-
摘要: 澳大利亚前寒武纪地质演化与超大陆旋回密切相关,大多数地质和成矿事件与超大陆聚合、裂解有关。自太古代以来,澳大利亚大陆主要由西向东生长。澳大利亚早前寒武纪古陆核为太古代皮尔巴拉和伊尔岗克拉通,古元古代—中元古代时南北克拉通和西澳大利亚克拉通在哥伦比亚超大陆聚合时拼贴在一起,并在其后的罗迪尼亚超大陆演化过程中最终形成澳大利亚中西部的前寒武纪克拉通。澳大利亚前寒武纪成矿作用与克拉通构造演化和超大陆旋回有关,与绿岩带有关的造山型金矿是凯诺兰大陆聚合过程中的产物,而沉积岩容矿的铅锌矿床、不整合面型铀矿、铁氧化物型铜金矿床则在哥伦比亚超大陆裂解过程中形成。不同超大陆聚散过程中表现出不同的成矿特征,为今后的矿产勘查提供了丰富的信息。Abstract: The Precambrian geological evolution of Australia was closely linked to supercontinent cycles, with most geological and metallogenic events relating to supercontinent assembly and breakup. Australia mainly grew from west to east since Archean. The nuclei of Australian Precambrian craton consist of two Archean cratons, the Yilgarn and Pilbara cratons, which forming the oldest part of the continent. In Paleoproterozoic-Mesoproterozoic, North Australian craton, South Australian craton and West Australian craton initially assembled during the Paleoproterozoic amalgamation of Columbia, and then Middle-west Australian Precambrian craton came into shape in the process of the amalgamation of Rodinia. The metallogeny of Australian Precambrian craton are linked to the tectonic evolution and the supercontinent cycle, with orogenic gold province as a product of the assembly of Kenorland, whereas major sediment-hosted Zn-Pb deposits, iron oxide-Cu-Au deposits and unconformity-associated uranium deposits formed in the process of Columbia supercontinent breakup. The diverse supercontinent evolution shows different characteristics of metallogeny during supercontinent assembly and breakup which may provide fruitful information for future mineral exploration.
-
Key words:
- supercontinent evolution /
- metallogeny /
- assembly and breakup /
- Precambrian craton /
- Australian
-
-
[1] MAAS R. The Earth's oldest known crust:A geochronological and geochemical study of 3900-4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim Cosmochim Acta, 1992, 56(3):1281-1300.
[2] MITCHELL R N, ZHANG N, SALMINEN J, et al. The supercontinent cycle[J]. Nature Reviews Earth&Environment, 2021, 2(5):358-374.
[3] BRADLEY D C. Secular trends in the geologic record and the supercontinent cycle[J]. Earth Science Reviews, 2011,108(1/2):16-33.
[4] NANCE R D, MURPHY J B, SANTOSH M. The supercontinent cycle:a retrospective essay[J]. Gondwana Research, 2014,25(1):4-29.
[5] KERRICH R R, GOLDFARB J, RICHARDS. Metallogenic provinces in an evolving geodynamic framework[J]. Economic Geology, 2005, 100:1097-1136.
[6] 李文渊.超大陆旋回与成矿作用[J].西北地质, 2012, 45(2):27-42.
LI W Y. Active Global Tectonics and Ore-Forming Processes[J]. Northwestern Geology, 2012. 45(2):27-42.
[7] 翟明国.中国主要古陆与联合大陆的形成——综述与展望[J].中国科学:地球科学, 2013, 43(10):1583-1606.
ZHAI M G. The main old lands in China and assembly of Chinese unified continent[J]. Science China:Earth Sciences, 2013, 43(10):1583-1606.
[8] 李献华,李武显,何斌.华南陆块的形成与Rodinia超大陆聚合-裂解——观察、解释与检验[J].矿物岩石地球化学通报, 2012, 31(6):543-559.
LI X H, LI W X, HE B. Building of the south china block and its relevance to assembly and breakup of rodinia supercontinent:observations,interpretations and tests[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2012, 31(6), 543-559.
[9] BARLEY M E, GROVES D I. Supercontinent cycles and the distribution of metal deposits through time[J]. Geology, 1992, 20(4):291-294.
[10] TKACHEV A V, RUNDQVIST D V. Global trends in the evolution of metallogenic processes as a reflection of supercontinent cyclicity[J]. Geology of Ore Deposits, 2016, 58(4):263-283.
