浙闽入海河流重矿物组成自动识别及物源指示意义

崔育华, 刘梦佳, 黄湘通, 杨守业, 岳伟, 赵希林, 靳国栋. 浙闽入海河流重矿物组成自动识别及物源指示意义[J]. 海洋地质与第四纪地质. doi: 10.16562/j.cnki.0256-1492.2024091801
引用本文: 崔育华, 刘梦佳, 黄湘通, 杨守业, 岳伟, 赵希林, 靳国栋. 浙闽入海河流重矿物组成自动识别及物源指示意义[J]. 海洋地质与第四纪地质. doi: 10.16562/j.cnki.0256-1492.2024091801
CUI Yuhua, LIU Mengjia, HUANG Xiangtong, YANG Shouye, YUE Wei, ZHAO Xilin, JIN Guodong. Automatic identification of heavy mineral compositions in Zhejiang-Fujian rivers and implications for provenance analysis[J]. Marine Geology & Quaternary Geology. doi: 10.16562/j.cnki.0256-1492.2024091801
Citation: CUI Yuhua, LIU Mengjia, HUANG Xiangtong, YANG Shouye, YUE Wei, ZHAO Xilin, JIN Guodong. Automatic identification of heavy mineral compositions in Zhejiang-Fujian rivers and implications for provenance analysis[J]. Marine Geology & Quaternary Geology. doi: 10.16562/j.cnki.0256-1492.2024091801

浙闽入海河流重矿物组成自动识别及物源指示意义

  • 基金项目: 中国地质调查局地质调查项目(DD20242972);国家自然科学基金面上项目“碎屑锆石U-Pb年代学定量解析东海陆架沙质沉积物源与源汇过程”(42176054)
详细信息
    作者简介: 崔育华(2003—),男,硕士研究生,海洋科学专业,E-mail:jlljcyh@tongji.edu.cn
    通讯作者: 黄湘通(1977—),男,副教授,主要从事大陆边缘沉积学相关研究,E-mail:xiangtong@tongji.edu.cn
  • 中图分类号: P736

Automatic identification of heavy mineral compositions in Zhejiang-Fujian rivers and implications for provenance analysis

More Information
  • 沉积物重矿物组成分析是开展物源分析的重要手段之一。然而,常规重矿物人工鉴定存在误差大、统计量小、重复性差等问题,在如何通过重矿物组成揭示物源特征和示踪沉积物源汇过程等方面还具有很大挑战。通过矿物自动定量分析技术TIMA(TESCAN Integrated Mineral Analyzer),本文对钱塘江、椒江、闽江等浙闽流域8条主要入海河流的26个沉积物样品进行了重矿物分析,通过对人工鉴定结果对比及流域地质背景的比较,探讨了TIMA重矿物分析在物源示踪方面的潜力。共分析了209019个矿物颗粒,区分出36种不同类型的重矿物。与人工鉴定方法比较,二者对河流主要重矿物类型及其相对含量变化的鉴定结果基本一致,但TIMA耗时更少,鉴别出的重矿物数量和类型更多,且鉴定结果重现性好。TIMA重矿物分析结果表明:浙闽流域主要的重矿物组合为帘石族、角闪石族与铁质金属矿物,其中,绿黝帘石占重矿物百分比高,是浙闽流域的典型重矿物;角闪石族矿物主要为普通角闪石,其次为铁阳起石,含量在不同流域样品间有显著差异;铁质金属矿物百分比在大部分样品中大于40%,含有赤铁矿、磁铁矿、褐铁矿、钛铁矿与自生黄铁矿等矿物。整体上,浙西北、浙东南与闽西北、闽西南、闽东地区出露地层岩性的差异决定了浙闽河流重矿物组成的特征差异。主成分分析表明,磷灰石、角闪石族和榍石的较高正载荷(>0.88)与主成分1相关,指示了主成分1受岩浆岩源岩的控制;而主成分2与黑电气石、石榴石族和绿泥石的较高正载荷相关,代表了受变质岩源岩的影响。本研究表明,在对重矿物精确性要求较高的研究中利用TIMA等自动矿物识别方法对河流至海域的重矿物进行从源到汇的系统研究更为高效。

  • 加载中
  • 图 1  浙闽流域入海河流及采样点

    Figure 1. 

    图 2  代表性样品的TIMA重矿物相图

    Figure 2. 

