磁铁矿:研究方法与矿床学应用

黄小文, 孟郁苗, 漆亮, 周美夫, 高剑峰, 谭侯铭睿, 谢欢, 谭茂, 杨志爽, 高英辉, 张鑫. 2024. 磁铁矿:研究方法与矿床学应用. 华东地质, 45(1): 1-15. doi: 10.16788/j.hddz.32-1865/P.2024.01.001
引用本文: 黄小文, 孟郁苗, 漆亮, 周美夫, 高剑峰, 谭侯铭睿, 谢欢, 谭茂, 杨志爽, 高英辉, 张鑫. 2024. 磁铁矿:研究方法与矿床学应用. 华东地质, 45(1): 1-15. doi: 10.16788/j.hddz.32-1865/P.2024.01.001
HUANG Xiaowen, MENG Yumiao, QI Liang, ZHOU Meifu, GAO Jianfeng, TAN Houmingrui, XIE Huan, TAN Mao, YANG Zhishuang, GAO Yinghui, ZHANG Xin. 2024. Magnetite: research methods and applications to ore deposit research. East China Geology, 45(1): 1-15. doi: 10.16788/j.hddz.32-1865/P.2024.01.001
Citation: HUANG Xiaowen, MENG Yumiao, QI Liang, ZHOU Meifu, GAO Jianfeng, TAN Houmingrui, XIE Huan, TAN Mao, YANG Zhishuang, GAO Yinghui, ZHANG Xin. 2024. Magnetite: research methods and applications to ore deposit research. East China Geology, 45(1): 1-15. doi: 10.16788/j.hddz.32-1865/P.2024.01.001

磁铁矿:研究方法与矿床学应用

  • 基金项目:

    国家自然科学基金(编号:42173070)、中国科学院百人计划项目、矿床地球化学国家重点实验室领域前沿项目(编号:202101)、贵州省省级科技计划项目(编号:黔科合基础-ZK(2023)重点050)和国家自然基金贵州省后补助经费(编号:GZ2020SIG、GZ2021SIG)联合资助。

详细信息
    作者简介: 黄小文,1985年生,男,研究员,博士,主要从事成因矿物学与关键矿产成矿作用研究工作。Email: huangxiaowen@mail.gyig.ac.cn。
    通讯作者: 黄小文,1985年生,男,研究员,博士,主要从事成因矿物学与关键矿产成矿作用研究工作。Email: huangxiaowen@mail.gyig.ac.cn。
  • 中图分类号: P571

Magnetite: research methods and applications to ore deposit research

More Information
  • 磁铁矿在自然界普遍存在,其成岩和成矿作用研究备受关注。文章系统地总结了近年来磁铁矿的研究进展,介绍了磁铁矿的研究方法体系,并探讨了其在矿床学研究中的应用。磁铁矿的研究方法包括磁铁矿的年代学、显微结构、元素和同位素组成。在磁铁矿的方法学基础上,进一步探讨了磁铁矿Re-Os同位素定年在成矿年代学研究中的应用、磁铁矿有关的温度计和氧逸度计以及矿床类型判别等。此外,以铁氧化物-铜-金和铁氧化物-磷灰石矿床为例,讨论了磁铁矿微量元素组成对这些矿床成因的制约,并初步总结了磁铁矿微量元素组成在找矿勘查方面的应用。磁铁矿作为重要的矿床学研究对象,已助推矿床成因和找矿勘查研究,具有巨大的应用潜力,包括原位U-Pb年代学和非传统稳定同位素示踪(如V同位素)等。然而,磁铁矿中微量元素的赋存状态、分配行为以及磁铁矿地球化学数据库等是磁铁矿研究中较薄弱的环节,亟需进一步加强。
  • 加载中
  • [1]

    徐国风,邵洁莲.磁铁矿的标型特征及其实际意义[J].地质与勘探, 1979(3):30-37.

    XU G F, SHAO J L. Typical characteristics of magnetite and its practical significance[J]. Geology and Exploration, 1979(3):30-37.

    [2]

    LIU Y, HU Z, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2):34-43.

    [3]

    RAJU P V S, BARNES S J, SAVARD D. Using magnetite as an indicator mineral, step 1:calibration of LA-ICP-MS[C]. 11th international platinum symposium, Ontario Canada. 2010.

    [4]

    NADOLL P, KOENIG A E. LA-ICP-MS of magnetite:methods and reference materials[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(9):1872-1877.

    [5]

    黄海波,袁静,凌波,等.电弧发射光谱技术发展及其在地质领域的应用[J].华东地质,2023,44(1):103-117.

