Geochronology and geochemistry of Niuwangzhai pluton in east end of North Huaiyang:constraints on deep geological process of Dabie Orogen in Early Cretaceous
-
摘要: 牛王寨岩体位于大别造山带北部北淮阳构造带东端,岩性主要为花岗岩。LA-ICP MS锆石U-Pb测年结果显示,牛王寨花岗岩形成于(119.4±1.5) Ma,属于大别造山带早白垩世晚阶段岩浆活动的产物。牛王寨花岗岩具有高硅(SiO2含量为71.98%~77.96%)、高碱(全碱含量为7.66%~9.30%)、低钙(CaO含量为0.19%~0.68%)、高FeOT/MgO值(平均值为12.83)和10 000×Ga/Al值(2.63~2.82)的特点。岩石富集高场强元素,(Zr+Nb+Ce+Y)平均含量为294×10-6,富Rb、贫Ba和Sr,具有显著的Eu负异常,指示牛王寨花岗岩具有A型花岗的特点。牛王寨花岗岩87Sr/86Sr初始值为0.708 28~0.708 41,εNd(t)值为-18.77~-19.15,判断其源区物质可能为大别山中下地壳片麻岩。约130 Ma时,大别造山带加厚下地壳拆沉引发的软流圈上涌,为源区的部分熔融提供了热源。牛王寨岩体的形成受控于约130 Ma之后中国东部统一的伸展构造事件。Abstract: Niuwangzhai granite is located in the east end of North Huaiyang in Dabie Orogen. LA-ICP MS zircon U-Pb dating indicates that the Niuwangzhai granite was emplaced at (119.4±1.5) Ma and belongs to the late-stage Early Cretaceous magmatism of Dabie Orogen. The granites are characterized with high SiO2 (71.98%~77.96%) and high alkali (7.66%~9.30%) contents, low CaO contents (0.19%~0.68%), and high FeOT/MgO (4.04~39.04, mean value of 12.83) and 10 000×Ga/Al ratios (2.63~2.82). The granites are also enriched in high field strength elements (average content of Zr+Nb+Ce+Y is 294×10-6) and Rb, but are depleted in Ba and Sr with apparent low δEu values. Geochemical features suggest that the Niuwangzhai granites can be classified into A-type granites. Combined with Sr-Nd isotopic compositions, the granites were probably derived from the gneiss in middle-lower crust of Dabie Orogen. The upwelling of asthenosphere caused by 130 Ma thickened lower crust delamination probably provided heat to melt the intermediate-acid gneiss. The formation of Niuwangzhai granite was possibly associated with extensional tectonic event of eastern China in post 130 Ma.
-
Key words:
- zircon U-Pb ages /
- geochemistry /
- Niuwangzhai pluton /
- North Huaiyang /
- Dabie Orogen
-
-
[1] 李曙光,何永胜,王水炯.大别造山带的去山根过程与机制:碰撞后岩浆岩的年代学和地球化学制约[J].科学通报,2013,58(23):2316-2322.
LI S G, HE Y S, WANG S J. Process and mechanism of mountain-root removal of the Dabie Orogen:Constraints from geochronology and geochemistry of post-collisional igneous rocks[J]. Chinese Science Bulletin, 2013, 58(23):2316-2322.
[2] 何永胜.大别造山带碰撞后花岗质岩浆作用地球化学:对去山根过程及山根结构的制约[D].合肥:中国科学技术大学,2013.HE Y S. Geochemistry of post-collisional granitic magmatism from the Dabie orogen:constraints on removal processes and architecture of the mountain root[D]. Hefei:University of Science and Technology of China, 2013.
[3] HE Y S, LI S G, HOEFS J, et al. Sr-Nd-Pb isotopic compositions of Early Cretaceous granitoids from Dabie orogen:Constrains on the recycled lower continental crust[J]. Lithos, 2013, 156/159:204-217.
[4] 刘福田,徐佩芬,刘劲松,等.大陆深俯冲带的地壳速度结构——东大别造山带深地震宽角反射/折射研究[J].地球物理学报,2003,46(3):366-372.
LIU F T, XU P F, LIU J S, et al. The crustal velocity structure of the continental deep subduction belt:study on the eastern Dabie Orogen by seismic wide-angle reflection/refraction[J]. Chinese Journal of Geophysics, 2003, 46(3):366-372.
[5] 商力.安徽北淮阳地区燕山晚期岩浆岩成因及其大地构造背景[D].南京:南京大学,2012.SHANG L. Petrogenesis of late Mesozoic igneous rocks, Beihuaiyang, Anhui Province:implication for tectonic evolution[D]. Nanjing:Nanjing University, 2012.
