East Asian monsoon and sea-level change regulated sediment records in the Penghu Canyon since the last glaciation
-
摘要:
澎湖峡谷由于其独特的地理位置和沉积环境,保存了高分辨率的沉积记录,为研究古环境演变提供了珍贵材料。本研究对2018年中法合作HydroSed航次在南海东北部澎湖峡谷西侧堤岸的MD18-3570钻井岩芯开展了1 cm分辨率X射线荧光光谱岩芯元素扫描,结合14C测年,研究了过去54 ka以来深海峡谷沉积记录演变及其受控机制。研究发现,Al、Si与K元素在12~30 cal.kaBP期间呈现低值而在其他时期呈现高值,Zr元素与上述3种元素的变化趋势相反。此外,所有元素均呈现百年-千年尺度波动特征。本文选用K/Al比值反映陆源碎屑化学风化状态,Si/Al与Zr/Al比值反映陆源碎屑粒度变化。K/Al比值变化与董哥洞-葫芦洞石笋氧同位素记录变化相似,且在冷气候事件期间(新仙女木事件和海因里希事件H1–H5)呈现异常高值,表明东亚季风降水调控深海沉积物的化学风化状态。东亚季风降雨减弱,可能导致台湾流域化学风化减弱、物理剥蚀增强,体现为深海沉积记录的K/Al比值升高(化学风化减弱),季风降雨增强则诱发相反的沉积记录。粒度指标Zr/Al在低海平面时期(12~30 cal.kaBP)呈现高值,这可能与陆源碎屑搬运距离缩短导致的粗粒沉积物输入增加有关。因此,本研究认为海平面变化调控粗粒陆源碎屑输入,而季风降雨变化调控深海沉积的化学风化强度。本研究首次提供了澎湖峡谷沉积环境演变的长时间、高分辨率沉积记录,为深海峡谷沉积记录的演化机制提供新的见解。
Abstract:The Penghu Canyon preserved high-resolution sedimentary records due to its unique deep-sea geographical location and depositional environment, and provided valuable materials for the study of paleoenvironmental evolution. We scanned a drilling core of Well MD18-3570 situated on the west bank of the Penghu Canyon in the northeast of the South China Sea (22°11.48′N, 119°38.68′E, water depth
1572 m, during Sino-French HydroSed cooperation voyage in 2018) at 1-cm resolution using X-ray fluorescence, analyzed the scanning data, and combined with 14C dating data, from which sediment record evolution and its controlling mechanism since the last 54 ka. Results reveal that the contents of Al, Si, and K were low in the period of 12–30 cal.kaBP and high in other periods, while that of Zr showed the opposite trend to the above three elements. In addition, all the elements showed fluctuations on the centennial-millennial scale. We choose the K/Al ratio to reflect the chemical weathering state of terrigenous detritus, and Si/Al and Zr/Al ratios to reflect the grain-size changes of terrigenous inputs. The K/Al ratio variations were similar to the stalagmite oxygen isotope variations in the Dongge-Hulu Caves, and showed anomalously high values during cold climatic events (the Younger Dryas and Heinrich Events H1–H5), suggesting that the East Asian monsoon precipitation regulated the chemical weathering intensity of the deep-sea sediments. The weakened monsoon rainfall might lead to the reduced chemical weathering and the enhanced physical erosion in Taiwan drainage basin, which is reflected as the increased K/Al ratio (weakened chemical weathering) of the deep-sea sediment records. On the other hand, the enhanced monsoon rainfall induced the opposite sedimentary record. Grain size indicator Zr/Al show high values during the sea-level lowstands (12–30 cal.kaBP), which might be related to the increased coarse-grained input due to shorter transport distances of terrigenous sediments. Therefore, we suggested that sea-level changes regulated coarse-grained terrigenous detritus input, and monsoon rainfall changes regulated the chemical weathering intensity of deep-sea sediments. This study provided the first long-term, high-resolution sedimentary record of the Penghu Canyon, and provided new insights into the evolutionary mechanism of the canyon sedimentary record.-
Key words:
- XRF core scanning /
- East Asian monsoon /
- sea level change /
- last glaciation /
- Penghu Canyon
-
-
表 1 MD18-3570岩芯浮游有孔虫14C测年结果
Table 1. 14C dating results of planktonic foraminifera from core MD18-3570
序号 深度/cm 14C放射年龄/aBP 日历年龄/cal.aBP 误差/a, 1σ 1 11.5 1590 1188 113 2 311.5 9830 10922 163 3 591.5 22260 25828 131 4 861.5 27590 31053 130 5 1161 36590 40763 303 6 1461.5 42340 44449 583 -
[1] Liu Z F, Zhao Y L, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153:238-273. doi: 10.1016/j.earscirev.2015.08.005
[2] Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean: A Global Synthesis[M]. Cambridge: Cambridge University Press, 2011: 1-394.
