Mechanisms of cycling and burying of iron-bound phosphorus (Fe-P) in marine sediments: A review
-
摘要:
海洋沉积物中铁结合态磷(Fe-P)的循环机制是调控磷长期封存与再活化的关键环节,深刻影响着海洋初级生产力及全球碳-磷-铁耦合循环。传统理论将Fe-P视为易释放的“临时储存库”,但近年研究发现其内部赋存形态(尤其是蓝铁矿)在特定氧化还原条件下可实现稳定埋藏,成为被低估的重要磷汇。本文系统解析了Fe-P形态转化的前沿进展:揭示铁氧化物驱动的甲烷厌氧氧化通过生成Fe2+直接驱动蓝铁矿沉淀,指出冰期低海平面时期陆源铁输入的增加可促进非渗漏区蓝铁矿形成;阐明海平面波动、硫化物竞争及全球变暖驱动的缺氧扩张如何通过改变沉积物氧化还原梯度和铁供给通量,调控Fe-P的活化-再固定平衡。指出深化Fe-P形态的精准识别、微生物-矿物的相互作用及全球变化级联效应的研究是构建更完善的海洋磷循环模型的核心挑战,对预测近海富营养化趋势及地质历史时期磷-气候反馈机制具有重要科学意义。
Abstract:The cycling mechanisms of iron-bound phosphorus (Fe-P) in marine sediments are pivotal in regulating the long-term sequestration and remobilization of phosphorus, profoundly influencing marine primary productivity and global carbon-phosphorus-iron coupled cycles. Traditional paradigms regard Fe-P as an easily remobilized "temporary reservoir"; however, recent studies reveal that specific occurrence forms within Fe-P—particularly vivianite—can achieve stable burial under certain redox conditions, representing an underestimated yet significant phosphorus sink. This review systematically summarizes the cutting-edge advances in Fe-P transformation mechanisms, unveils how iron oxide-driven anaerobic oxidation of methane (Fe-AOM) directly promotes vivianite precipitation by generating Fe2+, and indicated that enhanced terrigenous iron input during glacial lowstand periods could facilitate vivianite formation in non-seep areas. Furthermore, this paper elucidates how sea-level fluctuation, sulfide competition, and global warming-induced expansion of hypoxia modulate the activation-reimmobilization equilibrium of Fe-P by altering sedimentary redox gradients and iron supply fluxes. In this review, we identified key challenges—including precise identification of Fe-P speciation, microbe-mineral interactions, and cascading effects of global change—that are critical for constructing more robust marine phosphorus cycle models. These advances shall have significant scientific implications for predicting coastal eutrophication trends and phosphorus-climate feedback mechanisms throughout Earth’s history.
-
-
图 2 海洋沉积物SO42−-AOM和Fe-AOM驱动下的P循环与埋藏[11]
Figure 2.
表 1 不同海洋环境下铁还原、硫循环、有机质降解作用对磷循环的影响
Table 1. Effects of iron reduction, sulfur cycling, and organic matter degradation on phosphorus cycling in different marine environments
环境条件 铁结合态磷(Fe-P)
的形态铁还原过程 硫循环过程 有机质(OM)降解作用 磷形态转化的
关键路径高氧 + 低盐度
(如河口)主要为 Fe (Ⅲ) 氧化物
结合磷(Fe/P≈10)铁还原过程受到抑制,以 Fe (Ⅲ) 氧化物
稳定存在硫化物生成少,
Fe2+不易被固定有氧呼吸主导,OM 降解缓慢,释放 PO43−有限 Fe (Ⅲ) 氧化物吸附 PO43−形成 Fe-P,少部分随颗粒沉降埋藏 低氧 + 中低盐度
(如波罗的海)蓝铁矿
(Fe (II)3(PO4)2·8H2O,Fe/P≈1.5)Fe-AOM(铁介导的
甲烷厌氧氧化)活跃,Fe3+→Fe2+硫化物浓度低
(<100 μmol/L),Fe2+过量厌氧降解主导,OM
分解释放大量 PO43−Fe2+与 PO43−结合形成蓝铁矿,富集于硫酸盐 - 甲烷过渡带(SMTZ)下方 缺氧 + 高盐度(如切萨皮克湾高盐区) Fe (Ⅲ) 氧化物结合磷向 FeSx转化,Fe-P 占比低 铁还原受硫化物抑制(Fe2+→FeSx) 硫化物浓度高
(>500 μmol/L),Fe2+被完全固定硫酸盐还原耦合 OM 降解,PO43−释放后难以与 Fe 结合 Fe-P 因 Fe2+被硫化物消耗而溶解,PO43−转向形成钙结合磷(CFA) 开阔大洋
(低 OM 通量)以 Fe (Ⅲ) 氧化物
结合磷为主铁还原微弱,Fe (Ⅲ)
氧化物稳定性高硫循环不活跃,
硫化物浓度极低OM 降解缓慢,
PO43−释放少Fe-P 主要通过颗粒沉降埋藏,少部分在沉积物表层因受氧化还原波动发生溶解再吸附 -
[1] Tyrrell T. The relative influences of nitrogen and phosphorus on oceanic primary production[J]. Nature, 1999, 400(6744):525-531. doi: 10.1038/22941
[2] Diaz R J, Rosenberg R. Spreading dead zones and consequences for marine ecosystems[J]. Science, 2008, 321(5891):926-929. doi: 10.1126/science.1156401
[3] Reed D C, Slomp C P, Gustafsson B G. Sedimentary phosphorus dynamics and the evolution of bottom-water hypoxia: a coupled benthic-pelagic model of a coastal system[J]. Limnology and Oceanography, 2011, 56(3):1075-1092. doi: 10.4319/lo.2011.56.3.1075
[4] Van Cappellen P, Ingall E D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity[J]. Science, 1996, 271(5248):493-496. doi: 10.1126/science.271.5248.493
[5] Wallmann K. Phosphorus imbalance in the global ocean?[J]. Global Biogeochemical Cycles, 2010, 24(4):GB4030.