    HUANG H B, YUAN J, LING B, et al. Technical development of arc-emission spectroscopy and its application in geological sample analysis[J].East China Geology, 2023, 44(1):103-117.

    [6]

    SAVARD D, BARNES S J, DARE S, et al. Improved calibration technique for magnetite analysis by LA-ICP-MS[J]. Mineralogical Magazine, 2012, 76(6):2329.

    [7]

    HUANG X W, ZHOU M F, QI L, et al. Re-Os isotopic ages of pyrite and chemical composition of magnetite from the Cihai magmatic-hydrothermal Fe deposit, NW China[J]. Mineralium Deposita, 2013, 48(8):925-946.

    [8]

    GAO J F, ZHOU M F, LIGHTFOOT P C, et al. Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu sulfide deposit, Xinjiang, Northwestern China[J]. Economic Geology, 2013, 108(8):1833-1848.

    [9]

    孟郁苗,黄小文,高剑峰,等.无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成[J].岩矿测试, 2016, 35(6):585-594.

    MENG Y M, HUANG X W, GAO J F, et al. Determination of trace elements in magnetite by laser ablation-inductively coupled plasma-mass spectrometry using multiple external standards without an internal standard calibration[J]. Rock and Mineral Analysis, 2016, 35(6):585-594.

    [10]

    WANG R C, ZHOU M F. Preface of special issue of "applications of modern analytical techniques in the study of mineral deposits" by Rucheng Wang and Mei-Fu Zhou (guest editors)[J]. Ore Geology Reviews, 2015, 65(Part 4):729-732.

    [11]

    HUANG X W, ZHOU M F, QIU Y Z, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite:The Bayan Obo Fe-REE-Nb deposit, North China[J]. Ore Geology Reviews, 2015, 65(Part 4):884-899.

    [12]

    HUANG X W, GAO J F, QI L, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite and Re-Os dating of pyrite:the Tianhu hydrothermally remobilized sedimentary Fe deposit, NW China[J]. Ore Geology Reviews, 2015, 65(Part 4):900-916.

    [13]

    CHEN W T, ZHOU M F, LI X, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite:Cu-(Au, Fe) deposits in the Khetri copper belt in Rajasthan province, NW India[J]. Ore Geology Reviews, 2015, 65(Part 4):929-939.

    [14]

    ZHAO W W, ZHOU M F. In-situ LA-ICP-MS trace elemental analyses of magnetite:the Mesozoic Tengtie skarn Fe deposit in the Nanling Range, South China[J]. Ore Geology Reviews, 2015, 65(Part 4):872-883.

    [15]

    LIU P P, ZHOU M F, CHEN W T, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite:Fe-Ti-(V) oxide-bearing mafic-ultramafic layered intrusions of the Emeishan Large Igneous Province, SW China[J]. Ore Geology Reviews, 2015, 65(Part 4):853-871.

    [16]

    CHUNG D, ZHOU M F, GAO J F, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite:the late Palaeoproterozoic Sokoman iron formation in the Labrador Trough, Canada[J]. Ore Geology Reviews, 2015, 65(Part 4):917-928.

    [17]

    NADOLL P, ANGERER T, MAUK J L, et al. The chemistry of hydrothermal magnetite:A review[J]. Ore Geology Reviews, 2014, 61:1-32.

    [18]

    陈华勇,韩金生.磁铁矿单矿物研究现状、存在问题和研究方向[J].矿物岩石地球化学通报, 2015, 34(4):724-730.

    CHEN H Y, HAN J S. Study of magnetite:problems and future[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(4):724-730.

    [19]

    赵振华,严爽.矿物——成矿与找矿[J].岩石学报, 2019, 35(1):31-68.

    ZHAO Z H, YAN S. Minerals and relevant metallogeny and exploration[J]. Acta Petrological Sinica, 2019, 35(1):31-68.

    [20]

    蒋少涌,杨竞红,赵葵东,等.金属矿床Re-Os同位素示踪与定年研究[J].南京大学学报:自然科学版, 2000, 36(6):669-677.

    JIANG S Y, YANG J H, ZHAO K D, et al. Re-Os isotope tracer and dating methods in ore deposits research[J]. Journal of Nanjing University (Natural Sciences), 2000, 36(6):669-677.

    [21]

    STEIN H J, MORGAN J W, SCHERSTÉN A. Re-Os dating of Low-Level Highly Radiogenic (LLHR) sulfides:The Harnäs gold deposit, southwest Sweden, records continental-scale tectonic events[J]. Economic Geology, 2000, 95(8):1657-1671.