    图 3  人工与TIMA鉴定方法所得重矿物含量比较

    Figure 3. 

    图 4  浙闽入海河流重矿物特征指数

    Figure 4. 

    图 5  主成分分析载荷图

    Figure 5. 

    图 6  浙闽河流重矿物样品主成分得分

    Figure 6. 

    图 7  浙江省主要入海河流重矿物组成特征

    Figure 7. 

    图 8  福建省主要入海河流重矿物组成特征

    Figure 8. 

    表 1  人工和TIMA鉴定重矿物颗粒数量的比较

    Table 1.  Comparison in the number of heavy mineral grains identified by manual and TIMA methods

    河流样品位置人工鉴定颗粒数/颗TIMA扫描颗粒数/颗
    曹娥江CEJ23-129°57.264'N, 120°52.511'E30159688
    钱塘江QTJ23-130°13.405'N, 120°45.395'E34140209
    QTJ23-229°43.998'N, 119°38.428'E30512239
    QTJ23-329°44.351'N, 119°39.295'E293424
    QTJ23-429°53.491'N, 119°48.483'E1171094
    椒江JiaoJ23-228°53.017'N, 120°56.138'E3068572
    JiaoJ23-328°44.272'N, 121°19.346'E324324
    瓯江OJ23-227°58.969'N, 120°46.135'E3007743
    OJ23-328°8.609'N, 120°22.837'E3021417
    OJ23-528°8.170'N, 120°28.888'E3292934
    闽江MJ23-126°5.826'N, 119°32.270'E30019898
    MJ23-226°2.872'N, 119°13.293'E3063915
    MJ23-326°9.212'N, 119°6.442'E269999
    MJ23-426°12.868'N, 119°2.915'E320956
    MJ23-526°22.035'N, 118°43.739'E337981
    MJ23-626°12.499'N, 119°2.468'E3563468
    木兰溪MLX23-125°22.429'N, 118°53.815'E3193069
    MLX23-225°22.429'N, 118°53.815'E3096357
    MLX23-325°24.363'N, 119°7.690'E3591726
    晋江JinJ23-124°51.075'N, 118°39.134'E3262291
    JinJ23-225°50.700'N, 118°38.743'E3236849
    JinJ23-324°57.220'N, 118°27.184'E3006220
    九龙江JLJ23-124°34.119'N, 117°43.455'E32312733
    JLJ23-224°29.285'N, 117°42.714'E3321839
    JLJ23-324°28.337'N, 117°48.507'E1652512
    JLJ23-424°26.036'N, 117°54.534'E118562
    下载: 导出CSV

    表 1  人工鉴定浙闽主要入海河流重矿物颗粒百分含量

    Table 1.  Manual identification of the percentage of heavy mineral particles in the main rivers in Zhejiang-Fujian %