[3] Clift P D, Wan S M, Blusztajn J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25Ma in the northern South China Sea: a review of competing proxies[J]. Earth-Science Reviews, 2014, 130:86-102. doi: 10.1016/j.earscirev.2014.01.002
[4] Wan S M, Tian J, Steinke S, et al. Evolution and variability of the East Asian summer monsoon during the Pliocene: evidence from clay mineral records of the South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 293(1-2):237-247. doi: 10.1016/j.palaeo.2010.05.025
[5] Zhong Y, Wilson D J, Liu J B, et al. Contrasting sensitivity of weathering proxies to quaternary climate and sea-level fluctuations on the southern slope of the South China Sea[J]. Geophysical Research Letters, 2021, 48(24):e2021GL096433. doi: 10.1029/2021GL096433
[6] Wan S M, Li A C, Clift P D, et al. Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(3-4):561-582. doi: 10.1016/j.palaeo.2007.07.009
[7] Steinke S, Kienast M, Hanebuth T. On the significance of sea-level variations and shelf paleo-morphology in governing sedimentation in the southern South China Sea during the last deglaciation[J]. Marine Geology, 2003, 201(1-3):179-206. doi: 10.1016/S0025-3227(03)00216-0
[8] Ho C S. An Introduction to the Geology of Taiwan: Explanatory Text of the Geologic Map of Taiwan[M]. 2nd ed. Central Geological Survey, Ministry of Economic Affairs, 1988.
[9] Chiang C S, Yu H S. Controls of submarine canyons connected to shore during the LGM sea-level rise: examples from Taiwan[J]. Journal of Marine Science and Engineering, 2022, 10(4):494. doi: 10.3390/jmse10040494
[10] Yu H S, Hong E. Shifting submarine canyons and development of a foreland basin in SW Taiwan: controls of foreland sedimentation and longitudinal sediment transport[J]. Journal of Asian Earth Sciences, 2006, 27(6):922-932. doi: 10.1016/j.jseaes.2005.09.007
[11] 刘丛舒, 丁巍伟, 殷绍如, 等. 南海北部陆坡区海底峡谷地貌、沉积特征及控制因素[J]. 海洋学研究, 2019, 37(2):28-43
LIU Congshu, DING Weiwei, YIN Shaoru, et al. Geomorphology, sedimentary characteristics and controlling factors of submarine canyons in the northern continental slope of the South China Sea[J]. Journal of Marine Sciences, 2019, 37(2):28-43.]
[12] Hanebuth T, Stattegger K, Grootes P M. Rapid flooding of the Sunda shelf: a late-glacial sea-level record[J]. Science, 2000, 288(5468):1033-1035. doi: 10.1126/science.288.5468.1033
[13] Zhang S, Jian X, Liu J T, et al. Climate-driven drainage reorganization of small mountainous rivers in Taiwan (East Asia) since the last glaciation: the Zhuoshui River example[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 586:110759. doi: 10.1016/j.palaeo.2021.110759
[14] Zhao Y, Yang S Y, Liu J T, et al. Reconstruction of silicate weathering intensity and paleoenvironmental change during the late Quaternary in the Zhuoshui River catchment in Taiwan[J]. Quaternary International, 2017, 452:43-53. doi: 10.1016/j.quaint.2016.12.013
[15] Chen C S, Chen Y L. The rainfall characteristics of Taiwan[J]. Monthly Weather Review, 2003, 131(7):1323-1341. doi: 10.1175/1520-0493(2003)131<1323:TRCOT>2.0.CO;2
[16] Chang C P, Wang Z, McBride J, et al. Annual cycle of Southeast Asia—Maritime Continent rainfall and the asymmetric monsoon transition[J]. Journal of Climate, 2005, 18(2):287-301. doi: 10.1175/JCLI-3257.1
[17] Tu J Y, Chou C. Changes in precipitation frequency and intensity in the vicinity of Taiwan: Typhoon versus non-typhoon events[J]. Environmental Research Letters, 2013, 8(1):014023.
