淮河流域平原区高铁锰地下水环境健康风险评估

许乃政, 陶小虎, 龚建师, 檀梦皎. 2023. 淮河流域平原区高铁锰地下水环境健康风险评估. 华东地质, 44(2): 119-127. doi: 10.16788/j.hddz.32-1865/P.2023.02.001
引用本文: 许乃政, 陶小虎, 龚建师, 檀梦皎. 2023. 淮河流域平原区高铁锰地下水环境健康风险评估. 华东地质, 44(2): 119-127. doi: 10.16788/j.hddz.32-1865/P.2023.02.001
XU Naizheng, TAO Xiaohu, GONG Jianshi, TAN Mengjiao. 2023. Exposure risk of high Fe and Mn groundwater from Huaihe River Plain. East China Geology, 44(2): 119-127. doi: 10.16788/j.hddz.32-1865/P.2023.02.001
Citation: XU Naizheng, TAO Xiaohu, GONG Jianshi, TAN Mengjiao. 2023. Exposure risk of high Fe and Mn groundwater from Huaihe River Plain. East China Geology, 44(2): 119-127. doi: 10.16788/j.hddz.32-1865/P.2023.02.001

淮河流域平原区高铁锰地下水环境健康风险评估

  • 基金项目:

    中国地质调查局"长江下游及淮河流域水文地质与水资源调查监测(编号:DD20230428)"项目资助。

详细信息
    作者简介: 许乃政,1971年生,男,研究员,博士,主要从事环境科学研究。Email:xzzz100@sina.com。
    通讯作者: 龚建师,1979年生,男,高级工程师,学士,主要从事水文地质学研究。Email:593591934@qq.com。
  • 中图分类号: X53

Exposure risk of high Fe and Mn groundwater from Huaihe River Plain

More Information
  • 基于近期获得的水文地球化学分析数据,应用指示克立格法开展了淮河流域平原区高铁、锰地下水环境健康风险评估,并分析了高铁、锰地下水的形成原因。结果表明:铁、锰是影响研究区地下水质量的主要化学组分,铁、锰在地下水中的空间分布上表现出明显的变异性。铁、锰超标概率峰值具有相似的空间分布格局,铁、锰高风险地区呈岛状分布,深层地下水的环境健康风险明显降低。含铁浅层地下水高风险地区面积为1 257.15 km2,面积占比0.07%;含铁深层地下水高风险地区面积为476.93 km2,面积占比0.03%。含锰浅层地下水高风险地区面积为35 883.16 km2,面积占比19.19%;含锰深层地下水高风险地区面积为1 269.30 km2,面积占比0.07%。淮河流域高铁锰地下水是原生成因,铁、锰离子主要来源于含水层中含铁、锰矿物的还原性溶解。高铁锰地下水的风险评价结果,可为区域供水区划提供指导。
  • 加载中
  • [1]

    CAO H L, XIE X J, WANG Y X, et al. Predicting the risk of groundwater arsenic contamination in drinking water wells[J]. Journal of Hydrology, 2018, 560:318-325.

    [2]

    LI Y F, WAN D, LIU Y Y, et al. A predictive risk model of groundwater arsenic contamination in China applied to the Huai River Basin, with a focus on the region’s cluster of elevated cancer mortalities[J]. Applied Geochemistry, 2017, 77: 178-183.

    [3]

    SHAHID N M, NIAZI K, DUMAT C, et al. A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan[J]. Environmental Pollution, 2018, 242(A):307-319.

    [4]

    李璐,殷乐宜,牛浩博,等. 基于贝叶斯模型的地下水风险源污染概率估计方法研究[J].环境科学研究,2020,33(6):1322-1327.

    LI L, YIN L Y, NIU H B, et al. Contamination probability of groundwater risk sources by Bayesian [J]. Research of Environmental Sciences, 2020, 33(6):1322-1327.

    [5]

    滕彦国,左锐,苏小四,等.区域地下水环境风险评价技术方法[J].环境科学研究, 2014,27(12):1532-1539.

    TENG Y G, ZUO R, SU X S, et al. Technique for assessing environmental risk of regional groundwater[J]. Research of Environmental Sciences, 2014, 27(12):1532-1539.

    [6]

    左锐,石榕涛,王膑,等.地下水型水源地水质安全预警技术体系研究[J].环境科学研究, 2018,31(3):409-418.

    ZUO R,SHI R T,WANG B,et al.Technological system of early warning for groundwater quality in a groundwater source area [J]. Research of Environmental Sciences, 2018, 31(3): 409-418.

    [7]

    张博,李国秀,程品,等. 基于随机理论的地下水环境风险评价[J]. 水科学进展, 2016,27(1):100-106.

    ZHANG B, LI G X, CHENG P, et al. Groundwater environment risk assessment based on stochastic theory[J]. Advances in Water Science, 2016, 27(1):100-106.

    [8]

    姚丽利,高童,胡立堂.地下水水源地污染预警应用研究——以浑河冲洪积扇为例[J].南水北调水利科技, 2016,14(1):37-41,66. YAO L L, GAO T, HU L T. Applications study of groundwater pollution early warning in source field: A case study in alluvial-pluvial fan of Hun River [J]. South-North Water Transfer and Water Science & Technology, 2016,14(1):37-41, 66.

    [9]

    PARRONE D, GHERGO S, FROLLIINI E, et al. Arsenic-fluoride contamination in groundwater: Background and anomalies in a volcanic-sedimentary aquifer in central Italy [J]. Journal of Geochemical Exploration, 2020, 217:106590.

    [10]

    谢云峰,杜平, 曹云者,等. 基于地统计条件模拟的土壤重金属污染范围预测方法研究[J].环境污染与防治,2015,37(1): 1-6.

