典型海洋地质样品扫描电镜的前处理方法

张灵敏, 党皓文, 戴璐, 金晓波, 卢婉仪, 李琛, 张燕, 沈玥, 卜鸣渊, 曾治惟, 唐银宁, 王雨楠. 典型海洋地质样品扫描电镜的前处理方法[J]. 海洋地质与第四纪地质, 2025, 45(4): 216-227. doi: 10.16562/j.cnki.0256-1492.2025060901
引用本文: 张灵敏, 党皓文, 戴璐, 金晓波, 卢婉仪, 李琛, 张燕, 沈玥, 卜鸣渊, 曾治惟, 唐银宁, 王雨楠. 典型海洋地质样品扫描电镜的前处理方法[J]. 海洋地质与第四纪地质, 2025, 45(4): 216-227. doi: 10.16562/j.cnki.0256-1492.2025060901
ZHANG Lingmin, DANG Haowen, DAI Lu, JIN Xiaobo, LU Wanyi, LI Chen, ZHANG Yan, SHEN Yue, BU Mingyuan, ZENG Zhiwei, TANG Yinning, WANG Yunan. Pretreatment methods of scanning electron microscopy for typical marine geological samples[J]. Marine Geology & Quaternary Geology, 2025, 45(4): 216-227. doi: 10.16562/j.cnki.0256-1492.2025060901
Citation: ZHANG Lingmin, DANG Haowen, DAI Lu, JIN Xiaobo, LU Wanyi, LI Chen, ZHANG Yan, SHEN Yue, BU Mingyuan, ZENG Zhiwei, TANG Yinning, WANG Yunan. Pretreatment methods of scanning electron microscopy for typical marine geological samples[J]. Marine Geology & Quaternary Geology, 2025, 45(4): 216-227. doi: 10.16562/j.cnki.0256-1492.2025060901

典型海洋地质样品扫描电镜的前处理方法

  • 基金项目: 同济大学实验教学改革项目(1350104104);海洋地质全国重点实验室自主课题(MGZ2025-T02)
详细信息
    作者简介: 张灵敏(1986—),女,工程师,主要从事电子探针和扫描电镜微束分析,E-mail:zlm@tongji.edu.cn
  • 中图分类号: P736

Pretreatment methods of scanning electron microscopy for typical marine geological samples

  • 扫描电子显微镜(SEM)在海洋地质研究中具有重要作用,可揭示样品的微观形貌和成分特征。海洋地质样品的复杂性和多样性对前处理技术提出特殊要求,样品制备方法成为确保成像质量和数据可靠性的关键。本文系统总结了典型海洋地质样品(包括有孔虫、介形虫、颗石藻、孢粉、嗜中性微需氧铁氧化菌、冷水珊瑚、粉末沉积物及岩石碎屑)的SEM前处理方法,涵盖清洗、超声处理、干燥、固定、镀膜及测试等关键步骤。针对各类样品的理化特性(如脆弱性、高含水量、导电性差),阐述了技术要点、常见问题(如荷电效应、结构塌陷)及优化方案。优化的样品前处理流程能显著提升SEM成像分辨率和数据可靠性,为海洋地质微观分析提供技术参考和借鉴。

  • 加载中
  • 图 1  扫描电镜样品前处理通用流程图

    Figure 1. 

    图 2  有孔虫和介形虫的照片和SEM图像

    Figure 2. 

    图 3  颗石藻的SEM图像

    Figure 3. 

    图 4  孢粉化石的SEM图像

    Figure 4. 

    图 5  嗜中性微需氧铁氧化菌及其代谢产物的SEM图像

    Figure 5. 

    图 6  冷水珊瑚的照片和SEM图像

    Figure 6. 

    图 7  粉末沉积物的照片和SEM图像

    Figure 7. 

    图 8  岩石和碎屑的照片、BSE和SEM图像

    Figure 8. 