    矿物名称 CEJ23-
    1
    QTJ23-
    1
    QTJ23-
    2
    QTJ23-
    3
    QTJ23-
    4
    JiaoJ23-
    2
    JiaoJ23-
    3
    OJ23-
    2
    OJ23-
    3
    OJ23-
    5
    MJ23-
    1
    MJ23-
    2
    MJ23-
    3
    MJ23-
    4
    MJ23-
    5
    MJ23-
    6
    MLX23-
    1
    MLX23-
    2
    MLX23-
    3
    JinJ23-
    1
    JinJ23-
    2
    JinJ23-
    3
    JLJ23-
    1
    JLJ23-
    2
    JLJ23-
    3
    JLJ23-
    4
    绿帘石 59.5 12.0 34.4 20.1 24.0 19.1 19.1 41.8 43.3 69.0 42.0 19.0 32.6 40.7 18.4 14.0 25.9 65.4 49.3 26.4 23.1 36.5 25.5 17.7 18.5 17.2
    角闪石 24.3 69.9 11.5 5.9 2.0 2.3 4.9 15.5 8.0 5.2 17.7 14.1 12.5 12.0 1.2 3.1 23.3 12.0 17.8 14.4 11.2 4.0 8.7 15.6 11.1 14.7
    赤+褐+磁+钛 8.6 7.9 47.2 70.6 70.9 74.7 70.1 35.0 44.3 23.1 20.3 60.8 47.0 40.4 73.7 74.3 47.9 19.4 18.7 56.4 61.1 53.2 59.8 61.5 67.9 64.7
    黄铁矿 0 2.4 13.0 0 1.0 9.5
    白钛石 0.7 0.7 1.9 1.1 1.2 0.6 0.6 0.3
    锐钛矿 0.3
    黑云母 0.9 0.5 1.0 0.7 1.3 0.3 0.7 1.5 1.9 0.6 0.6 0.9 0.3 1.3 0 1.5 0.6 0.9
    风化黑云母 6.3 7.6 3.3 1.7 0.5 0.3 0.3 4.0 2.0 0.6 3.7 3.9 2.7 3.2 3.6 3.1 0.9 1.3 1.9 0.6 1.6 2.0 3.7 0.6 1.2 2.6
    白云母 0.3
    石榴石 0.1 0.7 0.5 0.3 0.7 0.3 0.3 0.3 0.3 0.3 0.3 0
    电气石 0.7 1.5 0.3 0.3 1.7 0.7 0.6 0.9 0.9 1.1 0.3 0.3 0.6
    磷灰石 0.3 0.3 0.3 0.8 0.3
    榍石 0.3 0.5 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.6
    锆石 0.3 1.3 0.3 0.5 2.0 3.4 0.7 0.3 1.5 0.7 0.7 0.9 2.6 0.6 0.6 0.8 0.9 1.6 1.7 1.2 1.5
    金红石 0.3 0.7 0.6 0.3 0.3 0.6
    萤石 0.3
    硅灰石 0.3 0.5 2.3
    注:“赤+褐+磁+钛”为赤铁矿、褐铁矿、磁铁矿、钛铁矿的颗粒百分含量总和。
    下载: 导出CSV

    表 2  TIMA鉴定浙闽主要入海河流重矿物颗粒百分含量

    Table 2.  TIMA identification of the percentage of heavy mineral particles in the main rivers in Zhejiang-Fujian %

