水下原位铁分析技术研究进展

李宜泓, 王虎. 水下原位铁分析技术研究进展[J]. 海洋地质与第四纪地质, 2025, 45(4): 198-207. doi: 10.16562/j.cnki.0256-1492.2025052301
引用本文: 李宜泓, 王虎. 水下原位铁分析技术研究进展[J]. 海洋地质与第四纪地质, 2025, 45(4): 198-207. doi: 10.16562/j.cnki.0256-1492.2025052301
LI Yihong, WANG Hu. Advances in underwater in-situ iron analysis technology[J]. Marine Geology & Quaternary Geology, 2025, 45(4): 198-207. doi: 10.16562/j.cnki.0256-1492.2025052301
Citation: LI Yihong, WANG Hu. Advances in underwater in-situ iron analysis technology[J]. Marine Geology & Quaternary Geology, 2025, 45(4): 198-207. doi: 10.16562/j.cnki.0256-1492.2025052301

水下原位铁分析技术研究进展

  • 基金项目: 国家自然科学基金项目“西太平洋劳盆地火山岛弧热液羽流区铜同位素组成及其演化”(42376066)
详细信息
    作者简介: 李宜泓(2000—),女,硕士研究生,主要从事海洋地球化学研究,E-mail:liyihong@tongji.edu.cn
    通讯作者: 王虎(1975—),男,博士,教授,主要从事海洋地球化学研究,E-mail:wanghu@tongji.edu.cn
  • 中图分类号: P736

Advances in underwater in-situ iron analysis technology

More Information
  • 铁是海洋中重要的微量金属元素之一,直接关系到海洋初级生产力和全球气候变化。国际上从20世纪80年代开始,基于分光光度法、催化光度法、化学发光法或电化学法,联合流动分析技术、渗透泵技术或芯片实验室技术,研发了多种类型的原位铁分析方法和系统,并应用于海水或热液区铁浓度的分析。随着观测网技术的发展,对水下原位铁分析仪/传感器提出了更高的要求,如长期、连续观测。本文对目前国内外水下原位铁分析系统的主要原理、性能及其优缺点进行了介绍,并提出了今后可与海底观测网连接的原位铁分析系统的发展方向,以期为未来原位铁分析系统的研制提供有益借鉴。

  • 加载中
  • 图 1  原位检测海水中铁和锰浓度的Scanner系统流路图[26]

    Figure 1. 

    图 2  GAMOS系统流路图(a)及GAMOS系统组成图(b)[30]

    Figure 2. 

    图 3  配备8-HQ富集柱的ALCHIMIST系统流路图[17]

    Figure 3. 

    图 4  CHIMINI系统流路图(a)及实物图(b)[33]

    Figure 4. 

    图 5  原位电化学分析仪VIP结构示意图(a)、琼脂糖凝胶覆盖的铱基微孔汞膜电极(b)及琼脂糖凝胶覆盖的铱基微孔汞膜电极阵列(c)[21, 40-41]

    Figure 5. 

    图 6  渗透泵原理(a)及基于渗透原理的采样及原位铁分析系统(Fe-OsmoAnalyzer)(b)[18]

    Figure 6. 

    图 7  原位检测海水中铁和锰的LOC系统流路图(a)及所用PMMA芯片(b)[22]

    Figure 7. 

    图 8  顺序注射-化学发光分析系统结构示意图

    Figure 8. 

