末次冰期以来东亚季风和海平面变化调控澎湖峡谷沉积记录

谢巍, 赵宏超, 刘志飞, 赵玉龙, ColinChristophe. 末次冰期以来东亚季风和海平面变化调控澎湖峡谷沉积记录[J]. 海洋地质与第四纪地质, 2025, 45(4): 17-25. doi: 10.16562/j.cnki.0256-1492.2025053002
引用本文: 谢巍, 赵宏超, 刘志飞, 赵玉龙, ColinChristophe. 末次冰期以来东亚季风和海平面变化调控澎湖峡谷沉积记录[J]. 海洋地质与第四纪地质, 2025, 45(4): 17-25. doi: 10.16562/j.cnki.0256-1492.2025053002
XIE Wei, ZHAO Hongchao, LIU Zhifei, ZHAO Yulong, Colin Christophe. East Asian monsoon and sea-level change regulated sediment records in the Penghu Canyon since the last glaciation[J]. Marine Geology & Quaternary Geology, 2025, 45(4): 17-25. doi: 10.16562/j.cnki.0256-1492.2025053002
Citation: XIE Wei, ZHAO Hongchao, LIU Zhifei, ZHAO Yulong, Colin Christophe. East Asian monsoon and sea-level change regulated sediment records in the Penghu Canyon since the last glaciation[J]. Marine Geology & Quaternary Geology, 2025, 45(4): 17-25. doi: 10.16562/j.cnki.0256-1492.2025053002

末次冰期以来东亚季风和海平面变化调控澎湖峡谷沉积记录

  • 基金项目: 国家自然科学基金重点项目“南海南部深海沉积搬运过程及其对海洋碳循环影响的锚系观测研究”(42130407)
详细信息
    作者简介: 谢巍(1998—),男,硕士研究生,海洋地质专业,E-mail:wxie@tongji.edu.cn
    通讯作者: 赵宏超(1993—),男,博士后,主要从事海洋沉积研究,E-mail:hongchao_zhao@tongji.edu.cn
  • 中图分类号: P736

East Asian monsoon and sea-level change regulated sediment records in the Penghu Canyon since the last glaciation

More Information
  • 澎湖峡谷由于其独特的地理位置和沉积环境,保存了高分辨率的沉积记录,为研究古环境演变提供了珍贵材料。本研究对2018年中法合作HydroSed航次在南海东北部澎湖峡谷西侧堤岸的MD18-3570钻井岩芯开展了1 cm分辨率X射线荧光光谱岩芯元素扫描,结合14C测年,研究了过去54 ka以来深海峡谷沉积记录演变及其受控机制。研究发现,Al、Si与K元素在12~30 cal.kaBP期间呈现低值而在其他时期呈现高值,Zr元素与上述3种元素的变化趋势相反。此外,所有元素均呈现百年-千年尺度波动特征。本文选用K/Al比值反映陆源碎屑化学风化状态,Si/Al与Zr/Al比值反映陆源碎屑粒度变化。K/Al比值变化与董哥洞-葫芦洞石笋氧同位素记录变化相似,且在冷气候事件期间(新仙女木事件和海因里希事件H1–H5)呈现异常高值,表明东亚季风降水调控深海沉积物的化学风化状态。东亚季风降雨减弱,可能导致台湾流域化学风化减弱、物理剥蚀增强,体现为深海沉积记录的K/Al比值升高(化学风化减弱),季风降雨增强则诱发相反的沉积记录。粒度指标Zr/Al在低海平面时期(12~30 cal.kaBP)呈现高值,这可能与陆源碎屑搬运距离缩短导致的粗粒沉积物输入增加有关。因此,本研究认为海平面变化调控粗粒陆源碎屑输入,而季风降雨变化调控深海沉积的化学风化强度。本研究首次提供了澎湖峡谷沉积环境演变的长时间、高分辨率沉积记录,为深海峡谷沉积记录的演化机制提供新的见解。

  • 加载中
  • 图 1  南海北部及台湾海峡地形图

    Figure 1. 

    图 2  MD18-3570岩芯年龄模型

    Figure 2. 

    图 3  MD18-3570岩芯XRF元素扫描结果的时间演化

    Figure 3. 

    图 4  MD18-3570岩芯的元素相关性分析

    Figure 4. 

    图 5  MD18-3570岩芯元素比值及其与海平面[12]和董哥洞、葫芦洞氧同位素数据[52]对比

    Figure 5. 

