Full section multi-parameter precise monitoring of fiber optic in land subsidence borehole: a case study of Shanmozhi Village, Xiaoshan District of Hangzhou
-
摘要:
为了科学防控地面沉降,文章以杭州萧山区山末址村地面沉降重点区为研究对象,在系统分析其地面沉降成因机理的基础上,建立了钻孔全断面光纤多参量地面沉降自动化监测示范点,识别了不同深度土层的沉降变化特征和主要沉降层位,探究了弱透水层与含水砂层在不同水位变化模式下的变形特征。结果表明:①示范点处当前主要沉降层位集中在第二弱透水层和第I2承压含水层,平均沉降量占比分别为29.59%和33.21%,且有增大的趋势;②监测期内随着地下水位的持续回升,第I2承压含水层主要表现为弹性变形,且存在较小的残余变形;③第二弱透水层变形明显滞后于孔隙水压力的变化,具有塑性变形和蠕变的特点。实践表明,建立的监测示范点能够准确获取地面沉降发育过程中高精度的多参量数据,可为地面沉降的机理研究和模型预测提供数据支撑。
Abstract:In order to scientifically prevent and control land subsidence, taking the key area of land subsidence in shanmozi village, Xiaoshan District, Hangzhou as the research object, based on the systematic analysis of the mechanism of the local land subsidence, a demonstration site for automatic monitoring of land subsidence with multi-parameter optical fiber in full cross section of borehole was established. And the variation characteristics of subsidence at different soil depths and the primary subsidence layers were identified, and the deformation characteristics of aquitard and sand aquifer were explored under the different modes of water level changes. The results show that the current primary subsidence layers at the demonstration site are concentrated in the second aquitard and the I2 confined aquifer, and the average subsidence accounts for 29.59% and 33.21% respectively, and showing an increasing trend. Moreover, during the monitoring period, the I2 confined aquifer mainly shows elastic deformation, and there is small residual deformation with the continuous rise of groundwater level. The deformation of the second aquitard obviously lags behind the change of pore water pressure, and has the characteristics of plastic deformation and creep. The practice shows that the established monitoring demonstration site could accurately obtain high-precision, multi parameter data in the process of land subsidence, and provide data support for study of land subsidence mechanism and model prediction.
-
-
表 1 山末址村示范点地下水位监测数据与现场测量数据对比
Table 1. Comparison of the monitoring data and the field measurement data of groundwater level at the demonstration site of Shanmozhi Village
日期 潜水含水层水位埋深 第Ⅰ1承压含水层水位埋深 第Ⅰ2承压含水层水位埋深 光纤监测
数据/cm现场测量
数据/cm误差/% 光纤监测
数据/cm现场测量
数据/cm误差/% 光纤监测
数据/cm现场测量
数据/cm误差/% 2023.07.26 152.70 166.00 8.01 631.60 659.00 4.16 698.40 672.50 3.85 2023.08.03 153.60 166.50 7.75 621.80 650.20 4.37 662.20 636.50 4.04 水位变幅 −0.90 −0.50 − 9.80 8.80 − 36.20 36.00 − -
[1] GONG R X, WANG Q H, CHEN Z D. 2009. Report of urban geological survey of Hangzhou[R]. Hangzhou: Zhejiang Geological Survey Institute, 436 (in Chinese).
[2] GU K, LIU S P, SHI B, LU Y, JIANG Y H. 2020. Land subsidence monitoring using distributed fiber optic sensing with Brillouin scattering in coastal and deltaic regions[J]. Proceedings of IAHS,382:95-98. doi: 10.5194/piahs-382-95-2020
[3] GU K, SHI B, LIU C, JIANG H T, LI T B, WU J H. 2018. Investigation of land subsidence with the combination of distributed fiber optic sensing techniques and microstructure analysis of soils[J]. Engineering Geology,240:34-47. doi: 10.1016/j.enggeo.2018.04.004
[4] HE J H, ZHANG J C, CHEN Y, YAN X G, SHI B, WEI G Q, JIA L X, LIU S P. 2021. Automatic land subsidence monitoring system based on weak-reflection fiber gratings[J]. Hydrogeology & Engineering Geology,48(1):146-153 (in Chinese with English abstract).