    类别 名称 CEJ23-
    1
    QTJ23-
    1
    QTJ23-
    2
    QTJ23-
    3
    QTJ23-
    4
    JiaoJ23-
    2
    JiaoJ23-
    3
    OJ23-
    2
    OJ23-
    3
    OJ23-
    5
    MJ23-
    1
    MJ23-
    2
    MJ23-
    3
    MJ23-
    4
    MJ23-
    5
    MJ23-
    6
    MLX23-
    1
    MLX23-
    2
    MLX23-
    3
    JinJ23-
    1
    JinJ23-
    2
    JinJ23-
    3
    JLJ23-
    1
    JLJ23-
    2
    JLJ23-
    3
    JLJ23-
    4
    帘石族 绿黝帘石 22.3 20.5 22.9 37.5 22.9 13.3 12.0 21.1 34.6 63.3 29.5 11.6 22.4 26.6 8.0 8.8 14.8 43.5 36.3 22.1 14.6 11.9 13.3 12.8 6.7 8.5
    褐帘石 0.5 0.3 0.1 0.1 0.9 1.0 0.5 0.1 0.3 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0 0.2
    绿帘石 0.5 0.3 0.8 0.9 1.8 3.3 0.6 1.9 5.5 0 0.5 0.1 0.1 0.2 0.4 0.3 0.5 0.5 0.3 0.1 0 0.1 0.2 0.2 0.2
    角闪石族 角闪石 20.5 28.8 4.5 3.1 1.7 2.0 2.8 9.0 3.8 0.8 7.8 4.5 6.6 5.8 2.1 1.2 17.1 14.7 13.7 9.3 7.6 1.3 4.1 13.6 4.5 7.3
    铁阳起石 8.6 9.4 3.0 1.7 2.7 1.3 1.5 6.4 1.8 1.5 4.0 2.7 3.1 2.9 0.9 0.5 2.1 4.6 6.1 5.1 6.6 0.6 2.0 2.1 2.6 2.0
    高铁红闪石 0.5 0.6 1.0 0.1 0.4 0.3 0.5 0.1 0 0.3 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0 0 0.3 0.3 0.2 0.5
    透闪石 0.2 0.3 0.1 0.2 0.1 0.1 0.1 0 0.7 0 0 0.1
    铁质 赤/磁铁矿 5.9 3.0 27.3 29.5 44.8 34.3 47.2 14.5 21.5 12.6 21.6 39.0 23.5 27.1 64.4 66.1 52.3 21.4 10 33.3 45.4 51.3 39.2 37.7 49.6 19.2
    钛铁矿 4.8 2.7 10.1 5.9 6.3 16.3 10.8 7.5 6.8 6.2 5.7 15.3 7.3 8.3 2.2 7.4 6.3 3.0 2.8 14.4 12.0 17.0 9.3 15.2 12.3 30.8
    黄铁矿 0.1 0.1 3.1 0.1 0.1 0.4 1.0 0 0.1 0.3 0.1 0.1 3.1 0
    辉石族 透辉石 5.0 3.3 1.4 1.8 0.9 0.3 1.7 1.8 0.4 1.5 5.9 1.5 1.0 3.0 0.3 0.2 0.5 1.3 0 0.2 0.4 0.8 0.4 1.0 0.4
    斜方铁辉石 0.3 0.4 0.1 0.2 0.5 0.4 0.1 0 0.2 1.3 0.3 0.1 0.1 0.1 0.1 0.1 0.4 0 0.1 0.1 0.3 0.1 0.4 0.5
    易变辉石 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.4 0.1 0 0.1 0.1 0.2 0.4 0 0 0 0.2 0.2 0.2
    顽火辉石 0.1 0.1 0 0.3 0 0 0.1 0 0.2
    云母族 黑云母 1.5 1.1 4.1 4.0 3.2 5.7 3.1 7.8 3.9 0.8 2.1 0.9 1.2 1.4 1.1 0.7 0.7 0.7 1.3 0.3 0.2 0.9 2.1 0.2 1.8 0.9
    白云母 0.5 0.3 2.9 3.8 2.1 3.8 0.9 5.5 4.0 2.3 2.5 1.6 3.6 2.9 1.4 2.0 0.3 0.3 0.4 0.4 0.7 0.7 2.5 1.1 1.6 2.0
    石榴石族 钙铝榴石 0.3 0.3 0.6 2.1 3.7 0.1 0.3 0.4 0.6 0.3 0.4 0.6 1.6 0.6 0.7 0.4 0.2 0.1 0.1 0.2 0.5 2.2 0.2 2.3 0.2
    钙铁榴石 0.1 0.2 0.2 0.5 1.0 0.2 0.2 0.8 0.3 0.6 1.4 2.1 0.8 1.1 0.6 0.1 0.2 0.4 0.2 0.4 4.1 1.2 0.5 2.1 0.7
    铁铝榴石 0.2 0.1 0.5 0.5 0.2 1.0 0.7 0.1 0.3 0.3 0.5 0.3 0.2 0.2 0.2 0 0.1 0.2 0 0 0.1 0.3 0.2
    锰铝榴石 0 0 0.1 0.2 0 0 0.3 0.3 0.2 0.3 0.2 0.4 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.3 0.2
    其他类别 绿泥石 7.3 9.2 3.3 2.1 1.3 3.8 1.2 4.8 3.5 1.0 2.4 1.6 3.0 1.2 1.4 1.4 0.2 0.4 3.5 0.4 0.3 0.8 3.3 0.5 2.8 2.5
    黑电气石 2.5 2.7 1.4 0.5 0.4 1.6 2.0 0.9 0.1 1.9 0.9 2.2 2.2 0.8 0.7 0.1 0.2 1.4 0.3 0 0 1.3 0.2 0.1 0.7
    磷灰石 5.9 6.0 1.2 0.5 0.2 0.3 1.9 1.0 0.2 1.2 0.3 0.1 0.5 0.2 0.4 2.3 5.0 0 0.2 0.2 0.4
    其他类别 榍石 4.7 4.7 0.8 2.4 0.4 1.0 0.6 1.6 1.1 0 1.1 0.9 0.9 0.7 0.3 1.0 1.6 1.3 1.2 1.1 0.3 0.4 1.5 0.8 1.1
    锆石 0.7 0.7 1.7 0.5 0.2 1.4 5.2 0.7 1.0 1.7 1.7 2.4 0.2 4.0 0.3 1.1 1.0 1.5 1.1 1.0 2.6 3.2 2.4 1.8 0.2 1.6
    金红石 5.6 4.3 9.7 3.3 2.8 6.2 6.8 8.8 4.4 7.0 10.8 6.3 13.7 10.5 4.5 4.8 2.1 2.9 8.1 9.4 6.0 4.4 10.7 8.8 5.9 14.1
    独居石 0.1 0.1 0.1 0.2 0.3 0.4 0.6 0.4 0.3 0.1 0.4 0.6 0.1 0.2 0.2 0 0.2 0.9 0.3 0.2 0.1
    蓝晶石族 0.3 0.4 0.1 0.5 1.4 0.1 0 0.5 1.2 0.1 0.6 1.1 5.0 1.1 0.6 1.2 0.5 0.5 1.6 1.5 1.1 0.8 3.4 1.4 2.5 6.4
    十字石 0.1 0.1 0 0 0 0.1 0.1 0
    橄榄石 0.5 0 0.1 0.2 0.5 0.8 0.3 1.1 0.5 0 0.1 0 0.3 0.1 5.8 0.1 0 0 0 1.4
    刚玉 0 0 0.2 0.3 0.6 0.3 0.5 0.1 0.2 0 0.2 0.2 0.1 0 0.1 0 0 0.1 0.1 0.1 0.2
    萤石 0 1.5 0.5 0.1 0 0.4 0.5 0.1 0.2 0 0
    下载: 导出CSV