[11] TEIXEIRA J B G, MISI A, DA SILVA M D G. Supercontinent evolution and the Proterozoic metallogeny of South America[J]. Gondwana Research, 2007, 11(3):346-361.
[12] KAUR P, CHAUDHRI N. Metallogeny associated with the Palaeo-Mesoproterozoic Columbia supercontinent cycle:a synthesis of major metallic deposits[J]. Ore Geology Reviews, 2014, 56:415-422.
[13] BETTS P G, GILES D, LISTER G S, et al. Evolution of the Australian lithosphere[J]. Australian Journal of Earth Sciences, 2002, 49(4):661-695.
[14] MYERSJ S, SHAW R D, TYLER I M. Tectonic evolution of Proterozoic Australia[J]. Tectonics, 1996, 15(6):1431-1446.
[15] HUSTON D L, BLEWETT R S, CHAMPION D C. Australia through time:a summary of its tectonic and metallogenic evolution[J]. Episodes, 2012, 35(1):23-43.
[16] 姚仲友,王天刚,傅朝义,等.大洋洲地区大地构造格架与优势矿产资源[J].地质通报, 2014, 33(1/2):143-158.
YAO Z Y, WANG T G, FU C Y, et al. Geological framework and dominant mineral resources of Oceania[J]. Geological Bulletin of China, 2014, 33(1/2):143-158.
[17] 姚仲友,王天刚,王国平,等.大洋洲地区优势矿产资源潜力评价[M].北京:科学出版社, 2015:255.
YAO Z Y, WANG T G, WANG G P, et al. Potential assessment of advantageous mineral resources in Oceania[M]. Beijing:Science Press, 2015:255.
[18] BARLEY M E, BEKKER, KRAPEŽ B.Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen[J]. Earth and Planetary Science Letters, 2005, 238(1/2):156-171.
[19] DITTRICH T, SEIFERT T, SCHULZ B, et al. Archean rare-metal pegmatites in Zimbabwe and Western Australia:Geology and metallogeny of pollucite mineralisations[M]. Berlin:Springer, 2019.
[20] MOLE D, FIORENTINI M, CASSIDY K, et al. Crustal evolution, intra-cratonic architecture and the metallogeny of an Archaean craton[J]. Geological Society, 2015, 393(1):23-80.
[21] BARLEY M, LOADER S, MCNAUGHTON N. 3430 to 3417 Ma calc-alkaline volcanism in the McPhee Dome and Kelly Belt, and growth of the eastern Pilbara Craton[J]. Precambrian Research, 1998,88(1):3-23.
[22] VEARNCOMBES, KERRICH R. Geochemistry and geodynamic setting of volcanic and plutonic rocks associated with Early Archaean volcanogenic massive sulphide mineralization, Pilbara Craton[J]. Precambrian Research, 1999,98(3/4):243-270.
[23] BUICKR, THORNETT J, MCNAUGHTON N, et al. Record of emergent continental crust~3.5 billion years ago in the Pilbara craton of Australia[J]. Nature, 1995, 375:574-577.
[24] SMITH J, BARLEY M, GROVES D, et al. The Sholl Shear Zone, West Pilbara:evidence for a domain boundary structure from integrated tectonostratigraphic analyses, SHRIMP U-Pb dating and isotopic and geochemical data of granitoids[J]. Precambrian Research, 1998,88(1):143-171.
[25] COLLINS W, GRAY C. Rb-Sr isotopic systematics of an Archaean granite-gneiss terrain:The Mount Edgar Batholith, Pilbara Block, Western Australia[J]. Australian Journal of Earth Sciences, 1990,37(1):9-22.
[26] SWEETAPPLE M T, COLLINS P L. Genetic framework for the classification and distribution of Archean rare metal pegmatites in the North Pilbara Craton, Western Australia[J]. Economic Geology, 2002,97(4):873-895.
[27] MARTIN D M B, LI Z, NEMCHIN A, et al. A pre-2.2 Ga age for giant hematite ores of the Hamersley Province, Australia[J]. Economic Geology, 1998,93(7):1084-1090.
[28] 姚仲友,王天刚,汪建宁.与前寒武纪含铁建造有关的铁矿床基本特征及研究进展[J].华东地质, 2012,33(4):261-267.
YAO Z Y, WANG T G, WANG J N. Characteristics and research progress of iron deposits related to precambrian iron-bearing formation[J]. East China Geology, 2012, 33(4):261-267.