    表 1  原位铁分析方法和系统

    Table 1.  The in-situ Fe analytical methods and systems

    名称 方法(试剂) 测定频率 测定误差
    (测定范围或浓度)
    检测限
    /(nmol/L)
    应用海域及
    分析对象
    测量方式 参考文献
    Scanner CFA-单波长分光光度法(FZ) 5 s n.p. 25 热液区,Fe(II)、Fe(III) 剖面测量 [26]
    SUAVE CFA-单波长催化光度法(DPD,富集柱) 45 s n.p. 5 海水,总铁 剖面测量 [27]
    ALCHIMIST FIA-双波长分光光度法(FZ) 22 h−1 0.4%~5%
    (0~400 μmol/L)
    60 热液区,Fe(II)、Fe(III) 剖面测量 [16]
    ALCHIMIST FIA-双波长催化光度法(DPD,富集柱) 22 h−1 6%~7%
    (1~4 nmol/L)
    1.6 近岸,总铁 剖面测量 [17]
    CHEMINI FIA-双波长分光光度法(FZ) 30~60 h−1 0.6%(50 μmol/L) 300 热液区,Fe(II)、Fe(III) 6个月 [33]
    ISEA 电化学法-金汞齐电极 3.75 min n.p. 15000 Fe(II) 5天 [37-38]
    VIP 电化学法-凝胶覆盖汞膜电极 15~20 min n.p. 17.8 近岸,孔隙水,Fe(II) 一周 [20-21]
    Fe-OsmoAnalyzer 渗透泵-单波长分光光度法(FZ) 15 min 2%(50 μmol/L) 100 热液区,近岸,总铁 一年 [18]
    LOC LOC-单波长分光光度法(FZ) 12 h−1 2.1%(250 nmol/L) 27 近岸,Fe(II) 剖面测量 [22]
    LOC LOC-单波长分光光度法(FZ) 45 min 2.7%-Fe(II), 50 nmol/L
    1.9%-Fe(III), 100 nmol/L
    1.9 近岸,Fe(II)、Fe(III) 9天 [50]
    深海原位化学
    分析仪
    CFA-单波长分光光度法(FZ) 1 s n.p. 13-Fe(II)
    24-Fe(III)
    近海,Fe(II)、Fe(III) 剖面测量 [24]
    IonConExplorer FIA-单波长分光光度法(FZ) 7 min 2%(100 nmol/L~
    1μmol/L)
    27.25 近海 剖面测量 [23]
    GAMOS CFA-化学发光法 1 s 16%(0.6 nmol/L) 0.48 海水,Fe(II) 剖面测量 [30]
    注:SUAVE:水下热液异常监测系统,ALCHIMIST:原位化学分析仪,CHEMINI:原位微型化学分析仪,ISEA:原位电化学分析仪,VIP:原位伏安剖面仪,LOC:芯片实验室,GAMOS:地球化学异常监测系统。n.p.:未报道。
    下载: 导出CSV
  • [1]

    Morel F M M, Hudson R J M, Price N M. Limitation of productivity by trace metals in the sea[J]. Limnology and Oceanography, 1991, 36(8):1742-1755. doi: 10.4319/lo.1991.36.8.1742

    [2]

    Coale K H, Johnson K S, Fitzwater S E, et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean[J]. Nature, 1996, 383(6600):495-501. doi: 10.1038/383495a0

    [3]

    Mills M M, Ridame C, Davey M, et al. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic[J]. Nature, 2004, 429(6989):292-294. doi: 10.1038/nature02550

    [4]

    Tagliabue A, Bowie A R, Boyd P W, et al. The integral role of iron in ocean biogeochemistry[J]. Nature, 2017, 543(7643):51-59. doi: 10.1038/nature21058

    [5]

    Martin J H, Coale K H, Johnson K S, et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J]. Nature, 1994, 371(6493):123-129. doi: 10.1038/371123a0

    [6]

    Wang H, Yang Q H, Ji F W, et al. The geochemical characteristics and Fe(II) oxidation kinetics of hydrothermal plumes at the Southwest Indian Ridge[J]. Marine Chemistry, 2012, 134-135: 29-35.

    [7]

    Wang H, Yan Q Y, Yang Q H, et al. The size fractionation and speciation of iron in the Longqi hydrothermal plumes on the Southwest Indian Ridge[J]. Journal of Geophysical Research: Oceans, 2019, 124(6):4029-4043. doi: 10.1029/2018JC014713

    [8]

    Wang H, Resing J A, Yan Q Y, et al. The characteristics of Fe speciation and Fe-binding ligands in the Mariana back-arc hydrothermal plumes[J]. Geochimica et Cosmochimica Acta, 2021, 292:24-36. doi: 10.1016/j.gca.2020.09.016

    [9]

    Su H, Yang R J, Li Y, et al. Influence of humic substances on iron distribution in the East China Sea[J]. Chemosphere, 2018, 204:450-462. doi: 10.1016/j.chemosphere.2018.04.018

    [10]