    表 1  典型海洋地质样品扫描电镜前处理方法

    Table 1.  SEM preparation methods for typical marine geological samples

    样品类型 清洗 干燥 固定 镀膜
    有孔虫/介形虫蒸馏水或试剂泡软冲洗,
    63~150 μm或250 μm筛子干筛,
    挑出个体颗粒
    自然干燥、烘箱烘干、冷冻干燥体视显微镜下逐粒固定于导电胶样品座5~10 nm金/碳膜
    或不镀膜
    颗石藻现生:1~2 L海水经0.8 μm滤膜过滤,去离子水冲洗;沉积物:0.1~0.5 g样品3 μm滤膜过滤自然干燥或烘箱烘干裁剪滤膜固定于样品座10~15 nm金/碳膜
    或不镀膜
    孢粉化石稀盐酸、氢氟酸除杂质,蒸馏水漂洗,7 μm尼龙筛网超声过滤,
    离心后试管保存
    烘箱烘干、真空干燥滴管取浓缩物,显微镜下孢粉粒固定于导电胶样品座5~10 nm金/碳膜
    铁氧化菌0.22 μm滤膜过滤菌液,去离子水冲洗;或2.5%戊二醛固定,
    PBS缓冲液洗脱
    自然干燥或梯度酒精脱水
    后晾干或冷冻干燥
    滤膜或样品粘于导电胶
    样品座
    5~10 nm金膜(形貌)
    或碳膜(EDS)
    冷水珊瑚软毛刷去离子水超声清洗,
    或稀盐酸溶解方解石节后冲洗
    自然干燥环氧树脂包埋抛光或固定于样品座5~20 nm金膜(形貌)
    或碳膜(EDS)
    粉末沉积物乙醇/丙酮/去离子水低功率超声清洗烘箱烘干或冷冻干燥或自然干燥洒落法或悬浊液法滴涂于
    样品座
    10~20 nm金膜(形貌)
    或碳膜(EDS)
    岩石/碎屑压缩空气/软毛刷清洁断面;
    抛光片用无尘布擦拭
    自然干燥或烘箱干燥或
    真空干燥
    用导电胶固定于样品座5~20 nm金膜(形貌)
    或碳膜(EDS)
    说明:导电胶样品座是指双面导电胶贴在SEM样品座表面,酸浓度、干燥温度等参数参见正文。
    下载: 导出CSV
  • [1]

    赵泉鸿, Kuhnt W, Stattegger K, 等. 南海巽他陆坡晚更新世以来的微体化石和古环境[J]. 海洋地质与第四纪地质, 2002, 22(2):63-68

    ZHAO Quanhong, Kuhnt W, Stattegger K, et al. Microfossils and paleoenvironments of the Sunda slope of the South China Sea since the Late Pleistocene[J]. Marine Geology & Quaternary Geology, 2002, 22(2):63-68.]

    [2]

    周保春, 王汝建, 梅静. 末次冰消期后大西洋水进入楚科奇海台: 来自介形虫化石群的证据[J]. 海洋地质与第四纪地质, 2015, 35(3):73-82

    ZHOU Baochun, WANG Rujian, MEI Jing. The spreading of Atlantic water onto Chukchi Plateau after last deglaciation: evidence from fossil ostracods[J]. Marine Geology & Quaternary Geology, 2015, 35(3):73-82.]

    [3]

    贾奇, 李铁刚, 熊志方, 等. 浮游有孔虫表层水种不同形态类型壳体的Sr/Ca记录[J]. 海洋地质与第四纪地质, 2023, 43(4):10-16

    JIA Qi, LI Tiegang, XIONG Zhifang, et al. Comparison in Sr/Ca ratios of different morphotypes of surface dwelling planktonic foraminifera species[J]. Marine Geology & Quaternary Geology, 2023, 43(4):10-16.]

    [4]

    金晓波, 刘传联, 褚智慧. 末次冰消期以来苏拉威西海颗石藻化石记录与古海洋变化[J]. 海洋地质与第四纪地质, 2012, 32(4):131-137

    JIN Xiaobo, LIU Chuanlian, CHU Zhihui. Coccolithophore records and their response to paleoclimatic and paleoenviromental changes in Sulawesi Sea from the last deglacial[J]. Marine Geology & Quaternary Geology, 2012, 32(4):131-137.]

