Study on the structural characteristics of riverbed lithology based on the joint inversion of multiple methods
-
摘要: 河床结构探测是研究河水-地下水转化过程的关键,复杂河床结构探测过程中,单一物探方法通常精度不高。本文采用多普勒声学流速仪、地质雷达法、高密度电阻率法相结合,在淮北平原典型工作区进行河床形态和沉积物分布特征探测,构建了完整的联合反演河床岩性结构特征的技术体系,取得了较好的识别效果。结果表明:新汴河节制闸上游呈"蝶形",河床结构均匀,底泥厚度变化范围小;下游河床形态受分水坝影响起伏较大,河床形态不平整,底泥厚度为0.8~1 m;涡河处河道形态呈半椭圆形,且底泥两岸薄中间厚。韩村剖面受抽砂干扰严重,河床出现中间高两侧低的情况,底泥分布不均匀;两河口断面下存在弱透水层(粉质黏土),下方为承压含水层,其潜水含水层分布不均匀。实践证明,多种技术联合反演在河床形态探测上能够相互印证,提高成果解译的可靠性和准确性,为河水-地下水转化研究提供支撑。Abstract: The detection of riverbed structure is the key to study river-groundwater transformation. Single physical exploration method is usually of low accuracy in the detection of complex riverbed structure. This study jointly adopt Doppler acoustic velocity meter, geological radar and high-density resistivity method to investigate riverbed morphology and detect sediments distribution characteristics in the typical working area of Huaibei Plain. A complete technical system of joint inversion of riverbed lithological structure characteristics is accordingly constructed, achieving a good identification effect. The results show that: the upstream of the Xinbianhe River control gate is "butterfly-shaped" with uniform riverbed structure and small variation of sediment thickness. The shape of downstream riverbed fluctuated greatly under the influence of the sub-dam, with the sediment thickness of 0.8~1 m. The channel of Guohe River is semi-oval in shape, and the bottom mud is thin on both sides but thick in the middle. Seriously disturbed by sand pumping, the riverbed in Hancun section is high in the middle and low on both sides, resulting in uneven distribution of sediment. There is a weak permeable layer (silty clay) between Lianghekou section and a confined aquifer, and the local phreatic aquifer distributes unevenly. The practice has proved that the joint inversion of various techniques can corroborate mutually in riverbed morphology detection and improve the reliability and accuracy of results interpretation, providing support for the study of river-groundwater transformation.
-
-
[1] 王文科,李俊亭,王钊,等. 河流与地下水关系的演化及若干科学问题[J]. 吉林大学学报(地球科学版), 2007,37(2): 231-238.
WANG W K,LI J T,WANG Z,et al.Evolution of the relationship between river and groundwater and several scientific problems[J]. Journal of Jilin University(Earth Science Edition),2007,37(2): 231-238.
[2] 李国礼,周锴锷,张庆,等. 地表水与地下水联合数值模拟系统在阜阳市水资源优化管理中的应用[J]. 华东地质, 2018, 39(3): 234-240.
LI G L,ZHOU K E,ZHANG Q,et al. The application of a joint numerical simulation system of surface water and groundwater in optimized management of Fuyang water resources[J].East China Geology, 2018, 39(3): 234-240.
[3] 张明林,周光辉,洪炉,等. 金沙江白鹤滩水电站急流水上钻探方法的研究及应用[J]. 工程勘察, 2008(S1): 187-193.
ZHANG M L,ZHOU G H,HONG L,et al.Research and application of water drilling method for rapids in Baihetan Hydropower Station of Jinsha River [J].Geotechnical Investigation & Surveying, 2008(S1): 187-193.
[4] 李志威,颜旭,潘保柱,等. 山区河流河床结构表征新方法[J]. 水科学进展, 2018, 29(6): 799-809.
LI Z W,YAN X,PAN B Z,et al. A new method of calculating riverbed structure in mountain streams [J].Advances in Water Science, 2018, 29(6): 799-809.
[5] STEELMAN C M,KENNEDY C S,PARKER B L. Geophysical conceptualization of a fractured sedimentary bedrock riverbed using ground-penetrating radar and induced electrical conductivity[J]. Journal of Hydrology, 2015, 521: 433-446.
[6] WUNDERLICH T,FISCHER P,WILKEN D, et al. Constraining electric resistivity tomography by direct push electric conductivity logs and vibracores: An exemplary study of the Fiume Morto silted riverbed (Ostia Antica, western Italy)[J]. Geophysics, 2018, 83(3): B87-B103.
[7] 冯彦东,杨军. 综合物探方法在河床深厚覆盖层勘探中的应用[J]. 工程地球物理学报, 2009, 6(2): 208-211.
FENG Y D,YANG J. Application of comprehensive geophysical method to deep overburden layer exploration in river bed[J]. Chinese Journal of Engineering Geophysics, 2009, 6(2): 208-211.