    表 1  MD18-3570岩芯浮游有孔虫14C测年结果

    Table 1.  14C dating results of planktonic foraminifera from core MD18-3570

    序号深度/cm14C放射年龄/aBP日历年龄/cal.aBP误差/a, 1σ
    111.515901188113
    2311.5983010922163
    3591.52226025828131
    4861.52759031053130
    511613659040763303
    61461.54234044449583
    下载: 导出CSV
  • [1]

    Liu Z F, Zhao Y L, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153:238-273. doi: 10.1016/j.earscirev.2015.08.005

    [2]

    Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean: A Global Synthesis[M]. Cambridge: Cambridge University Press, 2011: 1-394.

    [3]

    Clift P D, Wan S M, Blusztajn J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25Ma in the northern South China Sea: a review of competing proxies[J]. Earth-Science Reviews, 2014, 130:86-102. doi: 10.1016/j.earscirev.2014.01.002

    [4]

    Wan S M, Tian J, Steinke S, et al. Evolution and variability of the East Asian summer monsoon during the Pliocene: evidence from clay mineral records of the South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 293(1-2):237-247. doi: 10.1016/j.palaeo.2010.05.025

    [5]

    Zhong Y, Wilson D J, Liu J B, et al. Contrasting sensitivity of weathering proxies to quaternary climate and sea-level fluctuations on the southern slope of the South China Sea[J]. Geophysical Research Letters, 2021, 48(24):e2021GL096433. doi: 10.1029/2021GL096433

    [6]

    Wan S M, Li A C, Clift P D, et al. Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(3-4):561-582. doi: 10.1016/j.palaeo.2007.07.009

    [7]

    Steinke S, Kienast M, Hanebuth T. On the significance of sea-level variations and shelf paleo-morphology in governing sedimentation in the southern South China Sea during the last deglaciation[J]. Marine Geology, 2003, 201(1-3):179-206. doi: 10.1016/S0025-3227(03)00216-0

    [8]

    Ho C S. An Introduction to the Geology of Taiwan: Explanatory Text of the Geologic Map of Taiwan[M]. 2nd ed. Central Geological Survey, Ministry of Economic Affairs, 1988.

    [9]

    Chiang C S, Yu H S. Controls of submarine canyons connected to shore during the LGM sea-level rise: examples from Taiwan[J]. Journal of Marine Science and Engineering, 2022, 10(4):494. doi: 10.3390/jmse10040494

    [10]

    Yu H S, Hong E. Shifting submarine canyons and development of a foreland basin in SW Taiwan: controls of foreland sedimentation and longitudinal sediment transport[J]. Journal of Asian Earth Sciences, 2006, 27(6):922-932. doi: 10.1016/j.jseaes.2005.09.007

    [11]

    刘丛舒, 丁巍伟, 殷绍如, 等. 南海北部陆坡区海底峡谷地貌、沉积特征及控制因素[J]. 海洋学研究, 2019, 37(2):28-43

    LIU Congshu, DING Weiwei, YIN Shaoru, et al. Geomorphology, sedimentary characteristics and controlling factors of submarine canyons in the northern continental slope of the South China Sea[J]. Journal of Marine Sciences, 2019, 37(2):28-43.]

    [12]

    Hanebuth T, Stattegger K, Grootes P M. Rapid flooding of the Sunda shelf: a late-glacial sea-level record[J]. Science, 2000, 288(5468):1033-1035. doi: 10.1126/science.288.5468.1033

    [13]

    Zhang S, Jian X, Liu J T, et al. Climate-driven drainage reorganization of small mountainous rivers in Taiwan (East Asia) since the last glaciation: the Zhuoshui River example[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 586:110759. doi: 10.1016/j.palaeo.2021.110759

    [14]

    Zhao Y, Yang S Y, Liu J T, et al. Reconstruction of silicate weathering intensity and paleoenvironmental change during the late Quaternary in the Zhuoshui River catchment in Taiwan[J]. Quaternary International, 2017, 452:43-53. doi: 10.1016/j.quaint.2016.12.013

    [15]

    Chen C S, Chen Y L. The rainfall characteristics of Taiwan[J]. Monthly Weather Review, 2003, 131(7):1323-1341. doi: 10.1175/1520-0493(2003)131<1323:TRCOT>2.0.CO;2

    [16]

    Chang C P, Wang Z, McBride J, et al. Annual cycle of Southeast Asia—Maritime Continent rainfall and the asymmetric monsoon transition[J]. Journal of Climate, 2005, 18(2):287-301. doi: 10.1175/JCLI-3257.1

    [17]

    Tu J Y, Chou C. Changes in precipitation frequency and intensity in the vicinity of Taiwan: Typhoon versus non-typhoon events[J]. Environmental Research Letters, 2013, 8(1):014023.