[18] Xu D Y, Malanotte-Rizzoli P. The seasonal variation of the upper layers of the South China Sea (SCS) circulation and the Indonesian through flow (ITF): an ocean model study[J]. Dynamics of Atmospheres and Oceans, 2013, 63:103-130. doi: 10.1016/j.dynatmoce.2013.05.002
[19] Xue H J, Chai F, Pettigrew N, et al. Kuroshio intrusion and the circulation in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2004, 109(C2):C02017.
[20] Liu Z F, Colin C, Li X J, et al. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: source and transport[J]. Marine Geology, 2010, 277(1-4):48-60. doi: 10.1016/j.margeo.2010.08.010
[21] Huang J, Wan S M, Xiong Z F, et al. Geochemical records of Taiwan-sourced sediments in the South China Sea linked to Holocene climate changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441:871-881. doi: 10.1016/j.palaeo.2015.10.036
[22] Liu Z F, Tuo S T, Colin C, et al. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation[J]. Marine Geology, 2008, 255(3-4):149-155. doi: 10.1016/j.margeo.2008.08.003
[23] Defant M J, Jackson T E, Drummond M S, et al. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview[J]. Journal of the Geological Society, 1992, 149(4):569-579. doi: 10.1144/gsjgs.149.4.0569
[24] Dadson S J, Hovius N, Chen H, et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen[J]. Nature, 2003, 426(6967):648-651. doi: 10.1038/nature02150
[25] Wang B, LinHo, Zhang Y S, et al. Definition of South China Sea monsoon onset and commencement of the East Asia summer monsoon[J]. Journal of Climate, 2004, 17(4):699-710. doi: 10.1175/1520-0442(2004)017<0699:DOSCSM>2.0.CO;2
[26] Chen G X, Hu P, Hou Y J, et al. Intrusion of the Kuroshio into the South China Sea, in September 2008[J]. Journal of Oceanography, 2011, 67(4):439-448. doi: 10.1007/s10872-011-0047-y
[27] Yoneda M, Uno H, Shibata Y, et al. Radiocarbon marine reservoir ages in the western Pacific estimated by pre-bomb molluscan shells[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 259(1):432-437. doi: 10.1016/j.nimb.2007.01.184
[28] Hirabayashi S, Yokoyama Y, Suzuki A, et al. Local marine reservoir age variability at Luzon Strait in the South China Sea during the Holocene[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 455:171-177.
[29] Hideshima S, Matsumoto E, Abe O, et al. Northwest Pacific marine reservoir correction estimated from annually banded coral from Ishigaki Island, Southern Japan[J]. Radiocarbon, 2001, 43(2A):473-476. doi: 10.1017/S0033822200038352
[30] Southon J, Kashgarian M, Fontugne M, et al. Marine reservoir corrections for the Indian Ocean and Southeast Asia[J]. Radiocarbon, 2002, 44(1):167-180. doi: 10.1017/S0033822200064778
[31] Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35(1):215-230. doi: 10.1017/S0033822200013904
[32] Blaauw M. Methods and code for 'classical' age-modelling of radiocarbon sequences[J]. Quaternary Geochronology, 2010, 5(5):512-518. doi: 10.1016/j.quageo.2010.01.002
[33] Zhao H C, Liu Z F, Zhao Y L, et al. Lunar nodal tidal cycle influences on the input of coarse sediments during the last glaciation in the deep South China Sea[J]. Quaternary Science Reviews, 2023, 310:108114. doi: 10.1016/j.quascirev.2023.108114
[34] Zhao H C, Liu Z F, Zhao Y L. Sea level and East Asian monsoon influenced chemical weathering records in the southern South China Sea over the past 21 ka[J]. Global and Planetary Change, 2024, 232:104324. doi: 10.1016/j.gloplacha.2023.104324
[35] Chen J, Ma J Q, Xu K H, et al. Provenance discrimination of the clay sediment in the western Taiwan Strait and its implication for coastal current variability during the late-Holocene[J]. The Holocene, 2017, 27(1):110-121. doi: 10.1177/0959683616652706
[36] Hu S Y, Zeng Z G, Fang X, et al. Increasing terrigenous sediment supply from Taiwan to the southern Okinawa Trough over the last 3000years evidenced by Sr Nd isotopes and geochemistry[J]. Sedimentary Geology, 2020, 406:105725. doi: 10.1016/j.sedgeo.2020.105725
[37] Huh C A, Chen W F, Hsu F H, et al. Modern (<100 years) sedimentation in the Taiwan Strait: rates and source-to-sink pathways elucidated from radionuclides and particle size distribution[J]. Continental Shelf Research, 2011, 31(1):47-63. doi: 10.1016/j.csr.2010.11.002
[38] Liu F, Yang C P, Chang X H, et al. Provenance discrimination of the last glacial sediments from the northeastern South China Sea and its paleoenvironmental indications[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2018, 29(2):131-148. doi: 10.3319/TAO.2017.07.31.01
[39] Liu J T, Hsu R T, Hung J J, et al. From the highest to the deepest: the Gaoping River-Gaoping Submarine Canyon dispersal system[J]. Earth-Science Reviews, 2016, 153:274-300. doi: 10.1016/j.earscirev.2015.10.012
[40] Wang Y Y, Fan D D, Liu J T, et al. Clay-mineral compositions of sediments in the Gaoping River-Sea system: implications for weathering, sedimentary routing and carbon cycling[J]. Chemical Geology, 2016, 447:11-26. doi: 10.1016/j.chemgeo.2016.10.024
[41] Rothwell R G, Croudace I W. Twenty years of XRF core scanning marine sediments: what do geochemical proxies tell us?[M]//Croudace I W, Rothwell R G. Micro-XRF Studies of Sediment Cores: Applications of A Non-Destructive Tool for the Environmental Sciences. Dordrecht: Springer, 2015: 25-102.