    表 2  浙闽河流主要重矿物组合对比

    Table 2.  Comparison of major heavy mineral assemblages in Zhejiang-Fujian rivers

    河流河段已发表数据TIMA
    钱塘江河口绿帘石-角闪石-黑云母-磁铁矿-绿泥石[30]绿帘石-角闪石-绿泥石-磷灰石-榍石
    椒江河口绿帘石-角闪石-磁铁矿-绿泥石[30]赤/磁铁矿-绿帘石-角闪石-钛铁矿
    瓯江近河口绿帘石-赤/磁铁矿-钛铁矿-角闪石-黑云母[30]绿帘石-角闪石-赤/磁铁矿-黑云母-钛铁矿
    闽江河口赤/磁铁矿-绿帘石-锆石-角闪石[29]绿帘石-赤/磁铁矿-角闪石-金红石
    上游赤/磁铁矿-绿帘石-锆石-电气石[29]赤/磁铁矿-绿帘石-角闪石-橄榄石
    木兰溪中游绿帘石-角闪石-赤/磁铁矿-橄榄石-黑云母[31]绿帘石-赤/磁铁矿-角闪石-钛铁矿
    九龙江河口钛铁矿-赤/磁铁矿-角闪石-绿帘石[29]钛铁矿-赤/磁铁矿-角闪石-绿帘石
    下载: 导出CSV

    表 3  主成分分析载荷系数

    Table 3.  The load factor of principal component analysis

    名称 载荷系数 共同度(公因子方差)
    主成分1 主成分2 主成分3 主成分4
    帘石族 0.204 −0.263 0.68 0.256 0.639
    角闪石族 0.895 −0.014 −0.253 0.048 0.868
    辉石族 0.447 0.541 −0.143 −0.302 0.604
    云母族 −0.148 0.464 0.735 0.136 0.796
    石榴石族 −0.546 0.531 −0.101 0.114 0.604
    绿泥石 0.733 0.59 0.089 0.092 0.901
    黑电气石 0.592 0.615 0.154 0.174 0.783
    磷灰石 0.931 0.021 −0.057 −0.061 0.875
    榍石 0.888 0.187 −0.075 0.062 0.833
    蓝晶石族 −0.315 0.346 −0.547 0.578 0.851
    橄榄石 −0.225 0.399 0.003 −0.772 0.806
    ATi 0.464 −0.714 0.04 −0.133 0.745
    Gzi −0.343 0.784 0.063 −0.065 0.74
    下载: 导出CSV
  • [1]

    Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean: A Global Synthesis[M]. Cambridge: Cambridge University Press, 2011.