    [22]

    ARNE D C, BIERLIN F P, MORGAN J W, et al. Re-Os dating of sulfides associated with gold mineralization in central Victoria, Australia[J]. Economic Geology, 2001, 96(6):1455-1459.

    [23]

    SELBY D, CREASER R A. Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada[J]. Economic Geology, 2001, 96(1):197-204.

    [24]

    HUANG X W, ZHAO X F, QI L, et al. Re-Os and S isotopic constraints on the origins of two mineralization events at the Tangdan sedimentary rock-hosted stratiform Cu deposit, SW China[J]. Chemical Geology, 2013, 347:9-19.

    [25]

    黄小文,漆亮,刘莹莹.磁铁矿Re-Os定年的可行性探讨[J].矿床地质, 2010, 29(A1):825-826.

    HUANG X W, QI L, LIU Y Y. Feasibility study on Re-Os dating of magnetite[J]. Mineral Deposits, 2010, 29(A1):825-826.

    [26]

    DAVIES J. Re-Os geochronology of oxide minerals[D]. Edmonton:University of Alberta, 2010:1-155.

    [27]

    ACOSTA-GÓNGORA P, GLEESON S A, SAMSON I M, et al. Trace element geochemistry of magnetite and its relationship to Cu-Bi-Co-Au-Ag-U-W mineralization in the Great Bear magmatic zone, NWT, Canada[J]. Economic Geology, 2014, 109(7):1901-1928.

    [28]

    HU H, LI J W, LENTZ D, et al. Dissolution-reprecipitation process of magnetite from the Chengchao iron deposit:Insights into ore genesis and implication for in-situ chemical analysis of magnetite[J]. Ore Geology Reviews, 2014, 57:393-405.

    [29]

    HUANG X W, GAO J F, QI L, et al. In-situ LA-ICP-MS trace elements analysis of magnetite:The Fenghuangshan Cu-Fe-Au deposit, Tongling, Eastern China[J]. Ore Geology Reviews, 2016, 72:746-759.

    [30]

    HU H, LENTZ D, LI J W, et al. Reequilibration processes in magnetite from iron skarn deposits[J]. Economic Geology, 2015, 110(1):1-8.

    [31]

    HUANG X W, BEAUDOIN G. Textures and chemical composition of magnetite from iron oxide-copper-gold (IOCG) and Kiruna-type iron oxide-apatite (IOA) deposits and their implications for ore genesis and magnetite classification schemes[J]. Economic Geology, 2019, 114(5):953-979.

    [32]

    刘俊来,曹淑云,邹运鑫,等.岩石电子背散射衍射(EBSD)组构分析及应用[J].地质通报, 2008, 27(10):1638-1645.

    LIU J L, CAO S Y, ZOU Y X, et al. EBSD analysis of rock fabrics and its application[J]. Geological Bulletin of China, 2008, 27(10):1638-1645.

    [33]

    TAN W, HE H, WANG C Y, et al. Magnetite exsolution in ilmenite from the Fe-Ti oxide gabbro in the Xinjie intrusion (SW China) and sources of unusually strong remnant magnetization[J]. American Mineralogist, 2016, 101(12):2759-2767.

    [34]

    DEDITIUS A P, REICH M, SIMON A C, et al. Nanogeochemistry of hydrothermal magnetite[J]. Contributions to Mineralogy and Petrology, 2018, 173:46.

    [35]

    CIOBANU C L, VERDUGO-IHL M R, SLATTERY A, et al. Silician magnetite:Si-Fe-nanoprecipitates and other mineral inclusions in magnetite from the Olympic Dam deposit, South Australia[J]. Minerals, 2019, 9(5):311.

    [36]

    GAO W, CIOBANU C L, COOK N J, et al. Nanoscale study of titanomagnetite from the Panzhihua layered intrusion, Southwest China:Multistage exsolutions record ore formation[J]. Minerals, 2019, 9(9):513.

    [37]

    YIN S, WIRTH R, MA C, et al. The role of mineral nanoparticles at a fluid-magnetite interface:Implications for trace-element uptake in hydrothermal systems[J]. American Mineralogist, 2019, 104(8):1180-1188.

    [38]

    HUANG X W, BEAUDOIN G, YANG Y. A HR-TEM study on two generations of magnetite from the Alemao IOCG deposit, Carajás, Brazil:Implication for Fe-Cu mineralization[J]. Ore Geology Reviews, 2022, 146:104934.

    [39]

    HUANG X W, BEAUDOIN G. Nanoinclusions in zoned magnetite from the Sossego IOCG deposit, Carajás, Brazil:implication for mineral zoning and magnetite origin discrimination[J]. Ore Geology Reviews, 2021, 139:104453.