    Su H, Yang R J, Zhang A B, et al. Dissolved iron distribution and organic complexation in the coastal waters of the East China Sea[J]. Marine Chemistry, 2015, 173:208-221. doi: 10.1016/j.marchem.2015.03.007

    [11]

    Zhang R F, Zhu X C, Yang C H, et al. Distribution of dissolved iron in the Pearl River (Zhujiang) Estuary and the northern continental slope of the South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2019, 167:14-24. doi: 10.1016/j.dsr2.2018.12.006

    [12]

    Zhu X C, Zhang R F, Wu Y, et al. The remobilization and removal of Fe in estuary—a case study in the Changjiang Estuary, China[J]. Journal of Geophysical Research: Oceans, 2018, 123(4):2539-2553. doi: 10.1002/2017JC013671

    [13]

    林明月, 潘大为, 胡雪萍, 等. 烟台近海水体不同形态铁的检测分析[J]. 环境化学, 2016, 35(2):297-304 doi: 10.7524/j.issn.0254-6108.2016.02.2015092301

    LIN Mingyue, PAN Dawei, HU Xueping, et al. Speciation analysis of iron in Yantai coastal waters[J]. Environmental Chemistry, 2016, 35(2):297-304.] doi: 10.7524/j.issn.0254-6108.2016.02.2015092301

    [14]

    Johnson K S, Beehler C L, Sakamoto-Arnold C M. A submersible flow analysis system[J]. Analytica Chimica Acta, 1986, 179:245-257. doi: 10.1016/S0003-2670(00)84469-4

    [15]

    Johnson K S, Beehler C L, Sakamoto-Arnold C M, et al. In situ measurements of chemical distributions in a deep-sea hydrothermal vent field[J]. Science, 1986, 231(4742):1139-1141. doi: 10.1126/science.231.4742.1139

    [16]

    Sarradin P M, Le Bris N, Le Gall C, et al. Fe analysis by the ferrozine method: adaptation to FIA towards in situ analysis in hydrothermal environment[J]. Talanta, 2005, 66(5):1131-1138. doi: 10.1016/j.talanta.2005.01.012

    [17]

    Laës A, Vuillemin R, Leilde B, et al. Impact of environmental factors on in situ determination of iron in seawater by flow injection analysis[J]. Marine Chemistry, 2005, 97(3-4):347-356. doi: 10.1016/j.marchem.2005.06.002

    [18]

    Chapin T P, Jannasch H W, Johnson K S. In situ osmotic analyzer for the year-long continuous determination of Fe in hydrothermal systems[J]. Analytica Chimica Acta, 2002, 463(2):265-274. doi: 10.1016/S0003-2670(02)00423-3

    [19]

    Brendel P J, Luther G W I. Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S(-II) in porewaters of marine and freshwater sediments[J]. Environmental Science & Technology, 1995, 29(3):751-761.

    [20]

    Tercier M L, Buffle J, Graziottin F. A novel voltammetric in-situ profiling system for continuous real-time monitoring of trace elements in natural waters[J]. Electroanalysis, 1998, 10(6):355-363. doi: 10.1002/(SICI)1521-4109(199805)10:6<355::AID-ELAN355>3.0.CO;2-F

    [21]

    Tercier-Waeber M L, Buffle J, Confalonieri F, et al. Submersible voltammetric probes for in situ real-time trace element measurements in surface water, groundwater and sediment-water interface[J]. Measurement Science and Technology, 1999, 10(12):1202-1213. doi: 10.1088/0957-0233/10/12/312

    [22]

    Milani A, Statham P J, Mowlem M C, et al. Development and application of a microfluidic in-situ analyzer for dissolved Fe and Mn in natural waters[J]. Talanta, 2015, 136:15-22. doi: 10.1016/j.talanta.2014.12.045

    [23]

    Jin B, Chen Z W, Zhu S Q. Development of an in situ analyzer for iron in deep sea environment[J]. Advanced Materials Research, 2013, 694-697: 1187-1191.

