Application of shallow landslide stability model to landslide prediction in the Linxi River basin of southern Zhejiang
-
摘要: 受台风暴雨影响,浙南林溪流域滑坡频发。针对该区域滑坡规模小、长度与厚度比值大的特点,采用浅层滑坡稳定性模型(SHALSTAB)对潜在滑坡进行了预测,以log(降雨量q/土壤的导水系数T)作为划分标准,结果显示随着log(q/T)值的提高,预测的滑坡区域逐渐扩大,预测捕获率升高的同时,误判率也随之上升。以log(q/T)≤-3.1作为预测滑坡的判别标准,模型效果较好,预测捕获率为62.50%,误判率(17.79%)较低。预测结果显示,滑坡潜在区域主要位于斜坡下部、土体厚度大和坡度陡峭的地区,山体顶部、土体厚度薄和地形平坦的区域斜坡稳定。
-
关键词:
- SHALSTAB模型 /
- 稳定性 /
- 浅层滑坡 /
- 浙南
Abstract: Landslides occurred frequently in the Linxi River basin of southern Zhejiang due to typhoon rainstorm. Shallow landslide stability model (SHALSTAB) is used to predict potential landslides according to the landslides characteristics of small scale and large ratio of length to thickness in this area. Log (rainfall q/soil hydraulic conductivity T) is used as the criterion of potential landslide. Quantitative index analysis shows that with the increase of log(q/T) level, the area of landslides predicted by the model expanded gradually, but the model also increased the misjudgment rate. The model has better prediction effect when log(q/T)=-3.1 is applied as criterion to predict landslide. The capture rate of landslides prediction is 62.50%, the misjudgment rate is 17.79%. The simulation results show that bottom of the hillslope, side of the deep valley and the steep hillslope are the landslide-prone regions. Top of the mountain, and the region with shallow soil mass and flat topography have good stability.-
Key words:
- shallow landslide stability model /
- stability /
- shallow landslide /
- southern Zhejiang
-
-
[1] MICHEL G P, KOBIYAMA M, GOERL R F. Comparative analysis of SHALSTAB and SINMAP for landslide susceptibility mapping in the Cunha River basin, southern Brazil[J]. Journal of Soils&Sediments, 2014, 14(7):1266-1277.
[2] 王佳佳,殷坤龙,肖莉丽.基于GIS和信息量的滑坡灾害易发性评价——以三峡库区万州区为例[J].岩石力学与工程学报, 2014, 33(4):797-808.
[3] 兰恒星,王苓涓,周成.地理信息系统支持下的滑坡灾害分析模型研究[J].工程地质学报, 2002, 10(4):421-427.
[4] BATHURST J C, MORETTI G, ELHAMES A, et al. Scenario modelling of basin-scale, shallow landslide sediment yield, Valsassina, Italian Southern Alps[J]. Natural Hazards&Earth System Sciences, 2005, 5(2):189-202.
[5] 孙金山,陈明,左昌群,等.降雨型浅层滑坡危险性预测模型[J].地质科技情报, 2012, 31(2):117-121.
[6] 同霄,彭建兵,朱兴华,等.降雨作用下黄土浅层滑坡的危险性分析[J].水土保持通报, 2016, 36(3):109-113.
[7] 康超,谌文武,张帆宇,等.确定性模型在黄土沟壑区斜坡稳定性预测中的应用[J].岩土力学, 2011, 32(1):207-211.
[8] 王佳佳,殷坤龙,杜娟,等.基于GIS考虑准动态湿度指数的滑坡危险性预测水文-力学耦合模型研究[J].岩石力学与工程学报, 2013, 32(增刊):3868-3877.
[9] 陈悦丽,陈德辉,李泽椿,等.基于Monte Carlo-SHALSTAB模型的滑坡危险性评价——以福建省德化县为例[J].灾害学, 2015, 30(4):101-106.
[10] WESTEN C J, ASCH T W J, SOETERS R. Landslide hazard and risk zonation-why is it still so difficult?[J]. Bulletin of Engineering Geology and the Environment, 2006, 37(1):167-184.
[11] 黄天朗,宫凤强,伍婷玉.小样本岩土参数概率分布的正交多项式推断方法[J].岩土力学, 2017, 34(8):85-95.
[12] 谌文武,林高潮,刘伟,等.全风化灰绿色及红色泥岩物理力学性质对比研究[J].岩石力学与工程学报, 2016, 35(12):2572-2582.
[13] 夏红春.矿物成分对土力学特性影响的试验研究[J].中国煤炭, 2015, 12(4):56-61.
[14] MONTGOMERY D R, DIETRICH W E. A physically based model for the topographic control on shallow landsliding[J]. Water Resources Research, 1994, 30(4):1153-1171.
[15] BEVEN K J, KIRKBY M J. A physically based, variable contributing area model of basin hydrology[J]. Hydrological Sciences Bulletin, 1979, 24(1):43-69.
[16] FUCHS M, TORIZIN JE, KVHN F. The effect of DEM resolution on the computation of the factor of safety using an infinite slope model[J]. Geomorphology, 2014, 224(2):16-26.
[17] WU S M, LI J, HUANG G H. A study on DEM-derived primary topographic attributes for hydrologic applications:Sensitivity to elevation data resolution[J]. Applied Geography, 2008, 28(3):210-223.
[18] PRADHAN A M S, KIM Y T. Application and comparison of shallow landslide susceptibility models in weathered granite soil under extreme rainfall events[J]. Environmental Earth Sciences, 2015, 73(9):5761-5771.
[19] 自然资源部中国地质调查局. DD 2014-08地质灾害调查评价技术要求(1:50000)[S].北京:中国地质调查局,2014.
[20] 刘春,白世伟,赵洪波.粘性土土性指标的统计规律研究[J].岩土力学, 2003(增刊):180-184.
[21] 朱唤珍,李夕兵,宫凤强.大样本岩土参数概率分布的正态信息扩散推断[J].岩土力学, 2015, 36(11):3275-3282
[22] SORBINO G, SICA C, CASCINI L. Susceptibility analysis of shallow landslides source areas using physically based models[J]. Natural Hazards, 2010, 53(2):313-332.
-
计量
- 文章访问数: 1515
- PDF下载数: 160
- 施引文献: 0