现代底栖有孔虫Uvigerina属元素比值对温度的指示意义

周晓理, 杨淳渝. 现代底栖有孔虫Uvigerina属元素比值对温度的指示意义[J]. 海洋地质与第四纪地质, 2025, 45(4): 60-72. doi: 10.16562/j.cnki.0256-1492.2025040703
引用本文: 周晓理, 杨淳渝. 现代底栖有孔虫Uvigerina属元素比值对温度的指示意义[J]. 海洋地质与第四纪地质, 2025, 45(4): 60-72. doi: 10.16562/j.cnki.0256-1492.2025040703
ZHOU Xiaoli, YANG Chunyu. Core-top calibration of element ratios in modern benthic foraminifera Uvigerina spp. for paleotemperature reconstruction[J]. Marine Geology & Quaternary Geology, 2025, 45(4): 60-72. doi: 10.16562/j.cnki.0256-1492.2025040703
Citation: ZHOU Xiaoli, YANG Chunyu. Core-top calibration of element ratios in modern benthic foraminifera Uvigerina spp. for paleotemperature reconstruction[J]. Marine Geology & Quaternary Geology, 2025, 45(4): 60-72. doi: 10.16562/j.cnki.0256-1492.2025040703

现代底栖有孔虫Uvigerina属元素比值对温度的指示意义

  • 基金项目: 国家重点研发计划“利用冷水珊瑚重建南海深部物质能量循环(青年项目)”(2021YFF0502500);国家自然科学基金“中中新世太平洋深部海水性质与洋流变迁的全球影响”(42006053);上海市科委基础研究特区计划“多尺度智能化的海洋气候演变研究”(22TQ1400300)
详细信息
    作者简介: 周晓理(1989—),女,博士,副教授,从事古海洋和古气候学研究,E-mail:xlzhou@tongji.edu.cn
  • 中图分类号: P736

Core-top calibration of element ratios in modern benthic foraminifera Uvigerina spp. for paleotemperature reconstruction

  • Uvigerina属底栖有孔虫的Mg/Ca-温度指标常用于古海洋底水温度的重建。然而前人研究指出,其温度重建结果可能受到碳酸盐化学等非温度因素的干扰,且种间差异对重建结果的影响也存在争议。为进一步评估该属有孔虫元素指标的可靠性,本研究基于BJ8-03航次在印度尼西亚苏拉威西边缘采集的表层沉积物,结合多种元素比值(Mg/Ca、Li/Ca、Mg/Li、B/Ca和Sr/Ca),对比U. proboscideaU. peregrinaU. elongatastriata 3个属种的温度和碳酸盐化学指标,结合全球多个站位已发表的Uvigerina元素数据,重新审视了Uvigerina种间差异及温度重建方法。结果表明,影响Uvigerina温度指标公式的主要因素可能是种间差异而非清洗方法。在多指标对比过程中,发现U. proboscidea的Mg/Ca与温度、U. proboscideaU. peregrina的Sr/Ca与Δ[CO32−]相关性较好,而U. elongatastriata的数据较为分散,与环境参数没有相关性。此后,进一步结合全球各站位数据更新了U. peregrina的Mg/Ca-温度公式(Mg/Ca=0.94(±0.059)+0.06(±0.007)×温度),其温度敏感性(6%)与前人结果相近,说明该指标较稳定;而Mg/Li的温度敏感性与前人结果不同,因此该指标的有效性有待进一步研究。与Mg/Ca和Mg/Li不同的是,Uvigerina属的Li/Ca、B/Ca和Sr/Ca与海水温度和碳酸盐化学参数并未显示可靠的相关性,其海水环境指示意义有待进一步的验证。

  • 加载中
  • 图 1  本研究使用的表层沉积物站位(红色三角形)以及已发表的全球大洋表层沉积物站位(黄色圆圈)

    Figure 1. 

    图 2  本研究站位 U. proboscideaU. peregrinaU. elongatastriata 的 Mg/Ca(a)、Li/Ca(b)、Mg/Li(c)、B/Ca(d)和 Sr/Ca(e)的深度剖面图,温度和Δ[CO32−]的剖面(f)以及这些站位的温度和Δ[CO32−]之间的关系

    Figure 2. 

    图 3  已发表[1-2,4,10,26,31,33,35,38-39]和本研究站位的Uvigerina属Mg/Ca-温度(a-b)以及B/Ca-Δ[CO32-]和Sr/Ca- Δ[CO32-](c-f)在还原法和氧化法清洗方法下的敏感性对比

    Figure 3. 

