质, 2025, 45(2): 12-21. doi: 10.16562/j.cnki.0256-1492.2024061301
LI Zhen, QIN Guojin, ZHU Guangkun, LI Xingrui, ZHANG Yurui. The response of the Western Pacific to high-and low-sea levels: based on ROMS experiments[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 12-21. doi: 10.16562/j.cnki.0256-1492.2024061301
Citation: LI Zhen, QIN Guojin, ZHU Guangkun, LI Xingrui, ZHANG Yurui. The response of the Western Pacific to high-and low-sea levels: based on ROMS experiments[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 12-21. doi: 10.16562/j.cnki.0256-1492.2024061301

西太平洋洋流系统对海平面高度变化的响应:基于区域海洋模式(ROMS)试验

  • 基金项目: 国家重点研发计划项目“新近纪晚期印太暖池区海道闭合与高纬冰盖演变的耦合机制研究”(2023YFF0803900);厦门市科技局自然科学基金项目(3502Z20227021)
详细信息
    作者简介: 李振(1999—),男,硕士研究生,海洋地质专业,E-mail:22320231151469@stu.xmu.edu.cn
    通讯作者: 张彧瑞(1988—),女,副教授,主要从事古海洋、古气候研究,E-mail:yuruizhang@xmu.edu.cn
  • 中图分类号: P736

The response of the Western Pacific to high-and low-sea levels: based on ROMS experiments

More Information
  • 地质历史时期海平面变化叠加在板块运动之上,引起海岸线进退、沿海和陆架区域出露或淹没,从而影响全球大洋环流格局和区域海洋系统。本研究聚焦西太平洋对极端海平面升降的响应,使用区域海洋模式(ROMS)探讨末次盛冰期(LGM)情景下极端低海平面SLdrop120(海平面下降120 m)和全球大陆冰盖融化情况下极端高海平面SLrise65(海平面上升65 m)对该区域温盐格局和主要洋流的影响。研究结果显示,海平面升降对该区域洋流系统有重要非线性影响,而对温盐格局影响主要体现在边缘海或靠近大陆边缘区域,且可以通过贯通性变化来解释这些差异。与现代海平面相比,极端低海平面导致近岸陆架海出露、台湾海峡关闭等,切断了西边界流入侵南海,导致东海的黑潮输运向外海方向移动,主轴断面流量减少。与前人考虑LGM冰期气候态的研究结果相比,此减少趋势说明LGM时期海平面降低和冰期气候驱动的效应相抵消。而高海平面则引起岸线向陆推移,渤海等近海海域面积增加、台湾海峡拓宽,使得西边界流向西拓展,对黑潮主流结构有分流作用。关于控制太平洋和印度洋交换的印尼贯穿流ITF,其西支路径因水深较浅而对海平面变化响应更明显。在极端低海平面情景下,卡里马塔海峡关闭、ITF的西支被切断,来自西支的淡水阻塞效应因此消失,这导致通过望加锡海峡的流量反而增加了2.31 Sv(1Sv=1×106 m3/s);相反,在高海平面情景下,西侧的卡里马塔海峡和望加锡海峡均变宽,同时托雷斯海峡打开,使得进入印度洋的流量比现在海平面情景增大。这些结果表明,西太平洋黑潮和印尼贯穿流对海岸线变迁的响应呈非线性规律,并强调了地质历史演化过程中海平面变化对区域洋流的重要作用。

  • 加载中
  • 图 1  西太平洋地形与主要洋流路径

    Figure 1. 

    图 2  ROMS试验中的水深

    Figure 2. 

    图 3  控制试验中SST、SSS、流场和流速结果与SODA同化数据对比

    Figure 3. 

    图 4  3组试验模拟的年平均海表温度(a-c)和盐度(d-f)空间分布

    Figure 4. 

    图 5  试验模拟的黑潮区域表层流场(a-c)和垂向平均流场(d-f)

    Figure 5. 

    图 6  试验模拟的印尼贯穿流表层流场(a-c)和垂向平均流场(d-f)

    Figure 6. 