[6] Colman A, Holland H D. The global diagenetic flux of phosphorus from marine sediments to the oceans: redox sensitivity and the control of atmospheric oxygen levels[M]//Glenn C R, Prévôt-Lucas L, Lucas J. Marine Authigenesis: From Global to Microbial. Tulsa: SEPM, 2000: 53-75.
[7] Defforey D, Paytan A. Phosphorus cycling in marine sediments: advances and challenges[J]. Chemical Geology, 2018, 477:1-11. doi: 10.1016/j.chemgeo.2017.12.002
[8] Filippelli G M. The global phosphorus cycle[J]. Reviews in Mineralogy and Geochemistry, 2002, 48(1):391-425. doi: 10.2138/rmg.2002.48.10
[9] Beal E J, House C H, Orphan V J. Manganese- and iron-dependent marine methane oxidation[J]. Science, 2009, 325(5937):184-187. doi: 10.1126/science.1169984
[10] Dijkstra N, Krupinski N B Q, Yamane M, et al. Holocene refreshening and reoxygenation of a bothnian sea estuary led to enhanced phosphorus burial[J]. Estuaries and Coasts, 2018, 41(1):139-157. doi: 10.1007/s12237-017-0262-x
[11] Egger M, Jilbert T, Behrends T, et al. Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments[J]. Geochimica et Cosmochimica Acta, 2015, 169:217-235. doi: 10.1016/j.gca.2015.09.012
[12] Huang S Y, Zhang X, Zhao Y Y, et al. Response of phosphorus burial and post-depositional diagenesis to postglacial climate change in the coastal system[J]. Marine Geology, 2025, 485:107545. doi: 10.1016/j.margeo.2025.107545
[13] Breitburg D, Levin L A, Oschlies A, et al. Declining oxygen in the global ocean and coastal waters[J]. Science, 2018, 359(6371):eaam7240. doi: 10.1126/science.aam7240
[14] Paytan A, McLaughlin K. The oceanic phosphorus cycle[J]. Chemical Reviews, 2007, 107(2):563-576. doi: 10.1021/cr0503613
[15] Canfield D E, Kristensen E, Thamdrup B. Aquatic geomicrobiology[J]. Advances in Marine Biology, 2005, 48:1-599. doi: 10.1016/S0065-2881(05)48001-3
[16] März C, Poulton S W, Wagner T, et al. Phosphorus burial and diagenesis in the central Bering Sea (Bowers Ridge, IODP Site U1341): perspectives on the marine P cycle[J]. Chemical Geology, 2014, 363:270-282. doi: 10.1016/j.chemgeo.2013.11.004
[17] Cortina A, Filippelli G, Ochoa D, et al. Climate-driven changes in sedimentation rate influence phosphorus burial along continental margins of the northwestern Mediterranean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 500:106-116. doi: 10.1016/j.palaeo.2018.03.010
[18] Baturin G N. Disseminated phosphorus in oceanic sediments — a review[J]. Marine Geology, 1988, 84(1-2):95-104. doi: 10.1016/0025-3227(88)90127-2
[19] Filippelli G M, Delaney M L. Phosphorus geochemistry of equatorial Pacific sediments[J]. Geochimica et Cosmochimica Acta, 1996, 60(9):1479-1495. doi: 10.1016/0016-7037(96)00042-7
[20] Ruttenberg K C. Phosphorus cycle[M]//Cochran J K, Bokuniewicz K J, Yager P L. Encyclopedia of Ocean Sciences. Amsterdam: Elsevier, 2019: 447-460.