[6] 刘晓强.大别造山带燕山期岩浆岩成矿作用与岩石成因[D].合肥:合肥工业大学,2014.LIU X Q. Mineralization and petrogenesis of Yanshanian magmatic rocks, Dabie orogen[D]. Hefei:Hefei University of Technology, 2014.
[7] 刘晓强.大别造山带中生代岩浆岩成因及其构造背景[D].合肥:合肥工业大学,2018.LIU X Q. Peteogenesis and tectonic setting of the late Mesozoic magmatic rocks in the Dabie orogen[D]. Hefei:Hefei University of Technology, 2018.
[8] 赵新福,李建威,马昌前,等.北淮阳古碑花岗闪长岩侵位时代及地球化学特征:对大别山中生代构造体制转换的启示[J].岩石学报,2007,23(6):1392-1402.
ZHAO X F, LI J W, MA C Q, et al. Geochronology and geochemistry of the Gubei granodiorite, north Huaiyang:Implications for Mesozoic tectonic transition of the Dabie orogen[J]. Acta Petrologica Sinica, 2007, 23(6):1392-1402.
[9] 续金海,叶凯,马昌前.北大别早白垩纪花岗岩类的Sm-Nd和锆石Hf同位素及其地质意义[J].岩石学报,2008,24(1):87-103.
XU J H, YE K, MA C Q. Early Cretaceous granitoids in the North Dabie and their tectonic implications:Sr-Nd and zircon Hf isotopic evidences[J]. Acta Petrologica Sinica, 2008, 24(1):87-103.
[10] 马昌前,杨坤光,明厚利,等.大别山中生代地壳从挤压转向伸展的时间:花岗岩的证据[J].中国科学(D辑), 2003,33(9):817-827.
MA C Q, YANG K G, MING H L, et al. The time of the tectonic transition from compression to extension of the Mesozoic continental crust, Dabie orogen:evidences from the granitoids[J]. Science in China (Series D), 2003, 33(9):817-827.
[11] 潘国强,陆现彩,于航波.北淮阳中生代adakite岩石地球化学特征及成因讨论[J].岩石学报,2001,17(4):541-550.
PAN G Q, LU X C, YU H B. Petrological and geochemical characteristics of Mesozoic adakite from North Huaiyang and discussion on its genesis[J]. Acta Petrologica Sinica, 2001, 17(4):541-550.
[12] 汪晶,吴明安,李小东,等.庐枞盆地早白垩世闪长玢岩锆石U-Pb年龄、地球化学特征及其成矿指示意义[J].地质学报,2014,88(4):547-561.
WANG J, WU M A, LI X D, et al. Zircon U-Pb dating, geochemical characteristics of Early-Cretaceous diorite-porphyrites in Luzong basin and their implications for mineralization[J]. Acta Geologica Sinica, 2014, 88(4):547-561.
[13] LIU Y S, HU Z C, ZONG K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546.
[14] LUDWIG K R. Mathematical-statistical treatment of data and errors for 230Th/U geochronology[J]. Geochronology-series Geochemistry, 2003, 52(1):631-656.
[15] LIU Y S, ZONG K Q, KELEMEN P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 2008, 247(1/2):133-153.
[16] CHEN F, LI X H, WANG X L, et al. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China[J]. International Journal of Earth Sciences, 2007, 96:1179-1194.
[17] ZHANG F F, CAWOOD P A, DONG Y P. Geochronological and geochemical constraints on the subduction-modified lithospheric origin of the early Cretaceous volcanic rocks in the western North Huaiyang Belt of Dabie Orogen, China[J]. Journal of the Geological Society, 2020, 177:170-188.
[18] WILSON M. Igneous Petrogenesis, A Global Tectonic Approach[M]. London:Oxford University Press, 1989.
[19] MIDDLEMOST E A K. Naming Materials in the Magma/Igneous Rock System[J]. Earth-science Reviews, 1994, 37(3/4):215-224.
[20] SUN S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society London Special. Publications, 1989, 42(1):313-345.
[21] 郑祥身,金成伟,翟明国,等.北大别灰色片麻岩原岩性质的探讨:Sm-Nd同位素年龄及同位素成分特点[J].岩石学报,2000,16(2):194-198.
ZHENG X S, JIN C W, ZHAI M G, et al. Approach to the source of the gray gneisses in North Dabie Terrain:Sm-Nd isochron age and isotope composition[J]. Acta Petrologica Sinica, 2000, 16(2):194-198.