    表 1  黑潮和印尼贯穿流的关键断面年平均流量 (Sv)

    Table 1.  The annual mean volume transport cross sections (in Sv) relevant to Kuroshio and ITF

    试验 黑潮 印尼贯穿流
    KCPN TS ETC KRS MKS
    SODA 16.32 1.22 21.59 −1.17 −11.02
    HYCOM 11.45 1.29 23.74 −0.54 −11.39
    SLctrl 20.00 0.79 28.17 −3.88 −3.0
    SLrise65 11.70 3.68 22.00 −4.21 −1.32
    SLdrop120 9.82 0 14.80 0 −5.31
    注:KCPN: 黑潮主轴断面, TS: 台湾海峡, ETC:台湾岛东侧海峡, KRS:卡里马塔海峡, MKS: 望加锡海峡。 表中断面流量是通过断面平均流速(图5d-f、 6d-f)乘以断面面积所得,负号表示方向向南或者向西。
    下载: 导出CSV
  • [1]

    Garwood Jr R W. Air-sea interaction and dynamics of the surface mixed layer[J]. Reviews of Geophysics, 1979, 17(7):1507-1524. doi: 10.1029/RG017i007p01507

    [2]

    Wang J, Yuan D L, Zhao X. Impacts of Indonesian Throughflow on seasonal circulation in the equatorial Indian Ocean[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(6):1261-1274. doi: 10.1007/s00343-017-6196-0

    [3]

    Yuan D L, Yin X L, Li X, et al. A Maluku Sea intermediate western boundary current connecting Pacific Ocean circulation to the Indonesian Throughflow[J]. Nature Communications, 2022, 13(1):2093. doi: 10.1038/s41467-022-29617-6

    [4]

    Hogg N G, Johns W E. Western boundary currents[J]. Reviews of Geophysics, 1995, 33(S2):1311-1334. doi: 10.1029/95RG00491

    [5]

    张灿影, 冯志纲, 张晓琨, 等. 黑潮研究进展分析[J]. 世界科技研究与发展, 2017, 39(3):239-249

    ZHANG Canying, FENG Zhigang, ZHANG Xiaokun, et al. Analysis on research progress of kuroshio[J]. World Sci-Tech R& D, 2017, 39(3):239-249.]

    [6]

    Hu D X, Wu L X, Cai W J, et al. Pacific western boundary currents and their roles in climate[J]. Nature, 2015, 522(7556):299-308.

    [7]

    Gordon A L. Interocean exchange of thermocline water[J]. Journal of Geophysical Research: Oceans, 1986, 91(C4):5037-5046. doi: 10.1029/JC091iC04p05037

    [8]

    Qu T D, Kim Y Y, Yaremchuk M, et al. Can Luzon strait transport play a role in conveying the impact of ENSO to the South China Sea?[J]. Journal of Climate, 2004, 17(18):3644-3657. doi: 10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2

    [9]

    Fang G H, Susanto D, Soesilo I, et al. A note on the South China Sea shallow interocean circulation[J]. Advances in Atmospheric Sciences, 2005, 22(6):946-954.

    [10]

    Wajsowicz R C. A relationship between interannual variations in the south pacific wind stress curl, the Indonesian throughflow, and the west pacific warm water pool[J]. Journal of Physical Oceanography, 1994, 24(10):2180-2187. doi: 10.1175/1520-0485(1994)024<2180:ARBIVI>2.0.CO;2

    [11]

    Du Y, Qu T D. Three inflow pathways of the Indonesian throughflow as seen from the simple ocean data assimilation[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2):233-256. doi: 10.1016/j.dynatmoce.2010.04.001

    [12]

    Fang G H, Wei Z X, Choi B H, et al. Interbasin freshwater, heat and salt transport through the boundaries of the East and South China Seas from a variable-grid global ocean circulation model[J]. Science in China Series D: Earth Sciences, 2003, 46(2):149-161. doi: 10.1360/03yd9014

    [13]

    张晶, 魏泽勋, 李淑江, 等. 太平洋—印度洋贯穿流南海分支研究综述[J]. 海洋科学进展, 2014, 32(1):107-120 doi: 10.3969/j.issn.1671-6647.2014.01.013

    ZHANG Jing, WEI Zexun, LI Shujiang, et al. Overviews on studies of the South China Sea branch of the Pacific-Indian Ocean throughflow[J]. Advances in Marine Science, 2014, 32(1):107-120.] doi: 10.3969/j.issn.1671-6647.2014.01.013

    [14]

    Qu T D, Du Y, Sasaki H. South China Sea throughflow: a heat and freshwater conveyor[J]. Geophysical Research Letters, 2006, 33(23):L23617.