[21] Anschutz P, Zhong S J, Sundby B. Burial efficiency of phosphorus and the geochemistry of iron in continental margin sediments[J]. Limnology and Oceanography, 1998, 43(1):53-64. doi: 10.4319/lo.1998.43.1.0053
[22] Joshi S R, Kukkadapu R K, Burdige D J, et al. Organic matter remineralization predominates phosphorus cycling in the mid-bay sediments in the Chesapeake bay[J]. Environmental Science & Technology, 2015, 49(10):5887-5896.
[23] Egger M, Hagens M, Sapart C J, et al. Iron oxide reduction in methane-rich deep Baltic Sea sediments[J]. Geochimica et Cosmochimica Acta, 2017, 207:256-276. doi: 10.1016/j.gca.2017.03.019
[24] Slomp C P, Van Der Gaast S J, Van Raaphorst W. Phosphorus binding by poorly crystalline iron oxides in North Sea sediments[J]. Marine Chemistry, 1996, 52(1):55-73. doi: 10.1016/0304-4203(95)00078-X
[25] Dijkstra N, Kraal P, Séguret M J M, et al. Phosphorus dynamics in and below the redoxcline in the Black Sea and implications for phosphorus burial[J]. Geochimica et Cosmochimica Acta, 2018, 222:685-703. doi: 10.1016/j.gca.2017.11.016
[26] Spiegel T, Vosteen P, Wallmann K, et al. Updated estimates of sedimentary potassium sequestration and phosphorus release on the Amazon shelf[J]. Chemical Geology, 2021, 560:120017. doi: 10.1016/j.chemgeo.2020.120017
[27] Ruttenberg K C, Berner R A. Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments[J]. Geochimica et Cosmochimica Acta, 1993, 57(5):991-1007. doi: 10.1016/0016-7037(93)90035-U
[28] Kraal P, Burton E D, Rose A L, et al. Sedimentary iron–phosphorus cycling under contrasting redox conditions in a eutrophic estuary[J]. Chemical Geology, 2015, 392:19-31. doi: 10.1016/j.chemgeo.2014.11.006
[29] Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments[J]. Limnology and Oceanography, 1992, 37(7):1460-1482. doi: 10.4319/lo.1992.37.7.1460
[30] Zhang H L, Elskens M, Chen G X, et al. Phosphate adsorption on hydrous ferric oxide (HFO) at different salinities and pHs[J]. Chemosphere, 2019, 225:352-359. doi: 10.1016/j.chemosphere.2019.03.068
[31] Slomp C P, Epping E H G, Helder W, et al. A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments[J]. Journal of Marine Research, 1996, 54(6):1179-1205. doi: 10.1357/0022240963213745
[32] Khare N, Hesterberg N D, Martin J D. XANES investigation of phosphate sorption in single and binary systems of iron and aluminum oxide minerals[J]. Environmental Science & Technology, 2005, 39(7):2152-2160.
[33] Raiswell R, Canfield D E. The iron biogeochemical cycle past and present[J]. Geochemical Perspectives, 2012, 1(1):1-220. doi: 10.7185/geochempersp.1.1
[34] Egger M, Kraal P, Jilbert T, et al. Anaerobic oxidation of methane alters sediment records of sulfur, iron and phosphorus in the Black Sea[J]. Biogeosciences, 2016, 13(18):5333-5355. doi: 10.5194/bg-13-5333-2016
[35] Rothe M, Kleeberg A, Hupfer M. The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments[J]. Earth-Science Reviews, 2016, 158:51-64. doi: 10.1016/j.earscirev.2016.04.008
[36] Hilbrandt I, Lehmann V, Zietzschmann F, et al. Quantification and isotherm modelling of competitive phosphate and silicate adsorption onto micro-sized granular ferric hydroxide[J]. RSC Advances, 2019, 9(41):23642-23651. doi: 10.1039/C9RA04865K
[37] Antelo J, Fiol S, Pérez C, et al. Analysis of phosphate adsorption onto ferrihydrite using the CD-MUSIC model[J]. Journal of Colloid and Interface Science, 2010, 347(1):112-119. doi: 10.1016/j.jcis.2010.03.020
[38] Rietra R P, Hiemstra T, Van Riemsdijk W H. Interaction between calcium and phosphate adsorption on goethite[J]. Environmental Science and Technology, 2001, 35(16):3369-3374. doi: 10.1021/es000210b
[39] Mort H P, Slomp C P, Gustafsson B G, et al. Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions[J]. Geochimica et Cosmochimica Acta, 2010, 74(4):1350-1362. doi: 10.1016/j.gca.2009.11.016
[40] Zhou J L, Du M R, Li J W, et al. Phosphorus species in deep-sea carbonate deposits: implications for phosphorus cycling in cold seep environments[J]. Minerals, 2020, 10(7):645. doi: 10.3390/min10070645