    图 4  本研究站位U. proboscideaU. peregrinaU. elongatastriata 的Mg/Ca(a)、Li/Ca(b)、Mg/Li(c)与温度的相关关系以及Mg/Ca(d)、B/Ca(e)、Li/Ca(f)和Sr/Ca(g)与Δ[CO32−]的相关关系

    Figure 4. 

    图 5  U. peregrina的Mg/Ca(a)、Li/Ca(b)、Mg/Li(c)与温度的相关关系以及B/Ca(d)、Li/Ca(e)和Sr/Ca(f)与Δ[CO32−]的相关关系

    Figure 5. 

    表 1  表层沉积物站位坐标和水文数据

    Table 1.  Site coordinates and hydrographic data of core-top sediments

    站位名称 位置 水深/m 温度/°C Δ[CO32−]/(µmol/kg)
    61MC 3.87°S, 119.47°E 292 11.29 46.73
    45MC 2.87°N, 118.39°E 332 10.00 42.88
    81MC 1.44°S, 117.23°E 361 9.49 40.55
    127MC 5.81°S, 120.3°E 366 9.42 39.76
    31MC 3.88°S, 119.45°E 459 8.00 31.75
    35MC 3.89°S, 119.44°E 565 7.00 27.79
    63MC 3.87°S, 119.47°E 252 11.70 50.57
    67MC 3.57°S, 119.4°E 401 8.90 34.27
    56MC 3.88°S, 119.46°E 405 8.80 34.23
    14MC 7.35°S, 115.2°E 483 7.74 31.54
    69MC 3.57°S, 119.41°E 485 7.72 31.52
    11MC 7.39°S, 115.21°E 590 6.86 27.56
    9MC 7.38°S, 115.26°E 648 6.55 27.03
    51MC 3.89°S, 119.4°E 774 5.82 24.31
    6MC 7.47°S, 115.36°E 920 5.09 21.43
    84MC 1.4°S, 117.62°E 401 8.73 34.25
    79MC 1.74°S, 117.39°E 440 8.25 32.64
    77MC 1.74°S, 117.41°E 525 7.20 29.16
    88MC 0.39°N, 118.43°E 532 7.17 28.92
    53MC 3.89°S, 119.39°E 868 5.30 21.93
    下载: 导出CSV

    表 2  本文研究站位的元素测试数据和统计学分析

    Table 2.  Elemental ratio data and statistics in this study

    属种 站位 Li/Ca/(μmol/mol) B/Ca/(μmol/mol) Mg/Ca/(mmol/mol) Sr/Ca/(mmol/mol) Mg/Li/(mol/mmol)
    U. elongatastriata61MC15.3437.911.471.130.10
    45MC14.9734.721.241.140.08
    81MC17.8876.411.521.140.08
    127MC20.7375.202.111.190.10
    31MC17.6528.511.551.110.09
    35MC20.8932.551.441.140.07
    平均值17.9147.551.561.140.09
    标准差2.5422.100.290.030.01
    U. peregrina63MC18.2336.341.291.190.07
    67MC18.4229.141.421.190.08
    56MC18.7733.951.251.170.07
    14MC17.9833.661.471.160.08
    69MC18.2746.171.221.190.07
    11MC17.0545.881.491.140.09
    9MC17.0718.331.351.150.08
    51MC19.2154.431.061.160.06
    6MC17.9947.401.281.100.07
    平均值38.3718.111.311.160.07
    标准差11.120.710.140.030.01
    U. proboscidea84MC22.9842.331.801.230.08
    79MC32.4945.461.751.190.05
    77MC32.6837.461.631.190.05
    88MC24.3863.051.541.200.06
    53MC23.7112.381.411.160.06
    平均值60.1427.251.631.190.06
    标准差30.764.900.160.030.01
    下载: 导出CSV
  • [1]

    Rathburn A E, De Deckker P. Magnesium and strontium compositions of Recent benthic foraminifera from the Coral Sea, Australia and Prydz Bay, Antarctica[J]. Marine Micropaleontology, 1997, 32(3-4):231-248. doi: 10.1016/S0377-8398(97)00028-5

    [2]

    Gussone N, Filipsson H L, Kuhnert H. Mg/Ca, Sr/Ca and Ca isotope ratios in benthonic foraminifers related to test structure, mineralogy and environmental controls[J]. Geochimica et Cosmochimica Acta, 2016, 173:142-159. doi: 10.1016/j.gca.2015.10.018

    [3]