[22] XU J H, MA C Q, YE K. Early Cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China:SHRIMP zircon U-PB dating and geochemistry[J]. Chemical Geology, 2007, 240:238-259.
[23] WHALEN J B, CURRIE K L, CHAPPELL B W. A-type granites:Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95:407-419.
[24] FROST B R, BARNES C G, COLLINS W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42(11):2033-2048.
[25] WATSON E B. Zircon saturation in felsic liquids:Experimental data and applications to trace element geochemistry[J]. Contributions to Mineralogy and Petrology, 1979, 70(4):407-419.
[26] KING P L, WHITE A J R, CHAPPELL B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 1997, 38(3):371-391.
[27] TURNER S P, FODEN J D, MORRISON R S. Derivation of some A-type magmas by fractionation of basaltic magma:an example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28:151-179.
[28] BONIN B. A-type granites and related rocks:Evolution of a concept, problem and prospects[J]. Lithos, 2007, 97:1-29.
[29] YANG J H, WU F Y, CHUNG S L, et al. A hybrid origin for the Qianshan A-type granite, northeast China:Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89:89-106.
[30] HUANG H Q, LI X H, LI W X, et al. Formation of high 18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China[J]. Geology, 2011, 39:903-906.
[31] 李曙光,黄方,周红英,等.大别山双河超高压变质岩及北部片麻岩的U-Pb同位素组成-对超高压岩石折返机制的制约[J].中国科学(D辑),2001,31(12):977-984.
LI S G, HUANG F, ZHOU H Y, et al. The U-Pb isotopic characteristics of ultra-metamorphic rock and northern gneisses of Shuanghe, Dabie orogen:constraints to the mechanism of the exhumation of the UHP rocks[J]. Science in China (Series D), 2001, 31(12):977-984.
[32] 张宏飞,高山,张本仁,等.大别山地壳结构的Pb同位素地球化学示踪[J].地球化学,2001,30(4):395-401.
ZHANG H F, GAO S, ZHANG B R, et al. Pb isotopic study on crustal structure of Dabie mountains, central China[J]. Geochimica, 2001, 30(4):395-401.
[33] 薛怀民,董树文,马芳.安徽庐枞火山岩盆地橄榄玄粗岩系的地球化学特征及其对下扬子地区晚中生代岩石圈减薄机制的制约[J].地质学报,2010,84(5):664-681.
XUE H M, DONG S W, MA F. Geochemistry of shoshonitic volcanic rocks in the Luzong basin, Anhui Province (Eastern China):constraints on Cretaceous lithospheric thinning of the lower Yangtze region[J]. Acta Geologica Sinica, 2010, 84(5):664-681.
[34] DEFANT M J, DRUMMOND M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294):662-665.
[35] RAPP R P, WATSON E B. Dehydration melting of metabasalt at 8~32kbar:Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(4):891-931.
[36] PATIÑO DOUCE A E, BEARD J S. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 5 kbar[J]. Journal of Petrology, 1995, 36(3):707-738.
[37] FROST C D, FROST B R. On ferroan (A-type) granitoids:their compositional variability and modes of origin[J]. Journal of Petrology, 2011, 52(1):39-53.
[38] LI R, WAN Y, CHENG Z, et al. Provenance of Jurassic sediments in the Hefei Basin, east-central China and the contribution of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Shan[J]. Earth and Planetary Science Letters, 2005, 231(3/4):279-294.
[39] 赵子福,郑永飞,魏春生,等.大别山中生代中酸性岩浆岩锆石U-Pb定年、元素和氧同位素地球化学[J].岩石学报,2004,20(5):1151-1174.
ZHAO Z F, ZHENG Y F, WEI C S, et al. Zircon U-Pb age, element and oxygen isotope geochemistry of Mesozoic intermediate-felsic rocks in the Dabie Mountains[J]. Acta Petrologica Sinica, 2004, 20(5):1151-1174.
[40] XIE Z, ZHENG Y F, ZHAO Z F, et al. Mineral isotope evidence for the contemporaneous process of Mesozoic granite emplacement and gneiss metamorphism in the Dabie Orogen[J]. Chemical Geology, 2006, 231(3):214-235.
[41] 谢智,郑永飞,闫峻,等.大别山沙村中生代A型花岗岩和基性岩的源区演化关系[J].岩石学报,2004,20(5):1175-1184.
XIE Z, ZHENG Y F, YAN J, et al. Source evolution relationship between A-type granites and mafic rocks from Shacun in Dabieshan[J]. Acta Petrologica Sinica, 2004, 20(5):1175-1184.