    [15]

    Gordon A L, Huber B A, Metzger E J, et al. South China Sea throughflow impact on the Indonesian throughflow[J]. Geophysical Research Letters, 2012, 39(11):L11602.

    [16]

    Sprintall J, Gordon A L, Koch-Larrouy A, et al. The Indonesian seas and their role in the coupled ocean–climate system[J]. Nature Geoscience, 2014, 7(7):487-492. doi: 10.1038/ngeo2188

    [17]

    Straume E O, Gaina C, Medvedev S, et al. Global Cenozoic Paleobathymetry with a focus on the Northern Hemisphere Oceanic Gateways[J]. Gondwana Research, 2020, 86:126-143. doi: 10.1016/j.gr.2020.05.011

    [18]

    王绍武. 冰期-间冰期旋回[J]. 气候变化研究进展, 2008, 4(1):61-62

    WANG Shaowu. Glacial-interglacial cycles[J]. Climate Change Research, 2008, 4(1):61-62.]

    [19]

    王凡, 胡敦欣, 穆穆, 等. 热带太平洋海洋环流与暖池的结构特征、变异机理和气候效应[J]. 地球科学进展, 2012, 27(6):595-602

    WANG Fan, HU Dunxin, MU Mu, et al. Structure, variations and climatic impacts of ocean circulation and the warm pool in the tropical Pacific Ocean[J]. Advances in Earth Science, 2012, 27(6):595-602.]

    [20]

    Tang Z J, Zhang R H, Wang H N, et al. Mesoscale surface Wind-SST coupling in a high-resolution CESM over the KE and ARC regions[J]. Journal of Advances in Modeling Earth Systems, 2021, 13(12):e2021MS002822. doi: 10.1029/2021MS002822

    [21]

    赵宗慈, 罗勇, 黄建斌. 全球变暖和海平面上升[J]. 气候变化研究进展, 2019, 15(6):700-703

    ZHAO Zongci, LUO Yong, HUANG Jianbin. Global warming and sea level rising[J]. Climate Change Research, 2019, 15(6):700-703.]

    [22]

    赵子荟, 马文涛, 张晓. 末次冰盛期黑潮变化的数值模拟[J]. 第四纪研究, 2023, 43(4):1029-1041 doi: 10.11928/j.issn.1001-7410.2023.04.11

    ZHAO Zihui, MA Wentao, ZHANG Xiao. Numerical simulation of the kuroshio current during the last glacial maximum[J]. Quaternary Sciences, 2023, 43(4):1029-1041.] doi: 10.11928/j.issn.1001-7410.2023.04.11

    [23]

    Shchepetkin A F, McWilliams J C. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model[J]. Ocean Modelling, 2005, 9(4):347-404. doi: 10.1016/j.ocemod.2004.08.002

    [24]

    周立佳, 党振中, 董慧超, 等. 基于ROMS模式的东海黑潮季节变化特征模拟研究[J]. 舰船电子工程, 2016, 36(7):91-94,153 doi: 10.3969/j.issn.1672-9730.2016.07.023

    ZHOU Lijia, DANG Zhenzhong, DONG Huichao, et al. Seasonal variation characteristics of the Kuroshio in the East China Sea based on ROMS[J]. Ship Electronic Engineering, 2016, 36(7):91-94,153.] doi: 10.3969/j.issn.1672-9730.2016.07.023

    [25]

    陈毓敏, 项杰, 杜华栋, 等. 基于拉格朗日方法对黑潮路径的数值模拟[J]. 海洋预报, 2019, 36(6):22-28 doi: 10.11737/j.issn.1003-0239.2019.06.003

    CHEN Yumin, XIANG Jie, DU Huadong, et al. Numerical simulation of Kuroshio path based on Lagrangian method[J]. Marine Forecasts, 2019, 36(6):22-28.] doi: 10.11737/j.issn.1003-0239.2019.06.003