    [2]

    Meade R H. Sources, sinks, and storage of river sediment in the atlantic drainage of the United States[J]. The Journal of Geology, 1982, 90(3):235-252. doi: 10.1086/628677

    [3]

    赵红格, 刘池洋. 物源分析方法及研究进展[J]. 沉积学报, 2003, 21(3):409-415 doi: 10.3969/j.issn.1000-0550.2003.03.007

    ZHAO Hongge, LIU Chiyang. Approaches and prospects of provenance analysis[J]. Acta Sedimentologica Sinica, 2003, 21(3):409-415.] doi: 10.3969/j.issn.1000-0550.2003.03.007

    [4]

    Liu X T, Li A C, Dong J, et al. Provenance discrimination of sediments in the Zhejiang-Fujian mud belt, East China Sea: implications for the development of the mud depocenter[J]. Journal of Asian Earth Sciences, 2018, 151:1-15. doi: 10.1016/j.jseaes.2017.10.017

    [5]

    范德江, 杨作升, 孙效功, 等. 东海陆架北部长江、黄河沉积物影响范围的定量估算[J]. 青岛海洋大学学报, 2002, 32(5):748-756

    FAN Dejiang, YANG Zuosheng, SUN Xiaogong, et al. Quantitative evaluation of sediment provenance on the north area of the East China Sea shelf[J]. Journal of Ocean University of Qingdao, 2002, 32(5):748-756.]

    [6]

    Xu K H, Li A C, Liu J P, et al. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: a synthesis of the Yangtze dispersal system[J]. Marine Geology, 2012, 291-294:176-191. doi: 10.1016/j.margeo.2011.06.003

    [7]

    Xu K H, Milliman J D, Li A C, et al. Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea[J]. Continental Shelf Research, 2009, 29(18):2240-2256. doi: 10.1016/j.csr.2009.08.017

    [8]

    薛成凤, 贾建军, 高抒, 等. 中小河流对长江水下三角洲远端泥沉积的贡献: 以椒江和瓯江为例[J]. 海洋学报, 2018, 40(5):75-89 doi: 10.3969/j.issn.0253-4193.2018.05.007

    XUE Chengfeng, JIA Jianjun, GAO Shu, et al. The contribution of middle and small rivers to the distal mud of subaqueous Changjiang Delta: results from Jiaojiang River and Oujiang River[J]. Acta Oceanologica Sinica, 2018, 40(5):75-89.] doi: 10.3969/j.issn.0253-4193.2018.05.007

    [9]

    董江, 李安春, 徐方建, 等. 东海内陆架EC2005孔重矿物组合特征及其物源指示意义[J]. 海洋与湖沼, 2015, 46(6):1292-1303

    DONG Jiang, LI Anchun, XU Fangjian, et al. Heavy mineral assemblages in core EC2005 in the inner shelf of East China Sea and the origin[J]. Oceanologia et Limnologia Sinica, 2015, 46(6):1292-1303.]

    [10]

    张凯棣, 李安春, 董江, 等. 东海表层沉积物碎屑矿物组合分布特征及其物源环境指示[J]. 沉积学报, 2016, 34(5):902-911

    ZHANG Kaidi, LI Anchun, DONG Jiang, et al. Detrital mineral distributions in surface sediments of the East China Sea: implications for sediment provenance and sedimentary environment[J]. Acta Sedimentologica Sinica, 2016, 34(5):902-911.]

    [11]

    张凯棣. 东海陆架近代泥质沉积源汇过程的矿物学响应[D]. 中国科学院大学(中国科学院海洋研究所)博士论文, 2017

    ZHANG Kaidi. Mineralogical response of source to sink processes in modern muddy sediments of the East China Sea continental shelf[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2017.]

    [12]

    许苗苗, 魏晓椿, 杨蓉, 等. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 2021, 36(2):154-171 doi: 10.11867/j.issn.1001-8166.2021.021

    XU Miaomiao, WEI Xiaochun, YANG Rong, et al. Research progress of provenance tracing method for heavy mineral analysis[J]. Advances in Earth Science, 2021, 36(2):154-171.] doi: 10.11867/j.issn.1001-8166.2021.021

    [13]

    Mange M A, Maurer H F W. Heavy Minerals in Colour[M]. London: Chapman & Hall, 1992.

    [14]

    Morton A C, Hallsworth C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1994, 90(3-4):241-256. doi: 10.1016/0037-0738(94)90041-8

    [15]

    胡云, 何梦颖, 许欢, 等. 两种重矿物分析方法在青藏高原东南缘伊洛瓦底江沉积物物源分析中的应用[J]. 海洋地质与第四纪地质, 2022, 42(4):181-193

    HU Yun, HE Mengying, XU Huan, et al. Application of two heavy mineral analysis methods in the provenance study of Irrawaddy River sediments on the southeastern margin of Tibetan Plateau[J]. Marine Geology & Quaternary Geology, 2022, 42(4):181-193.]