[41] Hsu T W, Jiang W T, Wang Y. Authigenesis of vivianite as influenced by methane-induced sulfidization in cold-seep sediments off southwestern Taiwan[J]. Journal of Asian Earth Sciences, 2014, 89:88-97. doi: 10.1016/j.jseaes.2014.03.027
[42] Wilfert P, Meerdink J, Degaga B, et al. Sulfide induced phosphate release from iron phosphates and its potential for phosphate recovery[J]. Water research, 2020, 171:115389. doi: 10.1016/j.watres.2019.115389
[43] Li Z R, Sheng Y Q, Yang J, et al. Phosphorus release from coastal sediments: impacts of the oxidation-reduction potential and sulfide[J]. Marine Pollution Bulletin, 2016, 113(1-2):176-181. doi: 10.1016/j.marpolbul.2016.09.007
[44] Kubeneck L J, Lenstra W K, Malkin S Y, et al. Phosphorus burial in vivianite-type minerals in methane-rich coastal sediments[J]. Marine Chemistry, 2021, 231:103948. doi: 10.1016/j.marchem.2021.103948
[45] Dijkstra N, Slomp C P, Behrends T. Vivianite is a key sink for phosphorus in sediments of the Landsort Deep, an intermittently anoxic deep basin in the Baltic Sea[J]. Chemical Geology, 2016, 438:58-72. doi: 10.1016/j.chemgeo.2016.05.025
[46] Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience, 2013, 6(9):725-734. doi: 10.1038/ngeo1926
[47] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6804):623-626. doi: 10.1038/35036572
[48] Liu J R, Izon G, Wang J S, et al. Vivianite formation in methane-rich deep-sea sediments from the South China Sea[J]. Biogeosciences, 2018, 15(20):6329-6348. doi: 10.5194/bg-15-6329-2018
[49] Yu L P, He D, Yang L, et al. Anaerobic methane oxidation coupled to ferrihydrite reduction by Methanosarcina barkeri[J]. Science of the Total Environment, 2022, 844:157235. doi: 10.1016/j.scitotenv.2022.157235
[50] Zhang G S, Hao Q J, Ma R Z, et al. Biochar and hematite amendments suppress emission of CH4 and NO2 in constructed wetlands[J]. Science of the Total Environment, 2023, 874:162451. doi: 10.1016/j.scitotenv.2023.162451
[51] John M. Impact of iron oxide nanoparticles on the anaerobic digestion process[D]. Singapore: Nanyang Technological University, 2018.
[52] Liu H, Liu T, Chen S N, et al. Biogeochemical cycles of iron: processes, mechanisms, and environmental implications[J]. Science of the Total Environment, 2024, 951:175722. doi: 10.1016/j.scitotenv.2024.175722
[53] Donohue J G, Florio B J, Fowler A C. The development of deep-ocean anoxia in a comprehensive ocean phosphorus model[J]. GEM-International Journal on Geomathematics, 2023, 14(1):12. doi: 10.1007/s13137-023-00221-0
[54] Raiswell R, Tranter M, Benning L G, et al. Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: implications for iron delivery to the oceans[J]. Geochimica et Cosmochimica Acta, 2006, 70(11):2765-2780. doi: 10.1016/j.gca.2005.12.027
[55] Wehrmann L M, Arndt S, März C, et al. The evolution of early diagenetic signals in Bering Sea subseafloor sediments in response to varying organic carbon deposition over the last 4.3 Ma[J]. Geochimica et Cosmochimica Acta, 2013, 109:175-196. doi: 10.1016/j.gca.2013.01.025
[56] Kraal P, Slomp C P, Reed D C, et al. Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone of the northern Arabian Sea[J]. Biogeosciences, 2012, 9(7):2603-2624. doi: 10.5194/bg-9-2603-2012
[57] Liu M H, Du Y, Deng Y M, et al. Effect of depositional evolution on phosphorus enrichment in aquifer sediments of alluvial-lacustrine plain[J]. Science of the Total Environment, 2023, 900:165857. doi: 10.1016/j.scitotenv.2023.165857
[58] Palastanga V, Slomp C P, Heinze C. Glacial-interglacial variability in ocean oxygen and phosphorus in a global biogeochemical model[J]. Biogeosciences, 2013, 10(2):945-958. doi: 10.5194/bg-10-945-2013
[59] Tsandev I, Slomp C P, Van Cappellen P. Glacial-interglacial variations in marine phosphorus cycling: Implications for ocean productivity[J]. Global Biogeochemical Cycles, 2008, 22(4):GB4004.
-