    [24]

    王洪亮, 赵月霞, 杨磊, 等. 深海溶解态铁、锰和硫化物的快速测量原位分析仪研制[J]. 分析化学, 2021, 49(12):1977-1985

    WANG Hongliang, ZHAO Yuexia, YANG Lei, et al. Development of an in-situ analyzer for rapid measurement of dissolved iron, manganese and sulfide in deep sea[J]. Chinese Journal of Analytical Chemistry, 2021, 49(12):1977-1985.]

    [25]

    Skeggs Jr L T. An automatic method for colorimetric analysis[J]. American Journal of Clinical Pathology, 1957, 28(3):311-322.

    [26]

    Chin C S, Coale K H, Elrod V A, et al. In situ observations of dissolved iron and manganese in hydrothermal vent plumes, Juan de Fuca Ridge[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B3):4969-4984. doi: 10.1029/93JB02036

    [27]

    Massoth G J, Milbburn H B, Johnson K S, et al. A SUAVE (Submersible System Used to Assess Vented Emissions) approach to plume sensing: the buoyant plume experiment at Cleft segment, Juan de Fuca Ridge, and plume exploration along the EPR 9-11°N[J]. EOS Transactions AGU, 1991, 72:234.

    [28]

    Measures C I, Yuan J, Resing J A. Determination of iron in seawater by flow injection analysis using in-line preconcentration and spectrophotometric detection[J]. Marine Chemistry, 1995, 50(1-4):3-12. doi: 10.1016/0304-4203(95)00022-J

    [29]

    Okamura K, Gamo T, Obata H, et al. Selective and sensitive determination of trace manganese in sea water by flow through technique using luminol-hydrogen peroxide chemiluminescence detection[J]. Analytica Chimica Acta, 1998, 377(2-3):125-131. doi: 10.1016/S0003-2670(98)00617-5

    [30]

    Obata H, Mase A, Gamo T, et al. In-situ analysis of sub-nanomolar level of Fe(II) in open-ocean waters[J]. Analytical Sciences, 2024, 40(11):2017-2025. doi: 10.1007/s44211-024-00637-0

    [31]

    Ṙuz̆ic̆ka J, Hansen E H. Flow injection analyses: part I. A new concept of fast continuous flow analysis[J]. Analytica Chimica Acta, 1975, 78(1):145-157. doi: 10.1016/S0003-2670(01)84761-9

    [32]

    Zagatto E A G, Arruda M A Z, Jacintho A O, et al. Compensation of the Schlieren effect in flow-injection analysis by using dual-wavelength spectrophotometry[J]. Analytica Chimica Acta, 1990, 234:153-160. doi: 10.1016/S0003-2670(00)83550-3

    [33]

    Vuillemin R, Le Roux D, Dorval P, et al. CHEMINI: a new in situ chemical miniaturized analyzer[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(8):1391-1399. doi: 10.1016/j.dsr.2009.02.002

    [34]

    Laës-Huon A, Cathalot C, Legrand J, et al. Long-term in situ survey of reactive iron concentrations at the EMSO-Azores observatory[J]. IEEE Journal of Oceanic Engineering, 2016, 41(4):744-752. doi: 10.1109/JOE.2016.2552779

    [35]

    Ghoneim E M. Simultaneous determination of Mn(II), Cu(II) and Fe(III) as 2-(5′-bromo-2′-pyridylazo)-5-diethylaminophenol complexes by adsorptive cathodic stripping voltammetry at a carbon paste electrode[J]. Talanta, 2010, 82(2):646-652. doi: 10.1016/j.talanta.2010.05.025

    [36]

    Lu M, Rees N V, Kabakaev A S, et al. Determination of iron: electrochemical methods[J]. Electroanalysis, 2012, 24(8):1693-1702. doi: 10.1002/elan.201200268

    [37]

    Luther G W, Rozan T F, Taillefert M, et al. Chemical speciation drives hydrothermal vent ecology[J]. Nature, 2001, 410(6830):813-816. doi: 10.1038/35071069

    [38]

    Luther G W, Glazer B T, Ma S F, et al. Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA)[J]. Marine Chemistry, 2008, 108(3-4):221-235. doi: 10.1016/j.marchem.2007.03.002

    [39]

    Tercier M L, Buffle J. Antifouling membrane-covered voltammetric microsensor for in situ measurements in natural waters[J]. Analytical Chemistry, 1996, 68(20):3670-3678. doi: 10.1021/ac960265p