    [5]

    Liu F H, Huang E Q, Jin X B, et al. Glacial methane hydrate dissociation in the South China Sea margin during the Oligocene[J]. Geophysical Research Letters, 2025, 52(10):e2024GL114439. doi: 10.1029/2024GL114439

    [6]

    Li J T, Cui J M, Yang Q H, et al. Oxidative weathering and microbial diversity of an inactive seafloor hydrothermal sulfide chimney[J]. Frontiers in Microbiology, 2017, 8:1378. doi: 10.3389/fmicb.2017.01378

    [7]

    Li J T, Su L, Wang F, et al. Elucidating the biomineralization of low-temperature hydrothermal precipitates with varying Fe, Si contents: indication from ultrastructure and microbiological analyses[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2020, 157:103208. doi: 10.1016/j.dsr.2019.103208

    [8]

    孙明雪, 宿蕾, 李江涛. 海底热液环境中嗜中性微需氧铁氧化菌的多样性、生物矿化作用及其代谢特征[J]. 微生物学报, 2022, 62(6):2119-2135

    SUN Mingxue, SU Lei, LI Jiangtao. Diversity, biomineralization, and metabolic characteristics of neutrophilic microaerophilic iron-oxidizing bacteria in seafloor hydrothermal environments[J]. Acta Microbiologica Sinica, 2022, 62(6):2119-2135.]

    [9]

    赵绍华, 刘志飞. 海洋沉积物陆源碎屑粒度分析预处理方法研究[J]. 地球科学进展, 2017, 32(7):769-780 doi: 10.11867/j.issn.1001-8166.2017.07.0769

    ZHAO Shaohua, LIU Zhifei. A study of pretreatment methods for terrigenous grain-size analysis of marine sediments[J]. Advances in Earth Science, 2017, 32(7):769-780.] doi: 10.11867/j.issn.1001-8166.2017.07.0769

    [10]

    Li J Y, Liu Z F, Lin B Z, et al. Zooplankton fecal pellet characteristics and contribution to the deep-sea carbon export in the southern South China Sea[J]. Journal of Geophysical Research: Oceans, 2022, 127(12):e2022JC019412. doi: 10.1029/2022JC019412

    [11]

    徐磊, 林学辉, 张媛媛, 等. 海洋地质实验测试技术及研究进展[J]. 海洋地质与第四纪地质, 2024, 44(3):53-70

    XU Lei, LIN Xuehui, ZHANG Yuanyuan, et al. Progress in marine geological experimental testing technology and research[J]. Marine Geology & Quaternary Geology, 2024, 44(3):53-70.]

    [12]

    王雨楠, 周保春, 王汝建, 等. 北冰洋中部阿尔法脊晚第四纪介形虫化石群与古海洋环境变迁[J]. 海洋地质与第四纪地质, 2022, 42(4):39-49

    WANG Yunan, ZHOU Baochun, WANG Rujian, et al. Late Quaternary paleoceanographic history of the Alpha Ridge, central Arctic Ocean based on ostracode records[J]. Marine Geology & Quaternary Geology, 2022, 42(4):39-49.]

    [13]

    卢婉仪, Oppo D W, 翦知湣. 全新世赤道东太平洋缺氧区氧气含量无显著变化: 底栖有孔虫表面孔隙度证据[J]. 第四纪研究, 2025, 45(2):476-481 doi: 10.11928/j.issn.1001-7410.2025.02.11

    LU Wanyi, Oppo D W, JIAN Zhimin. No oxygen deficient zone changes in the eastern Equatorial Pacific during the Holocene: results from the benthic foraminiferal surface porosity records[J]. Quaternary Sciences, 2025, 45(2):476-481.] doi: 10.11928/j.issn.1001-7410.2025.02.11

    [14]

    Dai L, Li S L, Yu J J, et al. Palynological evidence indicates the paleoclimate evolution in southeast China since Late marine isotope stage 5[J]. Quaternary Science Reviews, 2021, 266:106964. doi: 10.1016/j.quascirev.2021.106964