    [26]

    Fretwell P, Pritchard H D, Vaughan D G, et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica[J]. The Cryosphere, 2013, 7(1):375-393. doi: 10.5194/tc-7-375-2013

    [27]

    Clark P U, Mix A C. Ice sheets and sea level of the Last Glacial Maximum[J]. Quaternary Science Reviews, 2002, 21(1-3):1-7. doi: 10.1016/S0277-3791(01)00118-4

    [28]

    Shapiro R. Linear filtering[J]. Mathematics of Computation, 1975, 29(132):1094-1097. doi: 10.1090/S0025-5718-1975-0389356-X

    [29]

    Hsin Y C, Wu C R, Shaw P T. Spatial and temporal variations of the Kuroshio east of Taiwan, 1982–2005: a numerical study[J]. Journal of Geophysical Research: Oceans, 2008, 113(C4):C04002.

    [30]

    Wei Y Z, Huang D J, Zhu X H. Interannual to decadal variability of the Kuroshio Current in the East China Sea from 1955 to 2010 as indicated by in-situ hydrographic data[J]. Journal of Oceanography, 2013, 69(5):571-589. doi: 10.1007/s10872-013-0193-5

    [31]

    Yuan Y C, Kaneko A, Su J L, et al. The Kuroshio East of Taiwan and in the East China Sea and the currents East of Ryukyu Islands during early summer of 1996[J]. Journal of Oceanography, 1998, 54(3):217-226. doi: 10.1007/BF02751697

    [32]

    Gordon A L, Napitu A, Huber B A, et al. Makassar strait throughflow seasonal and interannual variability: an overview[J]. Journal of Geophysical Research: Oceans, 2019, 124(6):3724-3736. doi: 10.1029/2018JC014502

    [33]

    Susanto R D, Ffield A, Gordon A L, et al. Variability of Indonesian throughflow within Makassar Strait, 2004–2009[J]. Journal of Geophysical Research: Oceans, 2012, 117(C9):C09013.

    [34]

    Gordon A L, Sprintall J, Van Aken H M, et al. The Indonesian throughflow during 2004–2006 as observed by the INSTANT program[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2):115-128. doi: 10.1016/j.dynatmoce.2009.12.002

    [35]

    Liang L L, Xue H J, Shu Y Q. The Indonesian throughflow and the circulation in the Banda Sea: a modeling study[J]. Journal of Geophysical Research: Oceans, 2019, 124(5):3089-3106. doi: 10.1029/2018JC014926

    [36]

    Sprintall J, Wijffels S E, Molcard R, et al. Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006[J]. Journal of Geophysical Research: Oceans, 2009, 114(C7):C07001.

    [37]

    Wang J, Zhang Z B, Li X, et al. Moored observations of the Timor passage currents in the Indonesian Seas[J]. Journal of Geophysical Research: Oceans, 2022, 127(11):e2022JC018694. doi: 10.1029/2022JC018694

    [38]

    Nan F, Xue H J, Yu F. Kuroshio intrusion into the South China Sea: a review[J]. Progress in Oceanography, 2015, 137:314-333. doi: 10.1016/j.pocean.2014.05.012

    [39]

    Tozuka T, Qu T D, Yamagata T. Dramatic impact of the South China Sea on the Indonesian Throughflow[J]. Geophysical Research Letters, 2007, 34(12):L12612.

    [40]

    Tozuka T, Qu T D, Masumoto Y, et al. Impacts of the South China Sea Throughflow on seasonal and interannual variations of the Indonesian Throughflow[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1-3):73-85. doi: 10.1016/j.dynatmoce.2008.09.001

    [41]

    Wu C R, Wang Y L, Lin Y F, et al. Intrusion of the Kuroshio into the South and East China Seas[J]. Scientific Reports, 2017, 7(1):7895. doi: 10.1038/s41598-017-08206-4

  • 加载中

(6)

(1)

计量
  • 文章访问数:  68
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2024-06-13
修回日期:  2024-09-29
录用日期:  2024-09-29
刊出日期:  2025-04-28

目录