    Rosenthal Y, Boyle E A, Slowey N. Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: prospects for thermocline paleoceanography[J]. Geochimica et Cosmochimica Acta, 1997, 61(17):3633-3643. doi: 10.1016/S0016-7037(97)00181-6

    [4]

    Yu J M, Elderfield H. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state[J]. Earth and Planetary Science Letters, 2007, 258(1-2):73-86. doi: 10.1016/j.jpgl.2007.03.025

    [5]

    Evans D, Wade B S, Henehan M, et al. Revisiting carbonate chemistry controls on planktic foraminifera Mg/Ca: implications for sea surface temperature and hydrology shifts over the Paleocene–Eocene Thermal Maximum and Eocene–Oligocene transition[J]. Climate of the Past, 2016, 12(4):819-835. doi: 10.5194/cp-12-819-2016

    [6]

    Lea D W, Pak D K, Spero H J. Climate impact of Late Quaternary equatorial pacific sea surface temperature variations[J]. Science, 2000, 289(5485):1719-1724. doi: 10.1126/science.289.5485.1719

    [7]

    Gussone N, Eisenhauer A, Tiedemann R, et al. Reconstruction of Caribbean Sea surface temperature and salinity fluctuations in response to the Pliocene closure of the Central American Gateway and radiative forcing, using δ44/40Ca, δ18O and Mg/Ca ratios[J]. Earth and Planetary Science Letters, 2004, 227(3-4):201-214. doi: 10.1016/j.jpgl.2004.09.004

    [8]

    Benway H M, Mix A C, Haley B A, et al. Eastern Pacific Warm Pool paleosalinity and climate variability: 0-30 kyr[J]. Paleoceanography, 2006, 21(3):PA3008.

    [9]

    Lea D W, Martin P A, Pak D K, et al. Reconstructing a 350ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core[J]. Quaternary Science Reviews, 2002, 21(1-3):283-293. doi: 10.1016/S0277-3791(01)00081-6

    [10]

    Lear C H, Rosenthal Y, Slowey N. Benthic foraminiferal Mg/Ca-paleothermometry: a revised core-top calibration[J]. Geochimica et Cosmochimica Acta, 2002, 66(19):3375-3387. doi: 10.1016/S0016-7037(02)00941-9

    [11]

    Billups K, Schrag D P. Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera[J]. Paleoceanography, 2002, 17(1):1003.

    [12]

    Billups K, Schrag D P. Application of benthic foraminiferal Mg/Ca ratios to questions of Cenozoic climate change[J]. Earth and Planetary Science Letters, 2003, 209(1-2):181-195. doi: 10.1016/S0012-821X(03)00067-0

    [13]

    Martin P A, Lea D W, Rosenthal Y, et al. Quaternary deep sea temperature histories derived from benthic foraminiferal Mg/Ca[J]. Earth and Planetary Science Letters, 2002, 198(1-2):193-209. doi: 10.1016/S0012-821X(02)00472-7

    [14]

    Lear C H, Rosenthal Y, Wright J D. The closing of a seaway: ocean water masses and global climate change[J]. Earth and Planetary Science Letters, 2003, 210(3-4):425-436. doi: 10.1016/S0012-821X(03)00164-X

    [15]

    Lear C H, Elderfield H, Wilson P A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite[J]. Science, 2000, 287(5451):269-272. doi: 10.1126/science.287.5451.269

    [16]

    Marchitto T M, Curry W B, Lynch-Stieglitz J, et al. Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera[J]. Geochimica et Cosmochimica Acta, 2014, 130:1-11. doi: 10.1016/j.gca.2013.12.034

    [17]

    Allen K A, Sikes E L, Anderson R F, et al. Rapid loss of CO2 from the south pacific ocean during the last glacial termination[J]. Paleoceanography and Paleoclimatology, 2020, 35(2):e2019PA003766. doi: 10.1029/2019PA003766

    [18]

    Yu J M, Anderson R F, Rohling E J. Deep ocean carbonate chemistry and glacial-interglacial atmospheric CO2 change[J]. Oceanography, 2014, 27(1):16-25. doi: 10.5670/oceanog.2014.04

    [19]

    Lea D W, Mashiotta T A, Spero H J. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing[J]. Geochimica et Cosmochimica Acta, 1999, 63(16):2369-2379. doi: 10.1016/S0016-7037(99)00197-0

    [20]

    Oomori T, Kaneshima H, Maezato Y, et al. Distribution coefficient of Mg2+ ions between calcite and solution at 10-50°C[J]. Marine Chemistry, 1987, 20(4):327-336. doi: 10.1016/0304-4203(87)90066-1

    [21]