    [16]

    陈倩, 宋文磊, 杨金昆, 等. 矿物自动定量分析系统的基本原理及其在岩矿研究中的应用: 以捷克泰思肯公司TIMA为例[J]. 矿床地质, 2021, 40(2):345-368

    CHEN Qian, SONG Wenlei, YANG Jinkun, et al. Principle of automated mineral quantitative analysis system and its application in petrology and mineralogy: an example from TESCAN TIMA[J]. Mineral Deposits, 2021, 40(2):345-368.]

    [17]

    Hrstka T, Gottlieb P, Skála R, et al. Automated mineralogy and petrology – applications of TESCAN integrated mineral analyzer (TIMA)[J]. Journal of Geosciences, 2018, 63(1):47-63.

    [18]

    Meyer M C, Austin P, Tropper P. Quantitative evaluation of mineral grains using automated SEM-EDS analysis and its application potential in optically stimulated luminescence dating[J]. Radiation Measurements, 2013, 58:1-11. doi: 10.1016/j.radmeas.2013.07.004

    [19]

    董学发, 余盛强, 唐增才, 等. 浙江“陈蔡增生杂岩”中洋内弧型变基性火山岩的地球化学特征及其地质意义[J]. 中国地质, 2016, 43(3):817-828 doi: 10.12029/gc20160309

    DONG Xuefa, YU Shengqiang, TANG Zengcai, et al. Geochemical characteristics of the intra-oceanic arc type metabasic-volcanics in Chencai accretion complex of Zhejiang Province and their geological significance[J]. Geology in China, 2016, 43(3):817-828.] doi: 10.12029/gc20160309

    [20]

    张兴泽. 浙闽沿岸泥质潮滩沉积物源研究[D]. 浙江师范大学硕士论文, 2021

    ZHANG Xingze. Study of the provenance of mud tidal flat sediment along Zhejiang and Fujian Coast[D]. Master Dissertation of Zhejiang Normal University, 2021.]

    [21]

    韦德光, 揭育金, 黄廷淦. 福建省区域地质构造特征[J]. 中国区域地质, 1997, 16(2):51-59

    WEI Deguang, JIE Yujin, HUANG Tinggan. Regional geological structure of Fujian[J]. Regional Geology of China, 1997, 16(2):51-59.]

    [22]

    金文山, 庄建民, 杨传夏, 等. 福建前加里东区域变质岩系的岩石学、地球化学和变质作用特征[J]. 福建地质, 1992, 11(4):241-262

    JIN Wenshan, ZHUANG Jianmin, YANG Chuanxia, et al. Characteristics of petrology, geochemistry and metamorphism of the precaledonian regional metamorphic rocks in Fujian Province[J]. Geology of Fujian, 1992, 11(4):241-262.]

    [23]

    福建省地质矿产局. 福建省区域地质志[M]. 北京: 地质出版社, 1985

    Bureau of Geology and Mineral Resources of Fujian Province. Regional Geology of Fujian Province[M]. Beijing: Geology Press, 1985.]

    [24]

    岳伟. 长江河口区晚新生代物源演化及其意义——来自流域特征重矿物的证据[D]. 华东师范大学博士论文, 2016

    YUE Wei. The evolution of the Late Cenozoic sediment provenances of the Yangtze Estuary-the new evidence from the diagnostic heavy minerals of its drainage basin[D]. Doctor Dissertation of East China Normal University, 2016.]

    [25]

    孙白云. 黄河、长江和珠江三角洲沉积物中碎屑矿物的组合特征[J]. 海洋地质与第四纪地质, 1990, 10(3):23-34

    SUN Baiyun. Detrital mineral assemblages in the Huanghe, Changjiang and Zhujiang River Delta sediments[J]. Marine Geology & Quaternary Geology, 1990, 10(3):23-34.]