[29] MORRISR, KNEESHAW M. Genesis modelling for the Hamersley BIF-hosted iron ores of Western Australia:a critical review[J]. Australian Journal of Earth Sciences, 2011,58(5):417-451.
[30] MYERS J S. Precambrian Tectonic History of the West Australian Craton and Adjacent Orogens[J]. Annual Review of Earth and Planetary Sciences, 1993, 21:453-485.
[31] KORSCH R, KOSITCIN N, CHAMPION D.Australian isl and arcs through time:geodynamic implications for the Archean and Proterozoic[J]. Gondwana Research, 2011,19(3):716-734.
[32] BARLEY M E, EISENLOHR B N, GROVES D I, et al. Late Archean convergent margin tectonics and gold mineralization:a new look at the Norseman-Wiluna Belt, Western Australia[J]. Geology, 1989,17(9):826-829.
[33] BLEWETTR, HENSON P, ROY I, et al. Scale-integrated architecture of a world-class gold mineral system:the Archaean eastern Yilgarn Craton, Western Australia[J]. Precambrian Research, 2010,183(2):230-250.
[34] NISBET E, CHEADLE M, ARNDT N, et al. Constraining the potential temperature of the Archaean mantle:a review of the evidence from komatiites[J]. Lithos, 1993,30(3/4):291-307.
[35] REID A J, JAGODZINSKI E A, FRASER G L, et al. SHRIMP U-Pb zircon age constraints on the tectonics of the Neoarchean to early Paleoproterozoic transition within the Mulgathing Complex, Gawler Craton, South Australia[J]. Precambrian Research, 2014, 250:27-49.
[36] BETTSP G, GILES D. The 1800-1100 Ma tectonic evolution of Australia[J]. Precambrian Research, 2006, 144(1/2):92-125.
[37] CAWOOD P A, KORSCH R. Assembling Australia:Proterozoic building of a continent[J]. Precambrian Research, 2008,166(1/4):1-35.
[38] CAWOOD P A, TYLER I M. Assembling and reactivating the Proterozoic Capricorn Orogen:lithotectonic elements, orogenies, and significance[J]. Precambrian Research, 2004,128(3/4):201-218.
[39] OCCHIPINTI S, SHEPPARD S, PASSCHIER C, et al. Palaeoproterozoic crustal accretion and collision in the southern Capricorn Orogen:the Glenburgh Orogeny[J]. Precambrian Research, 2004, 128(3):237-255.
[40] OCCHIPINTI S, SWAGER C, PIRAJNO F. Structural-metamorphic evolution of the Palaeoproterozoic Bryah and Padbury Groups during the Capricorn orogeny, Western Australia[J]. Precambrian Research, 1998, 90(3):141-158.
[41] TYLER I, GRIFFIN T.Structural development of the King Leopold Orogen, Kimberley region, Western Australia[J]. Journal of Structural Geology, 1990, 12(5):703-714.
[42] MVLLER S G, KRAPEZ B, BARLEY M E, et al. Giant iron-ore deposits of the Hamersley province related to the breakup of Paleoproterozoic Australia:new insights from in situ SHRIMP dating of baddeleyite from mafic intrusions[J]. Geology, 2005, 33(7):577-580.
[43] SHEPPARD S, TYLER I, GRIFFIN T, et al. Palaeoproterozoic subduction-related and passive margin basalts in the Halls Creek Orogen, northwest Australia[J]. Australian Journal of Earth Sciences, 1999, 46(5):679-690.
[44] GOLEBY B R, HUSTON D L, LYONS P, et al. The Tanami deep seismic reflection experiment:An insight into gold mineralization and Paleoproterozoic collision in the North Australian Craton[J]. Tectonophysics, 2009, 472(1/4):169-182.
[45] KORSCHR, HUSTON D, HENDERSON R, et al. Crustal architecture and geodynamics of North Queensland, Australia:insights from deep seismic reflection profiling[J]. Tectonophysics, 2012, 572:76-99.
[46] SKIRROW, WALSHE. Reduced and oxidized Au-Cu-Bi iron oxide deposits of the Tennant Creek Inlier, Australia:an integrated geologic and chemical model[J]. Economic Geology, 2002, 97(6):1167-1202.
[47] BAGAS L. Proterozoic evolution and tectonic setting of the northwest Paterson Orogen, Western Australia[J]. Precambrian Research, 2004,128(3/4):475-496.