    XIE Y F, DU P, CAO Y Z, et al. Estimating the area of heavy metal contaminated soil using geostatistical conditional stimulation [J]. Environmental Pollution & Control, 2015, 37(1): 1-6.

    [11]

    谢云峰,曹云者,杜晓明,等. 土壤污染调查加密布点优化方法构建及验证[J]. 环境科学学报, 2016,36(3): 981-989

    . XIE Y F, CAO Y Z, DU X M, et al. Development and validation of a sampling design optimization procedure for detailed soil pollution investigation [J]. Acta Scientiae Circumstantiae, 2016, 36(3): 981-989

    [12]

    徐英,陈亚新,王俊生,等. 农田土壤水分和盐分空间分布的指示克立格分析评价[J]. 水科学进展,2006,17(4): 477-482.

    XU Y, CHEN Y X, WANG J S, et al. Using indicator Kriging to analyze and evaluate spatial distributions of soil water and salt in field[J]. Advances in Water Science, 2006, 17(4):477-482.

    [13]

    李保国,胡克林,黄元仿,等.区域浅层地下水硝酸盐含量评价的指示克立格法[J].水利学报,2001(3): 1-5.

    LI B G, HU K L, HUANG Y F, et al. Application of indicator Kriging method for assessing nitrate content of regional shallow groundwater[J].Journal of Hydraulic Engineering, 2001(3): 1-5.

    [14]

    刘瑞民,王学军,张巍. 天津表土PAHs区域环境风险评价研究[J]. 环境科学, 2008, 29(6):1719-1723.

    LIU R M, WANG X J, ZHANG W. Regional environment risk assessment and probability distribution of topsoil PAHs in Tianjin area [J]. Environmental Science, 2008, 29(6): 1719-1723.

    [15]

    姜菲菲,孙丹峰,李红,等.北京市农业土壤重金属污染环境风险等级评价[J].农业工程学报,2011,27(8): 330-337.

    JIANG F F, SUN D F, LI H, et al. Risk grade assessment for farmland pollution of heavy metals in Beijing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(8): 330-337.

    [16]

    张小文,何江涛,黄冠星. 石家庄地区浅层地下水铁锰分布特征及影响因素分析[J].地学前缘, 2021, 28(4):206-218.

    ZHANG X W, HE J T, HUANG G X. Iron and manganese in shallow groundwater in Shijiazhuang: Distribution characteristics and a cause analysis [J]. Earth Science Frontiers, 2021, 28(4):206-218.

    [17]

    蔡玲,胡成,陈植华,等.江汉平原东北部地区高铁锰地下水成因与分布规律[J]. 水文地质工程地质, 2019, 46(4):18-25.

    CAI L, HU C, CHEN Z H, et al. Distribution and genesis of high Fe and Mn groundwater in the northeast of the Jianghan Plain[J]. Hydrogeology & Engineering Geology, 2019, 46(4):18-25.

    [18]

    周锴锷,王赫生,龚建师,等. 淮河流域平原区浅层地下水铁锰分布特征及成因浅析[J]. 资源调查与环境, 2014,35(2):147-151.

    ZHOU K E, WANG H S, GONG J S, et al. Elementary analysis of distribution features and formation of Fe2+ and Mn2+ in the shallow groundwater of the Huaihe River alley plain [J]. Resource Survey and Environment, 2014,35(2):147-151.

    [19]

    张克信,潘桂棠,何卫红,等. 中国构造-地层大区划分新方案[J].中国地质大学学报:地球科学, 2015, 40(2): 206-233.

    ZHANG K X, PAN G T, HE W H, et al. New division of tectonic-strata super region in China [J]. Earth Science, 2015, 40: 206-233.

    [20]

    许乃政,龚建师,檀梦皎,等.淮河流域高砷地下水的形成演化过程及其环境健康风险[J]. 中国地质,2021,48(5): 1418-1428.

    XU N Z, GONG J S, TAN M J, et al. Hydrogeochemical processes and potential exposure risk of high-arsenic groundwater in Huaihe River Basin, China [J]. Geology in China, 2021, 48(5):1418-1428.

    [21]

    World Health Organization. Guidelines for drinking-water quality (Fourth edition) [M]. Geneva: The World Health Organization, 2011: 1-564.

    [22]

    中国卫生部. GB5749—2006生活饮用水卫生标准[S]. 北京:中国标准出版社,2006:1-10.

    Ministry of Health, PRC. GB5749—2006 Quality standard for drinking water [S].Beijing: China Standard Publishing House, 2006:1-10.

    [23]

    中国国土资源部和水利部. GB/T 14848—2017 地下水质量标准[S]. 北京:中国标准出版社,2017:1-14.

    Ministry of Land and Resources, Ministry of Water Resources, PRC. GB/T 14848—2017 Quality standard for ground water[S]. Beijing: China Standard Publishing House, 2017:1-14.

    [24]

    SARKAR M, CHANDRA PAL S. Human health hazard assessment for high groundwater arsenic and fluoride intact in Malda district, Eastern India [J]. Groundwater for Sustainable Development, 2021, 13:100565.

    [25]

    韩吟文,马振东, 张宏飞,等. 地球化学[M].北京:地质出版社, 2003:1-370.

    HAN Y W, MA Z D, ZHANG H F, et al. Geochemistry [M]. Beijing: Geological Publishing House, 2003:1-370.

  • 加载中
计量
  • 文章访问数:  796
  • PDF下载数:  58
  • 施引文献:  0
出版历程
收稿日期:  2022-01-26
修回日期:  2022-05-25

目录