    Erez J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1):115-149. doi: 10.2113/0540115

    [22]

    Allen K A, Hönisch B, Eggins S M, et al. Environmental controls on B/Ca in calcite tests of the tropical planktic foraminifer species Globigerinoides ruber and Globigerinoides sacculifer[J]. Earth and Planetary Science Letters, 2012, 351-352:270-280. doi: 10.1016/j.jpgl.2012.07.004

    [23]

    Uchikawa J, Penman D E, Zachos J C, et al. Experimental evidence for kinetic effects on B/Ca in synthetic calcite: implications for potential B(OH)4 and B(OH)3 incorporation[J]. Geochimica et Cosmochimica Acta, 2015, 150:171-191. doi: 10.1016/j.gca.2014.11.022

    [24]

    Kontakiotis G, Mortyn G, Antonarakou A, et al. Assessing the reliability of foraminiferal Mg/Ca thermometry by comparing field-samples and culture experiments: a review[J]. Geological Quarterly, 2016, 60(3):547-560.

    [25]

    Evans D, Müller W. Deep time foraminifera Mg/Ca paleothermometry: nonlinear correction for secular change in seawater Mg/Ca[J]. Paleoceanography, 2012, 27(4):PA4205.

    [26]

    Bryan S P, Marchitto T M. Mg/Ca–temperature proxy in benthic foraminifera: new calibrations from the Florida Straits and a hypothesis regarding Mg/Li[J]. Paleoceanography, 2008, 23(2):PA2220.

    [27]

    Lawson V J, Rosenthal Y, Bova S C, et al. Controls on Sr/Ca, S/Ca, and Mg/Ca in benthic foraminifera: implications for the carbonate chemistry of the pacific ocean over the last 350 ky[J]. Geochemistry, Geophysics, Geosystems, 2024, 25(8):e2024GC011508. doi: 10.1029/2024GC011508

    [28]

    Mojtahid M, Hennekam R, De Nooijer L, et al. Evaluation and application of foraminiferal element/calcium ratios: assessing riverine fluxes and environmental conditions during sapropel S1 in the Southeastern Mediterranean[J]. Marine Micropaleontology, 2019, 153:101783. doi: 10.1016/j.marmicro.2019.101783

    [29]

    Marriott C S, Henderson G M, Crompton R, et al. Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate[J]. Chemical Geology, 2004, 212(1):5-15.

    [30]

    Hall J M, Chan L H. Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, latitudinal, and glacial-interglacial variation[J]. Geochimica et Cosmochimica Acta, 2004, 68(3):529-545. doi: 10.1016/S0016-7037(03)00451-4

    [31]

    Yu J M, Elderfield H, Jin Z D, et al. Controls on Sr/Ca in benthic foraminifera and implications for seawater Sr/Ca during the Late Pleistocene[J]. Quaternary Science Reviews, 2014, 98:1-6. doi: 10.1016/j.quascirev.2014.05.018

    [32]

    Rosenthal Y, Lear C H, Oppo D W, et al. Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: aragonitic species Hoeglundina elegans[J]. Paleoceanography, 2006, 21(1):PA1007.

    [33]

    Sepulcre S, Tribondeau M, Bassinot F, et al. Assessing the calibration of benthic foraminifera elemental ratios from the northeastern Atlantic[J]. Journal of Marine Science and Engineering, 2024, 12(5):736. doi: 10.3390/jmse12050736

    [34]

    McCorkle D C, Keigwin L D, Corliss B H, et al. The influence of microhabitats on the carbon isotopic composition of deep-sea benthic foraminifera[J]. Paleoceanography, 1990, 5(2):161-185. doi: 10.1029/PA005i002p00161

    [35]

    Elderfield H, Yu J, Anand P, et al. Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis[J]. Earth and Planetary Science Letters, 2006, 250(3-4):633-649. doi: 10.1016/j.jpgl.2006.07.041

    [36]

    Martin W R, Sayles F L. Organic matter oxidation in deep-sea sediments: distribution in the sediment column and implications for calcite dissolution[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2006, 53(5-7):771-792. doi: 10.1016/j.dsr2.2006.01.017

    [37]

    Weldeab S, Arce A, Kasten S. Mg/Ca-Δ CO32−pore water–temperature calibration for Globobulimina spp. : a sensitive paleothermometer for deep-sea temperature reconstruction[J]. Earth and Planetary Science Letters, 2016, 438:95-102. doi: 10.1016/j.jpgl.2016.01.009

    [38]