    [18]

    Xu D Y, Malanotte-Rizzoli P. The seasonal variation of the upper layers of the South China Sea (SCS) circulation and the Indonesian through flow (ITF): an ocean model study[J]. Dynamics of Atmospheres and Oceans, 2013, 63:103-130. doi: 10.1016/j.dynatmoce.2013.05.002

    [19]

    Xue H J, Chai F, Pettigrew N, et al. Kuroshio intrusion and the circulation in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2004, 109(C2):C02017.

    [20]

    Liu Z F, Colin C, Li X J, et al. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: source and transport[J]. Marine Geology, 2010, 277(1-4):48-60. doi: 10.1016/j.margeo.2010.08.010

    [21]

    Huang J, Wan S M, Xiong Z F, et al. Geochemical records of Taiwan-sourced sediments in the South China Sea linked to Holocene climate changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441:871-881. doi: 10.1016/j.palaeo.2015.10.036

    [22]

    Liu Z F, Tuo S T, Colin C, et al. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation[J]. Marine Geology, 2008, 255(3-4):149-155. doi: 10.1016/j.margeo.2008.08.003

    [23]

    Defant M J, Jackson T E, Drummond M S, et al. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview[J]. Journal of the Geological Society, 1992, 149(4):569-579. doi: 10.1144/gsjgs.149.4.0569

    [24]

    Dadson S J, Hovius N, Chen H, et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen[J]. Nature, 2003, 426(6967):648-651. doi: 10.1038/nature02150

    [25]

    Wang B, LinHo, Zhang Y S, et al. Definition of South China Sea monsoon onset and commencement of the East Asia summer monsoon[J]. Journal of Climate, 2004, 17(4):699-710. doi: 10.1175/1520-0442(2004)017<0699:DOSCSM>2.0.CO;2

    [26]

    Chen G X, Hu P, Hou Y J, et al. Intrusion of the Kuroshio into the South China Sea, in September 2008[J]. Journal of Oceanography, 2011, 67(4):439-448. doi: 10.1007/s10872-011-0047-y

    [27]

    Yoneda M, Uno H, Shibata Y, et al. Radiocarbon marine reservoir ages in the western Pacific estimated by pre-bomb molluscan shells[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 259(1):432-437. doi: 10.1016/j.nimb.2007.01.184

    [28]

    Hirabayashi S, Yokoyama Y, Suzuki A, et al. Local marine reservoir age variability at Luzon Strait in the South China Sea during the Holocene[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 455:171-177.

    [29]

    Hideshima S, Matsumoto E, Abe O, et al. Northwest Pacific marine reservoir correction estimated from annually banded coral from Ishigaki Island, Southern Japan[J]. Radiocarbon, 2001, 43(2A):473-476. doi: 10.1017/S0033822200038352

    [30]

    Southon J, Kashgarian M, Fontugne M, et al. Marine reservoir corrections for the Indian Ocean and Southeast Asia[J]. Radiocarbon, 2002, 44(1):167-180. doi: 10.1017/S0033822200064778

    [31]

    Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35(1):215-230. doi: 10.1017/S0033822200013904

    [32]

    Blaauw M. Methods and code for 'classical' age-modelling of radiocarbon sequences[J]. Quaternary Geochronology, 2010, 5(5):512-518. doi: 10.1016/j.quageo.2010.01.002

    [33]

    Zhao H C, Liu Z F, Zhao Y L, et al. Lunar nodal tidal cycle influences on the input of coarse sediments during the last glaciation in the deep South China Sea[J]. Quaternary Science Reviews, 2023, 310:108114. doi: 10.1016/j.quascirev.2023.108114

    [34]

    Zhao H C, Liu Z F, Zhao Y L. Sea level and East Asian monsoon influenced chemical weathering records in the southern South China Sea over the past 21 ka[J]. Global and Planetary Change, 2024, 232:104324. doi: 10.1016/j.gloplacha.2023.104324

    [35]

    Chen J, Ma J Q, Xu K H, et al. Provenance discrimination of the clay sediment in the western Taiwan Strait and its implication for coastal current variability during the late-Holocene[J]. The Holocene, 2017, 27(1):110-121. doi: 10.1177/0959683616652706

    [36]

    Hu S Y, Zeng Z G, Fang X, et al. Increasing terrigenous sediment supply from Taiwan to the southern Okinawa Trough over the last 3000years evidenced by Sr Nd isotopes and geochemistry[J]. Sedimentary Geology, 2020, 406:105725. doi: 10.1016/j.sedgeo.2020.105725

    [37]

    Huh C A, Chen W F, Hsu F H, et al. Modern (<100 years) sedimentation in the Taiwan Strait: rates and source-to-sink pathways elucidated from radionuclides and particle size distribution[J]. Continental Shelf Research, 2011, 31(1):47-63. doi: 10.1016/j.csr.2010.11.002