[42] Wei G J, Liu Y, Li X H, et al. Climatic impact on Al, K, Sc and Ti in marine sediments: evidence from ODP Site 1144, South China Sea[J]. Geochemical Journal, 2003, 37(5):593-602. doi: 10.2343/geochemj.37.593
[43] 王树民, 陈泓君, 钟和贤. 南海东北部晚第四纪地层不整合的发现及其地质意义[J]. 南海地质研究, 2001(13):55-61
WANG Shumin, CHEN Hongjun, ZHONG Hexian. The foundation of late Quaternary strata unconformity and their geological significance in the northeastern South China Sea[J]. Research of Ecological South China Sea, 2001(13):55-61.]
[44] Wang X X, Wang Y M, Tan M X, et al. Deep-water deposition in response to sea–level fluctuations in the past 30 kyr on the northern margin of the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2020, 163:103317. doi: 10.1016/j.dsr.2020.103317
[45] Shen X T, Jian X, Li C, et al. Submarine topography-related spatial variability of the southern Taiwan Strait sands (East Asia)[J]. Marine Geology, 2021, 436:106495. doi: 10.1016/j.margeo.2021.106495
[46] Zachos J C, Dickens G R, Zeebe R E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 2008, 451(7176):279-283. doi: 10.1038/nature06588
[47] Syvitski J P M, Milliman J D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean[J]. The Journal of Geology, 2007, 115(1):1-19. doi: 10.1086/509246
[48] Li M K, Ouyang T P, Tian C J, et al. Sedimentary responses to the East Asian monsoon and sea level variations recorded in the northern South China Sea over the past 36 kyr[J]. Journal of Asian Earth Sciences, 2019, 171:213-224. doi: 10.1016/j.jseaes.2018.01.001
[49] 董飞银, 徐元芹, 李萍, 等. 南海北部陆坡DLW3101孔MIS5期以来的古海洋学信息[J]. 海洋科学进展, 2019, 37(3):432-441 doi: 10.3969/j.issn.1671-6647.2019.03.007
DONG Feiyin, XU Yuanqin, LI Ping, et al. Paleoceanographic information of the core DlW3101 in the northern slope of the South China Sea since MIS5[J]. Advances in Marine Science, 2019, 37(3):432-441.] doi: 10.3969/j.issn.1671-6647.2019.03.007
[50] 齐昆. 第四纪晚期珠江陆缘洲扇源—汇系统对海平面变化的响应机制[D]. 中国石油大学(北京)博士学位论文, 2023: 95-101
QI Kun. The response mechanism of delta-to-fan source-to-sink systems to sea-level changes on the late-Quaternary Pearl River margin[D]. Doctor Dissertation of China University of Petroleum, Beijing, 2023: 95-101.]
[51] 张军强. 黄东海陆架末次盛冰期以来海平面变化及沉积体系响应[D]. 中国海洋大学硕士学位论文, 2008:53-62
ZHANG Junqiang. The Sea level changes and Response of sedimentary system on the ECS and YS shelf after the Last Glacial Maximum[D]. Master Dissertation of Ocean University of China, 2008:53-62.]
[52] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 2016, 534(7609):640-646. doi: 10.1038/nature18591
-