[42] CHEN L, MA C Q, SHE Z B, et al. Petrogenesis and tectonic implications of A-type granites in the Dabie orogenic belt, China:geochronological and geochemical constraints[J]. Geological Magazine, 2009, 146(5):638-651.
[43] HUANG F, LI S G, DONG F, et al. High-Mg adakitic rocks in the Dabie orogen, central China:Implications for foundering mechanism of lower continental crust[J]. Chemical Geology, 2008, 255(1/2):1-13.
[44] WANG Q, WYMAN D A, XU J F, et al. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China:Implications for partial melting and delamination of thickened lower crust[J]. Geochimica et Cosmochimica Acta, 2007, 71(10):2609-2636.
[45] 彭智,杜建国,陈芳,等.北淮阳东段同兴寺碱性岩体地球化学特征、LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质学报,2015,89(4):701-714.
PENG Z, DU J G, CHEN F, et al. Geochemical characteristics and LA-ICP-MS zircon U-Pb geochronology of the Tongxingsi alkaline intrusion in the Eastern North Huaiyang and their geological significance[J]. Acta Geologica Sinica, 2015, 89(4):701-714.
[46] 陈芳,彭智,董婷婷,等.北淮阳东段张冲闪长玢岩地球化学特征、LA-ICP-MS锆石U-Pb年龄及其地质意义[J].大地构造与成矿学,2016,40(6):1289-1298.
CHEN F, PENG Z, DONG T T, et al. Geochemical characteristics and zircon U-Pb age of Zhangchong diorite porphyrite in the east part of North Huaiyang and their geological significance[J]. Geotectonica et Metallogenia, 2016, 40(6):1289-1298.
[47] 刘晓强,闫峻,王爱国.北淮阳汞洞冲闪锌矿区石英正长斑岩成因[J].地质学报,2018,92(1):41-64.
LIU X Q, YAN J, WANG A G. Petrogenesis of quartz syenite porphyry in the Gongdongchong Pb-Zn deposit, north Huaiyang belt[J]. Acta Geologica Sinica, 2018, 92(1):41-64.
[48] WU F Y, JI W Q, SUN D H, et al. Zircon U-Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province China[J]. Lithos, 2012, 150:6-25.
[49] LI X H. Cretaceous magmatism and lithosphere extension in Southeast China[J]. Journal of Asian Earth Sciences, 2000, 18:293-305.
[50] 安徽省地质调查院.1:250000六安市幅区域地质调查报告[R].合肥:安徽省地质调查院,2011:103-112.
GEOLOGICAL SURVEY OF ANHUI PROVICE. Regional geological survey report of Luan City (1:250000)[R]. Hefei:Geological Survey of Anhui Province, 2011:103-112.
[51] 彭智,邱军强,杨义忠,等.北淮阳东段山七岩体地球化学特征、LA-ICP-MS锆石U-Pb年龄及地质意义[J].华东地质,2018,39(1):1-10.
PENG Z, QIU J Q, YANG Y Z, et al. Geochemical characteristics and LA-ICP-MS zircon U-Pb geochronology of the Shanqi intrusion in eastern North Huaiyang and their geological significance[J]. East China Geology, 2018, 39(1):1-10.
[52] 杨义忠,王徽,蔡杨,等.北淮阳东段板桥岩体地球化学特征及同位素年代学研究[J].华东地质,2018,39(4):241-251.
YANG Y Z, WANG H, CAI Y, et al. Geochemical characteristics and isotope chronology study of the Banqiao granodiorite in the eastern part of North Huaiyang[J]. East China Geology, 2018, 39(4):241-251.
[53] 鹿献章,周博文,彭智,等.北淮阳东段河棚岩体地球化学特征、LA-ICP-MS锆石U-Pb年龄及地质意义[J].华东地质,2017,38(2):81-90.
LU X Z, ZHOU B W, PENG Z, et al. Geochemical characteristics and LA-ICP-MS zircon U-Pb geochronology of the Hepeng intrusion in the eastern section of North Huaiyang and their geological significance[J]. East China Geology, 2017, 38(2):81-90.
[54] 邱军强,彭智,陈芳,等.北淮阳东段杨家湾岩体地球化学特征、锆石U-Pb定年及地质意义[J].华东地质,2016,37(2):89-96.
QIU J Q, PENG Z, CHEN F, et al. Geochemical characteristics and zircon U-Pb dating of the Yangjiawan pluton in the eastern part of North Huaiyang and their geological significance[J]. East China Geology, 2016, 37(2):89-96.
-
计量
- 文章访问数: 621
- PDF下载数: 78
- 施引文献: 0