    [40]

    VERDUGO-IHL M R, CIOBANU C L, COOK N J, et al. Nanomineralogy of hydrothermal magnetite from Acropolis, South Australia:genetic implications for iron-oxide copper gold mineralization[J]. American Mineralogist, 2021, 106(8):1273-1293.

    [41]

    ALBEE A L, CHODOS A A. Semiquantitative electron microprobe determination of Fe2+/Fe3+ and Mn2+/Mn3+ in oxides and silicates and its application to petrologic problems[J]. American Mineralogist, 1970, 55(3-4):491-501.

    [42]

    陈克樵,欧阳菲.电子探针定量分析直接测定含铁矿物中二价和三价铁[J].岩矿测试, 1992, 11(4):306-310.

    CHEN K Q, OUYANG F. Determination of Fe (Ⅱ) and Fe (Ⅲ) in iron-bearing minerals by eletron probe analysis[J]. Rock and Mineral Analysis, 1992, 11(4):306-310.

    [43]

    杨琴,杨勇,宋俊磊.电子探针定量分析测定FeO和Fe2O3含量常用方法的评定[J].岩矿测试, 2007, 26(3):213-218.

    YANG Q, YANG Y, SONG J L. Evaluation of the methods for quantitative determination of FeO and Fe2O3 by electron probe microanalysis[J]. Rock and Mineral Analysis, 2007, 26(3):213-218.

    [44]

    YI L, LI Q, LU A, et al. Determination of Fe2+/Fe3+ ratios of magnetite using different methods:a case study from the Qimantag metallogenic belt[J]. Acta Geologica Sinica-English Edition, 2022, 96(6):2135-2147.

    [45]

    赵同新,崔会杰,胡晓春,等.电子探针对磁铁矿中变价元素Fe的测试方法[J].物理测试, 2020, 38(3):27-32.

    ZHAO T X, CUI H J, HU X C, et al. Determination method of variable valence iron in magnetite using electron probe micro-analyzer[J]. Physics Examination and Testing, 2020, 38(3):27-32.

    [46]

    DARE S A S, BARNES S, BEAUDOIN G. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada:Implications for provenance discrimination[J]. Geochimica et Cosmochimica Acta, 2012, 88:27-50.

    [47]

    HUANG X W, MENG Y M, LIN S, et al. High-temperature and high-pressure sintering method to prepare magnetite reference material for in-situ microanaly-sis[J]. Atomic Spectroscopy, 2023, 44(2):103-111.

    [48]

    CHEN K, BAO Z, YUAN H, et al. Direct measurement of Fe isotope compositions in iron-dominated minerals without column chromatography using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(2):249-263.

    [49]

    BELSHAW N, ZHU X, GUO Y, et al. High precision measurement of iron isotopes by plasma source mass spectrometry[J]. International Journal of Mass Spectrometry, 2000, 197(1-3):191-195.

    [50]

    DIDERIKSEN K, BAKER J A, STIPP S L S. Iron isotopes in natural carbonate minerals determined by MC-ICP-MS with a 58Fe-54Fe double spike[J]. Geochimica et Cosmochimica Acta, 2006, 70(1):118-132.

    [51]

    ARNOLD T, MARKOVIC T, KIRK G J, et al. Iron and zinc isotope fractionation during uptake and translocation in rice (Oryza sativa) grown in oxic and anoxic soils[J]. Comptes Rendus Geoscience, 2015, 347(7-8):397-404.

    [52]

    BEARD B L, JOHNSON C M, VON DAMM K L, et al. Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans[J]. Geology, 2003, 31(7):629-632.

    [53]

    DAUPHAS N, POURMAND A, TENG F Z. Routine isotopic analysis of iron by HR-MC-ICPMS:How precise and how accurate?[J]. Chemical Geology, 2009, 267(3-4):175-184.

    [54]

    HE Y, KE S, TENG F Z, et al. High-precision iron isotope analysis of geological reference materials by high-resolution MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2015, 39(3):341-356.

    [55]

    HORN I, VON BLANCKENBURG F, SCHOENBERG R, et al. In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes[J]. Geochimica et Cosmochimica Acta, 2006, 70(14):3677-3688.

    [56]

    GVNTHER T, KLEMD R, ZHANG X, et al. In-situ trace element and Fe-isotope studies on magnetite of the volcanic-hosted Zhibo and Chagangnuoer iron ore deposits in the Western Tianshan, NW China[J]. Chemical Geology, 2017, 453:111-127.