[5] HUANG D H. 2023. Land subsidence monitoring in Yungang mining area in Datong City based on InSAR technology[J]. East China Geology,44(4):476-484. doi: 10.16788/j.hddz.32-1865/P.2023.04.011
[6] JIANG Y H, DAI Q J, WANG Y P, WU Q H. 2000. The negative environmental effects of groundwater exploitation in the Yangtze River Delta and their preventive countermeasures[J]. Volcanology & Mineral Resources,21(3):214-225 (in Chinese with English abstract).
[7] JIANG Y H, ZHOU Q P, NI H Y, CHEN L D, CHENG H Q, LEI M T, GE W Y, MA T, SHI B, CHENG Z Y, DUAN X J, SU J W, ZHU J Q, XIU L C, XIANG F, ZHU Z M, FENG N Q, XIE Z S, TAN J M, PENG K, GUO S Q, FU Y P, REN H Y, SUN J P, YANG Q, ZHU J L, WANG D H, LI M H, LIU G n, FAN C Z, WANG X F, SHI Y J, WANG H M, DONG X Z, CHEN H Y, HAO S F, DENG Y M, LI Y, XIAO Z Y, YANG H, LIU L, JIN Y, ZHANG H, MEI S J, QI Q J, LÜ J S, HOU L L, CHEN G, CHEN Z, JIA Z Y. 2023. Progress of environmental geological investigation and research in the Yangtze River Economic Zone[J]. East China Geology,44(3):239-261. doi: 10.16788/j.hddz.32-1865/P.2023.03.001
[8] JIANGSU MARKET SUPERVISION AND ADMINISTRATION BUREAU. 2022. DB32/T 4403—2022 Technical specification for optical fiber multi-parameter monitoring implementation through geological borehole[S]. Beijing: Standards Press of China, 1-11 (in Chinese).
[9] LEI K C, MA F S, LUO Y, CHEN B B, CUI W J, TIAN F, SHA T. 2022. Main subsidence layers and deformation characteristics in Beijing Plain at present[J]. Journal of Engineering Geology,30(2):442-458 (in Chinese with English abstract).
[10] LI H J, ZHU H H, SHI B, CHEN X P. 2018. Research progress and prospect of DFOS-based ground deformation monitoring technology[J]. Journal of Engineering Geology,26(S1):397-408 (in Chinese with English abstract).
[11] LI Y M, LUO Y, ZHAO L. 2023. The advance and considerations on land subsidence in Beijing Plain[J]. Journal of Catastrophology,38(4):121-126 (in Chinese with English abstract).
[12] LIU M Y, ZHANG Q Q, GONG X L, XU S G, GU C S, ZHANG Y. 2022. Study on soil deformation characteristic and the life process of land subsidence in Changzhou area of Jiangsu Province[J]. Shanghai Land & Resources,43(4):50-55,72 (in Chinese with English abstract).
[13] LU Y, SHI B, WEI G Q. 2016. BOTDR and FBG fixed-point distributed optical fiber sensor monitoring technology for ground fissures[J]. The Chinese Journal of Geological Hazard and Control,27(2):103-109 (in Chinese with English abstract).
[14] LU Y, SONG Z Z, LIU J, BU F, QI C Q. 2023. Land subsidence monitoring and deformation analysis of Tongzhou Bay area based on DFOS[J]. Journal of Hohai University (Natural Sciences),51(2):81-88 (in Chinese with English abstract).
[15] NING R R, WANG D, TIAN X P, ZHANG Y W, ZHOU Z X, LUO F B. 2023. Analysis of ground settlement in the Yellow River delta and projection of seawater inundation[J]. Advances in Earth Science,38(3):296-308 (in Chinese with English abstract).