[8] 徐文晓. 长江河口北港北汊河势演变及动力沉积特征分析[D]. 上海:华东师范大学, 2016. XU W X. Analysis of river regime evolution and dynamic sediment for the north inlet of North Channel in the Changjiang estuary[D].Shanghai:East China Normal University,2016.
[9] 汪胜波,姬光荣,杨光兵,等. 宽带声学多普勒流速剖面仪信号中心频率估计[J]. 中国海洋大学学报(自然科学版), 2013, 43(2): 87-92.
WANG S B,JI G R,YANG G B,et al.Center frequency estimation of broadband ADCP signal[J]. Periodical of Ocean University of China, 2013, 43(2): 87-92.
[10] 唐明,程和琴,陈钢,等. 基于ADCP的长江口感潮河段床面稳定性分析[J]. 泥沙研究, 2020, 45(1): 37-44.
TANG M,CHENG H Q,CHEN G,et al.Stability analysis of bed in tidal river sections of Yangtze Estuary based on ADCP[J]. Journal of Sediment Research,2020, 45(1): 37-44.
[11] 梁贵生,谢永勇,宁鑫. ADCP在黄河游荡型河道截流工程中的应用[J]. 人民黄河, 2018, 40(10): 17-19.
LIANG G S,XIE Y Y,NING X. Application of ADCP in the Interception Project in the Wandering Channel of the Yellow River[J].Yellow River, 2018, 40(10): 17-19.
[12] 武桂芝,张宝森,李春江,等. 阵列地质雷达在黄河堤防隐患探测中的应用[J]. 人民黄河, 2020, 42(8): 113-116.
WU G Z,ZHANG B S,LI C J,et al. Application of array geological radar to the detection of hidden dangers in the Yellow River dyke [J].Yellow River, 2020, 42(8): 113-116.
[13] 韩佳明,牛宇凯,刘明明,等. 地下方形空洞地质雷达成像机理研究[J]. 物探与化探, 2022,46(3): 685-692.
HAN J M,NIU Y K,LIU M M,et al.Ground penetratin radar imaging mechanisms of underground square cavities[J]. Geophysical and Geochemical Exploration, 2022,46(3): 685-692.
[14] 田原. 地质雷达在水电工程中的应用[J]. 勘察科学技术, 1998(4): 56-59.
TIAN Y, Application of Georadar in Hydroelectric Projects[J]. Site Investigation Science and Technology, 1998(4): 56-59.
[15] 刘文辉,赵贵章,陈世仲,等. 基于高密度电阻率法的河床结构特征研究:以宿州新汴河为例[J]. 华北水利水电大学学报(自然科学版), 2021, 42(5): 59-65.
LIU W H,ZHAO G Z,CHEN S Z,et al. Structural characteristics of riverbed based on high density electrical method-a case of the New Bian-he River in Suzhou [J].Journal of North China University of Water Resources and Electric Power (Natural Science Edition),2021,42(5):59-65.
[16] 姜月华,吴吉春,李云,等. 高密度电法在城市地下水和土壤有机污染调查中的应用[J]. 华东地质, 2021, 42(1): 1-8.
JIANG Y H,WU J C,LI Y.et al.The application of high-density resistivity method in organic pollution survey of groundwater and soil of cities[J].East China Geology, 2021, 42(1): 1-8.
[17] WU G J,YANG G l,TAN H B. Mapping coalmine goaf using transient electromagnetic method and high density resistivity method in Ordos City, China[J]. Geodesy and Geodynamics, 2016, 7(5): 340-347.
[18] 崔玉贵,姜月华,刘林,等. 高密度电法在江西于都黄麟地区地热勘查中的应用[J]. 华东地质, 2020, 41(4): 368-374.
CUI Y G,JIANG Y H,LIU L, et al. Application of high-density resistivity method in geothermal exploration in Huanglin area of Yudu County, Jiangxi Province[J]. East China Geology, 2020, 41(4): 368-374.
[19] 肖敬瑞,丁彦礼,刘良,等. 地面高密度电阻率法在人工湿地堵塞区域探测研究[J]. 工程地球物理学报, 2022, 19(2): 183-191.
XIAO J R,DING Y L,LIU L,et al. Study on detection of blocked area of constructed wetland by ground high density resistivity method[J].Chinese Jounral of Engineering Geophysics,2022,19(2): 183-191.
[20] 郑志龙,陈洋,王丽君,等. 高密度电法在某高速公路岩溶隧道探测中的应用[J]. 地下空间与工程学报, 2021, 17(S2): 912-917, 924.
ZHENG Z L,CHEN Y,WANG L J. et al. Application of high density electrical method in karst tunnel detection of a highway[J].Chinese Journal of Underground Space and Engineering,2021, 17(S2): 912-917, 924.
-
计量
- 文章访问数: 683
- PDF下载数: 41
- 施引文献: 0