[48] HUSTON D L, ANDENBERG L V, WYGRALAK A S, et al. Lode-gold mineralization in the Tanami region, northern Australia[J]. Mineralium Deposita, 2007,42(1/2):175-204.
[49] BETTS PG, GILES D, SCHAEFER B F. Comparing 1800-1600 Ma accretionary and basin processes in Australia and Laurentia:Possible geographic connections in Columbia[J]. Precambrian Research, 2008, 166(1/4):81-92.
[50] SCOTT D, RAWLINGS D, PAGE R, et al. Basement framework and geodynamic evolution of the Palaeoproterozoic superbasins of north-central Australia:an integrated review of geochemical, geochronological and geophysical data[J]. Australian Journal of Earth Sciences, 2000,47(3):341-380.
[51] BEARDSMORE T, NEWBERY S, LAING W.The Maronan Supergroup:an inferred early volcanosedimentary rift sequence in the Mount Isa Inlier, and its implications for ensialic rifting in the Middle Proterozoic of northwest Queensland[J]. Precambrian Research, 1988, 40:487-507.
[52] GIBSON G, RUBENACH M, NEUMANN N, et al. Syn-and post-extensional tectonic activity in the Palaeoproterozoic sequences of Broken Hill and Mount Isa and its bearing on reconstructions of Rodinia[J]. Precambrian Research, 2008, 166(1/4):350-369.
[53] SOUTHGATE P, BRADSHAW B, DOMAGALA J, et al. Chronostratigraphic basin framework for Palaeoproterozoic rocks (1730~1575 Ma) in northern Australia and implications for base-metal mineralisation[J]. Australian Journal of Earth Sciences, 2000,47(3):461-483.
[54] BETTS P G, GILES D, LISTER G S. Tectonic environment of shale-hosted massive sulfide Pb-Zn-Ag deposits of Proterozoic northeastern Australia[J]. Economic Geology, 2003, 98(3):557-576.
[55] SCRIMGEOUR I R, KINNY P D, CLOSE D F, et al. High-T granulites and polymetamorphism in the southern Arunta Region, central Australia:evidence for a 1.64 Ga accretional event[J]. Precambrian Research, 2005,142(1/2):1-27.
[56] WILLIAMSP J, BARTON M, JOHNSON D A, et al. Iron oxide copper-gold deposits:geology, space-time distribution, and possible modes of origin[M]. In:GOLDFARB R J, RICHARDS J P. Economic Geology, 2005.
[57] POLITO PA, KYSER T K, MARLATT J, et al. Significance of alteration assemblages for the origin and evolution of the Proterozoic Nabarlek unconformity-related uranium deposit, Northern Territory, Australia[J]. Economic Geology, 2004, 99(1):113-139.
[58] SCHONEVELD L, SPANDLER C, HUSSEY K. Genesis of the central zone of the Nolans Bore rare earth element deposit, Northern Territory, Australia[J]. Contributions to Mineralogy and Petrology, 2015,170(2):1-22.
[59] LUGUET A, JAQUES A, PEARSON D, et al. An integrated petrological, geochemical and Re-Os isotope study of peridotite xenoliths from the Argyle lamproite, Western Australia and implications for cratonic diamond occurrences[J]. Lithos, 2009, 112:1096-1108.
[60] HOWARD H, SMITHIES R, KIRKL C, et al. Age and geochemistry of the Alcurra Suite in the west Musgrave Province and implications for orthomagmatic Ni-Cu-PGE mineralization during the Giles Event[R]. Perth:Geological Survey of Western Australia, 2009:16.
[61] PIRAJNO F, HOATSON D M. A review of Australia's Large Igneous Provinces and associated mineral systems:Implications for mantle dynamics through geological time[J]. Ore Geology Reviews, 2012,48:2-54.
[62] KERRICH R, CASSIDY K F. Temporal relationships of lode gold mineralization to accretion, magmatism, metamorphism and deformation-Archean to present:A review[J]. Ore Geology Reviews, 1994,9(4):263-310.
[63] GOLDFARB R J, GROVES D I, GARDOLL S. Orogenic gold and geologic time:a global synthesis[J]. Ore Geology Reviews, 2001,18(1):1-75.
[64] ISLEY A E, ABBOTT D H. Plume-related mafic volcanism and the deposition of banded iron formation[J]. Journal of Geophysical Research, 1999,104(B7):15461-15477.
-
计量
- 文章访问数: 529
- PDF下载数: 81
- 施引文献: 0