    [26]

    王中波, 杨守业, 李萍, 等. 长江水系沉积物碎屑矿物组成及其示踪意义[J]. 沉积学报, 2006, 24(4):570-578 doi: 10.3969/j.issn.1000-0550.2006.04.015

    WANG Zhongbo, YANG Shouye, LI Ping, et al. Detrital mineral compositions of the Changjiang River sediments and their tracing implications[J]. Acta Sedimentologica Sinica, 2006, 24(4):570-578.] doi: 10.3969/j.issn.1000-0550.2006.04.015

    [27]

    Dunkl I, Von Eynatten H, Andò S, et al. Comparability of heavy mineral data – the first interlaboratory round robin test[J]. Earth-Science Reviews, 2020, 211:103210. doi: 10.1016/j.earscirev.2020.103210

    [28]

    贺松林. 东海近岸带沉积物陆源矿物组份的比较研究[J]. 华东师范大学学报: 自然科学版, 1991(1):78-86

    HE Songlin. Comparative study on terrigenous miniral component of sediment along nearshore area of the East China Sea[J]. Journal of East China Normal University: Natural Science, 1991(1):78-86.]

    [29]

    陈心怡, 黄奇瑜, 邵磊. 福建闽江和九龙江现代沉积物重矿物特征及其物源意义[J]. 古地理学报, 2018, 20(4):637-650 doi: 10.7605/gdlxb.2018.04.046

    CHEN Xinyi, HUANG Chiyue, SHAO Lei. Characteristics of heavy minerals in modern sediments of Minjiang and Jiulongjiang Rivers, Fujian Province and their provenance implication[J]. Journal of Palaeogeography: Chinese Edition, 2018, 20(4):637-650.] doi: 10.7605/gdlxb.2018.04.046

    [30]

    黄文盛, 黄月法. 浙江省河口重矿物及其组合特征[J]. 杭州大学学报, 1984, 11(4):496-506

    HUANG Wensheng, HUANG Yuefa. Characteristics of heavy mineral groups in the estuary regions of Zhejiang Province[J]. Journal of Hangzhou University, 1984, 11(4):496-506.]

    [31]

    Su N, Yang S Y, Guo Y L, et al. Revisit of rare earth element fractionation during chemical weathering and river sediment transport[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(3):935-955. doi: 10.1002/2016GC006659

    [32]

    傅德印. 主成分分析中的统计检验问题[J]. 统计教育, 2007(9):4-7

    FU Deyin. Statistical testing problems in principal component analysis[J]. Statistical Education, 2007(9):4-7.]

    [33]

    孙和平, 李从先, 李萍, 等. 钱塘江下游河段潮流和沉积特征[J]. 上海地质, 1990(1):62-71

    SUN Heping, LI Congxian, LI Ping, et al. The tidal and sedimentary features of the lower reach of the Qiantangjiang River[J]. Shanghai Geology, 1990(1):62-71.]

    [34]

    赵磊, 周喜文. 浙西南八都群泥质麻粒岩的变质演化与pT轨迹[J]. 岩石矿物学杂志, 2012, 31(1):61-72 doi: 10.3969/j.issn.1000-6524.2012.01.006

    ZHAO Lei, ZHOU Xiwen. The metamorphic evolution and pT path of pelitic granulite from the Badu Group in southwestern Zhejiang Province[J]. Acta Petrologica et Mineralogica, 2012, 31(1):61-72.] doi: 10.3969/j.issn.1000-6524.2012.01.006

    [35]

    林才浩. 福建省矿产资源潜力的地球化学预测[J]. 福建地质, 2001, 20(3):129-136 doi: 10.3969/j.issn.1001-3970.2001.03.003

    LIN Caihao. Forecasting assessment of potential mineral resources of Fujian Province by the geochemical method[J]. Geology of Fujian, 2001, 20(3):129-136.] doi: 10.3969/j.issn.1001-3970.2001.03.003

    [36]

    徐茂泉, 许文彬, 孙美琴, 等. 福建兴化湾表层沉积物中重矿物组分及其分布特征[J]. 海洋学报, 2004, 26(5):74-82 doi: 10.3321/j.issn:0253-4193.2004.05.008

    XU Maoquan, XU Wenbin, SUN Meiqin, et al. The characteristics of heavy minerals composition and distribution in surface sediment from the Xinghua Bay of Fujian[J]. Acta Oceanologica Sinica, 2004, 26(5):74-82.] doi: 10.3321/j.issn:0253-4193.2004.05.008

  • 加载中

(8)

(5)

计量
  • 文章访问数:  33
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2024-09-18
修回日期:  2024-10-08
录用日期:  2024-10-08
网络出版日期:  2025-01-17

目录