[16] QIN T C, CHENG G M, WANG H G. 2018. The latest progress of research on land subsidence abroad and its inspiration to China[J]. Geological Bulletin of China,37(2-3):503-509 (in Chinese with English abstract).
[17] SHEN H Z, WU M J. 2023. Study on land subsidence risk management and control in Zhejiang Province[J]. Zhejiang Land & Resources, (2): 29-30 (in Chinese with English abstract).
[18] SHI B. 2017. On the ground sensing system and ground sensing engineering[J]. Journal of Engineering Geology,25(3):582-591 (in Chinese with English abstract).
[19] SHI B, GU K, WEI G Q, WU J H, ZHANG C C. 2018. Full section monitoring of land subsidence borehole using distributed fiber optic sensing techniques[J]. Journal of Engineering Geology,26(2):356-364 (in Chinese with English abstract).
[20] WANG F. 2022. Monitoring and prediction analysis of urban surface subsidence based on time-series InSAR technology[D]. Nanchang: East China University of Technology, 18-28 (in Chinese with English abstract).
[21] WANG J B, SI X J, HUA X H, HU G X, ZHANG G G. 2011. Introduction of three-dimensional geological structure characteristics of Hangzhou City[J]. Zhejiang Land & Resources, (3): 51-54 (in Chinese with English abstract).
[22] WANG M Z, WAN J W, BAI T, LIU Y, SHEN F. 2021. The influence of geothermal resources exploitation of sandstone thermal reservoir on land subsidence in Decheng District, Dezhou City[J]. East China Geology,42(2):202-209 (in Chinese with English abstract).
[23] WU J H. 2017. Research on land subsidence mechanism and soil layer deformation potential evaluation based on DFOS technology[D]. Nanjing: Nanjing University, 69-79 (in Chinese with English abstract).
[24] WU J H, JIANG H T, SU J W, SHI B, JIANG Y H, GU K. 2015. Application of distributed fiber optic sensing technique in land subsidence monitoring[J]. Journal of Civil Structural Health Monitoring,5(5):587-597. doi: 10.1007/s13349-015-0133-8
[25] WU Q F, WU J H, JIA L X, TANG B J, GONG X L. 2021. Refined process of land subsidence in Chenjiagang of Yancheng based on optical fiber sensing technology[J]. Journal of Suzhou University of Science and Technology (Engineering and Technology),34(2):14-20 (in Chinese with English abstract).
[26] XUE Y Q, WU J C, ZHANG Y, YE S J, SHI X Q, WEI Z X, LI Q F, YU J. 2008. Simulation of regional land subsidence in the southern Yangtze Delta[J]. Science in China Series D: Earth Sciences,51(6):808-825. doi: 10.1007/s11430-008-0062-z
[27] XUE Y Q, ZHANG Y. 2016. Land subsidence and land fissures in the southern Yangtze River Delta[J]. East China Geology,37(1):1-9 (in Chinese with English abstract).
[28] XUE Y Q, ZHANG Y, YE S J, LI Q F. 2003. Land subsidence in China and ITS problems[J]. Quaternary Sciences,23(6):585-593 (in Chinese with English abstract).
[29] YU S Q, YAO H L. 2020. Major engineering geological problems in Hangzhou urban area and their implications discussion on prevention and control measures[J]. Zhejiang Land and Resources, (5): 34-35 (in Chinese with English abstract).
[30] ZHANG G F. 2005. Situation of prohibition and limitation extraction groundwater aspect in Zhejiang and its countermeasure[J]. Zhejiang Hydrotechnics,(5):1-3 (in Chinese with English abstract).
[31] ZHANG Q, HUA J, CHENG G H, GE W Y, LU Y Z, XING H X, CHEN Z F, WANG D. 2022. Study on high percentage recovery technology of rock core in loose and fractured layer[J]. East China Geology,43(3):306-312.