    Stirpe C R, Allen K A, Sikes E L, et al. The Mg/Ca proxy for temperature: a Uvigerina core-top study in the Southwest Pacific[J]. Geochimica et Cosmochimica Acta, 2021, 309:299-312. doi: 10.1016/j.gca.2021.06.015

    [39]

    Elderfield H, Greaves M, Barker S, et al. A record of bottom water temperature and seawater δ18O for the Southern Ocean over the past 440 kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp.[J]. Quaternary Science Reviews, 2010, 29(1-2):160-169. doi: 10.1016/j.quascirev.2009.07.013

    [40]

    Oppo D W, Lu W, Huang K F, et al. Deglacial temperature and carbonate saturation state variability in the tropical Atlantic at Antarctic intermediate water depths[J]. Paleoceanography and Paleoclimatology, 2023, 38(9):e2023PA004674. doi: 10.1029/2023PA004674

    [41]

    Barker S, Greaves M, Elderfield H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9):8407.

    [42]

    Lewis E R, Wallace D W R. Program developed for CO2 system calculations[R/OL]. 1998. https://www.osti.gov/servlets/purl/1464255.

    [43]

    Boudreau B P, Middelburg J J, Meysman F J R. Carbonate compensation dynamics[J]. Geophysical Research Letters, 2010, 37(3):L03603.

    [44]

    Boyle E A, Keigwin L D. Comparison of Atlantic and Pacific paleochemical records for the last 215, 000 years: changes in deep ocean circulation and chemical inventories[J]. Earth and Planetary Science Letters, 1985, 76(1-2):135-150. doi: 10.1016/0012-821X(85)90154-2

    [45]

    Elderfield H, Bertram C J, Erez J. A biomineralization model for the incorporation of trace elements into foraminiferal calcium carbonate[J]. Earth and Planetary Science Letters, 1996, 142(3-4):409-423. doi: 10.1016/0012-821X(96)00105-7

    [46]

    Rimstidt J D, Balog A, Webb J. Distribution of trace elements between carbonate minerals and aqueous solutions[J]. Geochimica et Cosmochimica Acta, 1998, 62(11):1851-1863. doi: 10.1016/S0016-7037(98)00125-2

    [47]

    Bentov S, Erez J. Impact of biomineralization processes on the Mg content of foraminiferal shells: a biological perspective[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(1):Q01P08.

    [48]

    Huh Y, Chan L H, Zhang L B, et al. Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget[J]. Geochimica et Cosmochimica Acta, 1998, 62(12):2039-2051. doi: 10.1016/S0016-7037(98)00126-4

    [49]

    Lear C H, Rosenthal Y. Benthic foraminiferal Li/Ca: insights into Cenozoic seawater carbonate saturation state[J]. Geology, 2006, 34(11):985-988. doi: 10.1130/G22792A.1

    [50]

    Yu J M, Elderfield H. Mg/Ca in the benthic foraminifera Cibicidoides wuellerstorfi and Cibicidoides mundulus: temperature versus carbonate ion saturation[J]. Earth and Planetary Science Letters, 2008, 276(1-2):129-139. doi: 10.1016/j.jpgl.2008.09.015

    [51]

    Baker P A, Gieskes J M, Elderfield H. Diagenesis of carbonates in deep-sea sediments; evidence from Sr/Ca ratios and interstitial dissolved Sr2+ data[J]. Journal of Sedimentary Research, 1982, 52(1):71-82.

    [52]

    Lorens R B. Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate[J]. Geochimica et Cosmochimica Acta, 1981, 45(4):553-561. doi: 10.1016/0016-7037(81)90188-5

    [53]

    Mucci A, Morse J W. The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influences of growth rate and solution composition[J]. Geochimica et Cosmochimica Acta, 1983, 47(2):217-233. doi: 10.1016/0016-7037(83)90135-7

    [54]

    Carpenter S J, Lohmann K C. Sr/Mg ratios of modern marine calcite: empirical indicators of ocean chemistry and precipitation rate[J]. Geochimica et Cosmochimica Acta, 1992, 56(5):1837-1849. doi: 10.1016/0016-7037(92)90314-9

    [55]

    Mucci A. Growth kinetics and composition of magnesian calcite overgrowths precipitated from seawater: quantitative influence of orthophosphate ions[J]. Geochimica et Cosmochimica Acta, 1986, 50(10):2255-2265. doi: 10.1016/0016-7037(86)90080-3

  • 加载中

(5)

(2)

计量
  • 文章访问数:  9
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2025-04-07
修回日期:  2025-04-28
录用日期:  2025-04-28
刊出日期:  2025-08-28

目录