    [40]

    Belmont C, Tercier M L, Buffle J, et al. Mercury-plated iridium-based microelectrode arrays for trace metals detection by voltammetry: optimum conditions and reliability[J]. Analytica Chimica Acta, 1996, 329(3):203-214. doi: 10.1016/0003-2670(96)00116-X

    [41]

    Tercier-Waeber M L, Confalonieri F, Abdou M, et al. Advanced multichannel submersible probe for autonomous high-resolution in situ monitoring of the cycling of the potentially bioavailable fraction of a range of trace metals[J]. Chemosphere, 2021, 282:131014. doi: 10.1016/j.chemosphere.2021.131014

    [42]

    Braungardt C B, Achterberg E P, Axelsson B, et al. Analysis of dissolved metal fractions in coastal waters: an inter-comparison of five voltammetric in situ profiling (VIP) systems[J]. Marine Chemistry, 2009, 114(1-2):47-55. doi: 10.1016/j.marchem.2009.03.006

    [43]

    Cuartero M. Electrochemical sensors for in-situ measurement of ions in seawater[J]. Sensors and Actuators B: Chemical, 2021, 334:129635. doi: 10.1016/j.snb.2021.129635

    [44]

    Abdou M, Tercier-Waeber M L. New insights into trace metal speciation and interaction with phytoplankton in estuarine coastal waters[J]. Marine Pollution Bulletin, 2022, 181:113845. doi: 10.1016/j.marpolbul.2022.113845

    [45]

    Layglon N, Creffield S, Bakker E, et al. On-field high-resolution quantification of the cobalt fraction available for bio-uptake in natural waters using antifouling gel-integrated microelectrode arrays[J]. Marine Pollution Bulletin, 2023, 189:114807. doi: 10.1016/j.marpolbul.2023.114807

    [46]

    Buffle J, Tercier-Waeber M L. Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measurements[J]. TrAC Trends in Analytical Chemistry, 2005, 24(3):172-191. doi: 10.1016/j.trac.2004.11.013

    [47]

    Li Q L, Pei J X, Lu B Y, et al. Time-series sampling of trace metals in surface waters using osmotic sampler with air segmentation and preservative addition[J]. Science of the Total Environment, 2021, 800:149517. doi: 10.1016/j.scitotenv.2021.149517

    [48]

    卢冰艳. 基于渗透泵的时间序列采样器的研制及其在水体重金属监测中的应用[D]. 厦门大学硕士学位论文, 2016

    LU Bingyan. Development of the time-series osmotic pump sample and its application for heavy metals monitoring of water system[D]. Master Dissertation of Xiamen University, 2016.]

    [49]

    龚静. 基于渗透泵和液相微萃取的水体污染物时间序列浓度被动采样器的研制及初步应用[D]. 厦门大学硕士学位论文, 2017

    GONG Jing. Development and preliminary application of a time-series passive sampler for monitoring of pollutants in aquatic environment based on osmotic pump and liquid phase microextraction[D]. Master Dissertation of Xiamen University, 2017.]

    [50]

    Geiβler F, Achterberg E P, Beaton A D, et al. Evaluation of a Ferrozine based autonomous in situ Lab-on-Chip analyzer for dissolved iron species in coastal waters[J]. Frontiers in Marine Science, 2017, 4:322. doi: 10.3389/fmars.2017.00322

    [51]

    Grand M M, Laes-Huon A, Fietz S, et al. Developing autonomous observing systems for micronutrient trace metals[J]. Frontiers in Marine Science, 2019, 6:35. doi: 10.3389/fmars.2019.00035

    [52]

    Oliveira H M, Grand M M, Ruzicka J, et al. Towards chemiluminescence detection in micro-sequential injection lab-on-valve format: a proof of concept based on the reaction between Fe(II) and luminol in seawater[J]. Talanta, 2015, 133:107-111. doi: 10.1016/j.talanta.2014.06.076

  • 加载中

(8)

(1)

计量
  • 文章访问数:  127
  • PDF下载数:  42
  • 施引文献:  0
出版历程
收稿日期:  2025-05-23
修回日期:  2025-06-16
录用日期:  2025-06-16
刊出日期:  2025-08-28

目录