[32] ZHAO J K, SUN L L, LIU S X. 2003. Status and the prevention and treatment countermeasures of land subsiding in the coastal plain, Zhejiang Province[J]. Journal of Geological Hazards and Environment Preservation,14(2):16-20 (in Chinese with English abstract).
[33] ZHEJIANG GEOLOGICAL AND MINERAL EXPLORATION INSTITUTE CO. LTD. 2022a. Project outcome report of groundwater and ground subsidence monitoring in Hangzhou City[R]. Hangzhou: Zhejiang Geological and Mineral Exploration Institute Co. LTD, 45-55 (in Chinese).
[34] ZHEJIANG GEOLOGICAL AND MINERAL EXPLORATION INSTITUTE CO. LTD. 2022b. Risk assessment and zoning of land subsidence in Hangzhou, Zhejiang Province[R]. Hangzhou: Zhejiang Geological and Mineral Exploration Institute Co. LTD, 50-54 (in Chinese).
[35] 龚日祥, 汪庆华, 陈忠大, 罗以达, 顾明光, 胡根兴, 彭振宇, 凌其聪, 傅俊鹤, 梁河, 李江风, 毛汉川, 张丽琴, 朱建才, 唐俊红, 何圣策, 秦祥熙, 汪永森.2009. 杭州城市地质调查成果报告[R]. 杭州: 浙江省地质调查院, 436.
[36] 黄德华. 2023. 基于InSAR技术的大同市云冈矿区地面沉降监测[J]. 华东地质,44(4):476-484. doi: 10.16788/j.hddz.32-1865/P.2023.04.011
[37] 何健辉, 张进才, 陈勇, 闫星光, 施斌, 魏广庆, 贾立翔, 刘苏平. 2021. 基于弱光栅技术的地面沉降自动化监测系统[J]. 水文地质工程地质,48(1):146-153.
[38] 江苏省市场监督管理局. 2022. DB32/T 4403—2022 地质钻孔光纤多参量监测实施技术规范[S]. 北京: 中国标准出版社, 1-11.
[39] 姜月华, 戴庆嘉, 汪迎平, 巫全淮. 2000. 长江三角洲地下水开采的负环境效应及其防治[J]. 火山地质与矿产,21(3):214-225.
[40] 姜月华, 周权平, 倪化勇, 陈立德, 程和琴, 雷明堂, 葛伟亚, 马腾, 施斌, 程知言, 段学军, 苏晶文, 朱锦旗, 修连存, 向芳, 朱志敏, 冯乃琦, 谢忠胜, 谭建民, 彭轲, 郭盛乔, 伏永朋, 任海彦, 孙建平, 杨强, 朱继良, 王东辉, 李明辉, 刘广宁, 范晨子, 王新峰, 史玉金, 王寒梅, 董贤哲, 陈焕元, 郝社峰, 邓娅敏, 李云, 肖则佑, 杨海, 刘林, 金阳, 张鸿, 梅世嘉, 齐秋菊, 吕劲松, 侯莉莉, 陈刚, 陈孜, 贾正阳. 2023. 长江经济带环境地质调查研究进展[J]. 华东地质,44(3):239-261. doi: 10.16788/j.hddz.32-1865/P.2023.03.001
[41] 雷坤超, 马凤山, 罗勇, 陈蓓蓓, 崔文君, 田芳, 沙特. 2022. 北京平原区现阶段主要沉降层位与土层变形特征[J]. 工程地质学报,30(2):442-458.
[42] 李豪杰, 朱鸿鹄, 施斌, 陈晓平. 2018. 基于DFOS的地面变形监测技术研究进展与展望[J]. 工程地质学报,26(S1):397-408.
[43] 李玉梅, 罗勇, 赵龙. 2023. 北京市平原区地面沉降研究进展与思考[J]. 灾害学,38(4):121-126.
[44] 刘明遥, 张其琪, 龚绪龙, 许书刚, 顾春生, 张岩. 2022. 江苏常州地区地面沉降变形特征与生命过程研究[J]. 上海国土资源,43(4):50-55,72.