    [15]

    Tang Y N, Dai L, Gong F, et al. Oak pollen infrageneric classification-based winter temperature reconstruction since the marine isotope stage 5 in Southeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2025, 671:112957. doi: 10.1016/j.palaeo.2025.112957

    [16]

    汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12):1222-1233 doi: 10.11867/j.issn.1001-8166.2019.12.1222

    WANG Pinxian. Deep-sea coral forest[J]. Advances in Earth Science, 2019, 34(12):1222-1233.] doi: 10.11867/j.issn.1001-8166.2019.12.1222

    [17]

    党皓文, 马小林, 杨策, 等. 重建高分辨率深海环境变化: 冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12):1262-1272

    DANG Haowen, MA Xiaolin, YANG Ce, et al. Reconstructing high-resolution deep-sea environmental change: inorganic geochemical proxy methods of cold-water bamboo corals[J]. Advances in Earth Science, 2019, 34(12):1262-1272.]

    [18]

    Li J R, Wang P X. Discovery of deep-water bamboo coral forest in the South China Sea[J]. Scientific Reports, 2019, 9(1):15453. doi: 10.1038/s41598-019-51797-3

    [19]

    Zeng Z W, Dang H W, Huang E Q, et al. Potential paleoceanographic application of cold-water bamboo coral in the South China Sea[J]. Science Bulletin, 2022, 67(5):452-455. doi: 10.1016/j.scib.2021.11.006

    [20]

    卜鸣渊, 曾治惟, 易亮, 等. 冷水柳珊瑚骨骼化石重建的早全新世南海中层水十年际变化[J]. 第四纪研究, 2023, 43(1):74-82 doi: 10.11928/j.issn.1001-7410.2023.01.06

    BU Mingyuan, ZENG Zhiwei, YI Liang, et al. Interdecadal variation of intermediate water in the South China Sea reconstructed by cold-water gorgonian skeleton fossils during the early Holocene[J]. Quaternary Sciences, 2023, 43(1):74-82.] doi: 10.11928/j.issn.1001-7410.2023.01.06

    [21]

    Wang H Z, Zhou X L, Dang H W, et al. Radiocarbon-based ages and growth rates of cold-water bamboo corals in the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2024, 208:104323. doi: 10.1016/j.dsr.2024.104323

    [22]

    Zhou X L, Wang H Z, Zhu Y H, et al. Core-top calibrations for element-to-calcium proxies of seawater properties in bamboo corals (Keratoisididae) from the South China Sea[J]. Geochemistry, Geophysics, Geosystems, 2024, 25(9):e2024GC011677. doi: 10.1029/2024GC011677

    [23]

    蒋蓉蓉, 姚懿容, 李明, 等. 扫描电子显微镜样品制备原理及方法[J]. 分析测试技术与仪器, 2024, 30(3):153-160 doi: 10.16495/j.1006-3757.2024.03.003

    JIANG Rongrong, YAO Yirong, LI Ming, et al. Principles and methods of sample preparation for scanning electron microscopy[J]. Analysis and Testing Technology and Instruments, 2024, 30(3):153-160.] doi: 10.16495/j.1006-3757.2024.03.003

    [24]

    贾宝岩, 张红勇. 白垩纪含介形类化石岩石样品处理方法的对比研究[J]. 微体古生物学报, 2021, 38(2):180-186

    JIA Baoyan, ZHANG Hongyong. Comparative study on the processing methods of Cretaceous ostracod-bearing rocks[J]. Acta Micropalaeontologica Sinica, 2021, 38(2):180-186.]

    [25]

    Yu X, Liu Z F, Wu J W, et al. Iron isotopic variations in basalts from oceanic crust due to low-temperature seawater alteration[J]. Marine Geology, 2022, 454:106949. doi: 10.1016/j.margeo.2022.106949

  • 加载中

(8)

(1)

计量
  • 文章访问数:  195
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2025-06-09
修回日期:  2025-07-29
录用日期:  2025-07-29
刊出日期:  2025-08-28

目录