    [38]

    Liu F, Yang C P, Chang X H, et al. Provenance discrimination of the last glacial sediments from the northeastern South China Sea and its paleoenvironmental indications[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2018, 29(2):131-148. doi: 10.3319/TAO.2017.07.31.01

    [39]

    Liu J T, Hsu R T, Hung J J, et al. From the highest to the deepest: the Gaoping River-Gaoping Submarine Canyon dispersal system[J]. Earth-Science Reviews, 2016, 153:274-300. doi: 10.1016/j.earscirev.2015.10.012

    [40]

    Wang Y Y, Fan D D, Liu J T, et al. Clay-mineral compositions of sediments in the Gaoping River-Sea system: implications for weathering, sedimentary routing and carbon cycling[J]. Chemical Geology, 2016, 447:11-26. doi: 10.1016/j.chemgeo.2016.10.024

    [41]

    Rothwell R G, Croudace I W. Twenty years of XRF core scanning marine sediments: what do geochemical proxies tell us?[M]//Croudace I W, Rothwell R G. Micro-XRF Studies of Sediment Cores: Applications of A Non-Destructive Tool for the Environmental Sciences. Dordrecht: Springer, 2015: 25-102.

    [42]

    Wei G J, Liu Y, Li X H, et al. Climatic impact on Al, K, Sc and Ti in marine sediments: evidence from ODP Site 1144, South China Sea[J]. Geochemical Journal, 2003, 37(5):593-602. doi: 10.2343/geochemj.37.593

    [43]

    王树民, 陈泓君, 钟和贤. 南海东北部晚第四纪地层不整合的发现及其地质意义[J]. 南海地质研究, 2001(13):55-61

    WANG Shumin, CHEN Hongjun, ZHONG Hexian. The foundation of late Quaternary strata unconformity and their geological significance in the northeastern South China Sea[J]. Research of Ecological South China Sea, 2001(13):55-61.]

    [44]

    Wang X X, Wang Y M, Tan M X, et al. Deep-water deposition in response to sea–level fluctuations in the past 30 kyr on the northern margin of the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2020, 163:103317. doi: 10.1016/j.dsr.2020.103317

    [45]

    Shen X T, Jian X, Li C, et al. Submarine topography-related spatial variability of the southern Taiwan Strait sands (East Asia)[J]. Marine Geology, 2021, 436:106495. doi: 10.1016/j.margeo.2021.106495

    [46]

    Zachos J C, Dickens G R, Zeebe R E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 2008, 451(7176):279-283. doi: 10.1038/nature06588

    [47]

    Syvitski J P M, Milliman J D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean[J]. The Journal of Geology, 2007, 115(1):1-19. doi: 10.1086/509246

    [48]

    Li M K, Ouyang T P, Tian C J, et al. Sedimentary responses to the East Asian monsoon and sea level variations recorded in the northern South China Sea over the past 36 kyr[J]. Journal of Asian Earth Sciences, 2019, 171:213-224. doi: 10.1016/j.jseaes.2018.01.001

    [49]

    董飞银, 徐元芹, 李萍, 等. 南海北部陆坡DLW3101孔MIS5期以来的古海洋学信息[J]. 海洋科学进展, 2019, 37(3):432-441 doi: 10.3969/j.issn.1671-6647.2019.03.007

    DONG Feiyin, XU Yuanqin, LI Ping, et al. Paleoceanographic information of the core DlW3101 in the northern slope of the South China Sea since MIS5[J]. Advances in Marine Science, 2019, 37(3):432-441.] doi: 10.3969/j.issn.1671-6647.2019.03.007

    [50]

    齐昆. 第四纪晚期珠江陆缘洲扇源—汇系统对海平面变化的响应机制[D]. 中国石油大学(北京)博士学位论文, 2023: 95-101

    QI Kun. The response mechanism of delta-to-fan source-to-sink systems to sea-level changes on the late-Quaternary Pearl River margin[D]. Doctor Dissertation of China University of Petroleum, Beijing, 2023: 95-101.]

    [51]

    张军强. 黄东海陆架末次盛冰期以来海平面变化及沉积体系响应[D]. 中国海洋大学硕士学位论文, 2008:53-62

    ZHANG Junqiang. The Sea level changes and Response of sedimentary system on the ECS and YS shelf after the Last Glacial Maximum[D]. Master Dissertation of Ocean University of China, 2008:53-62.]

    [52]

    Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 2016, 534(7609):640-646. doi: 10.1038/nature18591

  • 加载中

(5)

(1)

计量
  • 文章访问数:  9
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2025-05-30
修回日期:  2025-06-21
录用日期:  2025-06-21
刊出日期:  2025-08-28

目录