[45] 卢毅, 施斌, 魏广庆. 2016. 基于BOTDR与FBG的地裂缝定点分布式光纤传感监测技术研究[J]. 中国地质灾害与防治学报,27(2):103-109.
[46] 卢毅, 宋泽卓, 刘瑾, 卜凡, 祁长青. 2023. 基于DFOS的通州湾地区地面沉降监测与变形分析[J]. 河海大学学报(自然科学版),51(2):81-88.
[47] 宁荣荣, 王德, 田信鹏, 张永伟, 周自翔, 罗富彬. 2023. 黄河三角洲的地面沉降分析以及海水淹没预估[J]. 地球科学进展,38(3):296-308.
[48] 秦同春, 程国明, 王海刚. 2018. 国际地面沉降研究进展的启示[J]. 地质通报,37(2-3):503-509.
[49] 沈慧珍, 吴孟杰. 2023. 浙江省地面沉降风险管控研究[J]. 浙江国土资源,(2):29-30.
[50] 施斌. 2017. 论大地感知系统与大地感知工程[J]. 工程地质学报,25(3):582-591.
[51] 施斌, 顾凯, 魏广庆, 吴静红, 张诚成. 2018. 地面沉降钻孔全断面分布式光纤监测技术[J]. 工程地质学报,26(2):356-364.
[52] 王菲. 2022. 基于时序InSAR技术的城市地表沉降监测与预测分析[D]. 南昌: 东华理工大学, 18-28.
[53] 王剑波, 斯小君, 华锡宏, 胡根兴, 张国光. 2011. 杭州城市三维地质结构特征介绍[J]. 浙江国土资源,(3):51-54.
[54] 王明珠, 万军伟, 白通, 刘毅, 沈芳. 2021. 德州市德城区砂岩热储地热资源开采对地面沉降的影响[J]. 华东地质,42(2):202-209.
[55] 吴静红. 2017. 基于DFOS的地面沉降机理与土层变形潜力评价研究[D]. 南京: 南京大学, 69-79.
[56] 吴起帆, 吴静红, 贾立翔, 唐柏鉴, 龚绪龙. 2021. 基于光纤感测技术的盐城陈家港地面沉降精细化过程研究[J]. 苏州科技大学学报(工程技术版),34(2):14-20.
[57] 薛禹群, 吴吉春, 张云, 叶淑君, 施小清, 魏子新, 李勤奋, 于军. 2008. 长江三角洲(南部)区域地面沉降模拟研究[J]. 中国科学 D辑: 地球科学,38(4):477-492.
[58] 薛禹群, 张云. 2016. 长江三角洲南部地面沉降与地裂缝[J]. 华东地质,37(1):1-9.
[59] 薛禹群, 张云, 叶淑君, 李勤奋. 2003. 中国地面沉降及其需要解决的几个问题[J]. 第四纪研究,23(6):585-593.
[60] 余舒琪, 姚辉磊. 2020. 杭州市区主要工程地质问题及其防治措施探讨[J]. 浙江国土资源,(5):34-35.
[61] 章国方. 2005. 浙江省地下水禁限采工作面临的形势及对策[J]. 浙江水利科技,(5):1-3.
[62] 张庆, 华健, 程光华, 葛伟亚, 陆远志, 邢怀学, 陈宗芳, 王东. 2022. 松散及破碎层岩心高采取率技术研究[J]. 华东地质,43(3):306-312.
[63] 赵建康, 孙乐玲, 刘思秀. 2003. 浙江省滨海平原地面沉降现状及防治对策[J]. 地质灾害与环境保护,14(2):16-20.
[64] 浙江省地矿勘察院有限公司. 2022a. 杭州市地下水与地面沉降监测项目成果报告[R]. 杭州: 浙江省地矿勘察院有限公司, 45-55.
[65] 浙江省地矿勘察院有限公司. 2022b. 浙江省杭州市地面沉降风险评估与区划[R]. 杭州: 浙江省地矿勘察院有限公司, 50-54.
-