    [57]

    KNIPPING J L, FIEGE A, SIMON A C, et al. In-situ iron isotope analyses reveal igneous and magmatic-hydrothermal growth of magnetite at the Los Colorados Kiruna-type iron oxide-apatite deposit, Chile[J]. American Mineralogist, 2019, 104(4):471-484.

    [58]

    梁鹏.地质样品中Fe同位素整体及原位分析方法研究及其地质应用[D].西安:西北大学, 2017.LIANG P. The analytical method of iron isotope using whole and in situ and its geological application[D]. Xi'an:Northwest University, 2017.

    [59]

    ZHENG X Y, BEARD B L, JOHNSON C M. Assessment of matrix effects associated with Fe isotope analysis using 266 nm femtosecond and 193 nm nanosecond laser ablation multi-collector inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(1):68-83.

    [60]

    秦燕,徐衍明,侯可军,等.铁同位素分析测试技术研究进展[J].岩矿测试, 2020, 39(2):151-161.

    QIN Y, XU Y M, HOU K J, et al. Progress of analytical techniques for stable iron isotopes[J]. Rock and Mineral Analysis, 2020, 39(2):151-161.

    [61]

    CHEN K, YUAN H, BAO Z A, et al. Accurate analysis of Fe isotopes in Fe-dominated minerals by excimer laser ablation MC-ICP-MS on wet plasma conditions[J]. Atomic Spetroscopy, 2021, 42(5):282-293.

    [62]

    CLAYTON R N, MAYEDA T K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J]. Geochimica et Cosmochimica Acta, 1963, 27(1):43-52.

    [63]

    CHOI B G, MCKEEGAN K D, LESHIN L A, et al. Origin of magnetite in oxidized CV chondrites:in situ measurement of oxygen isotope compositions of Allende magnetite and olivine[J]. Earth Planetary Science Letters, 1997, 146(1-2):337-349.

    [64]

    CHOI B G, MCKEEGAN K D, KROT A N, et al. Extreme oxygen-isotope compositions in magnetite from unequilibrated ordinary chondrites[J]. Nature, 1998, 392(6676):577-579.

    [65]

    HUBERTY J M, KITA N T, KOZDON R, et al. Crystal orientation effects in δ18O for magnetite and hematite by SIMS[J]. Chemical Geology, 2010, 276(3-4):269-283.

    [66]

    KITA N T, HUBERTY J M, KOZDON R, et al. High-precision SIMS oxygen, sulfur and iron stable isotope analyses of geological materials:accuracy, surface topography and crystal orientation[J]. Surface and Interface Analysis, 2011, 43(1-2):427-431.

    [67]

    MORGAN J W, STEIN H J, HANNAH J L, et al. Re-Os study of Fe-Ti-V oxide and Fe-Cu-Ni sulfide deposits, Suwalki Anorthosite Massif, northeast Po-land[J]. Mineralium Deposita, 2000, 35(5):391-401.

    [68]

    HUANG X W, QI L, WANG Y C, et al. Re-Os dating of magnetite from the Shaquanzi Fe-Cu deposit, eastern Tianshan, NW China[J]. Science China:Earth Sciences, 2014, 57(2):267-277.

    [69]

    LIANG P, CHEN H, WU C, et al. Pyrite and magnetite Re-Os isotope systematics at the Laoshankou Fe-Cu-Au deposit in the northern margin of the East Junggar terrane, NW Xinjiang, China:Constraints on the multistage mineralization and metal sources[J]. Geological Journal, 2020, 55(6):4265-4278.

    [70]

    JIANG H, YANG C, WANG D, et al. Multiple-stage mineralization in the Huayangchuan U-REE-Mo-Cu-Fe ore belt of the Qinling orogen, Central China:geological and Re-Os geochronological constraints[J]. Journal of Earth Science, 2022, 33(1):193-204.

    [71]

    BUDDINGTON A F, LINDSLEY D H. Iron-titanium oxide minerals and synthetic equivalents[J]. Journal of Petrology, 1964, 5(2):310-357.

    [72]

    GHIORSO M S, EVANS B W. Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer[J]. American Journal of Science, 2008, 308(9):957-1039.

    [73]

    ARATÓ R, AUDÉTAT A. Experimental calibration of a new oxybarometer for silicic magmas based on vanadium partitioning between magnetite and silicate melt[J]. Geochimica et Cosmochimica Acta, 2017, 209:284-295.

    [74]

    CANIL D, LACOURSE T. Geothermometry using minor and trace elements in igneous and hydrothermal magnetite[J]. Chemical Geology, 2020, 541:119576.

    [75]

    林师整.磁铁矿矿物化学、成因及演化的探讨[J].矿物学报, 1982(3):166-174.

    LIN S Z. A contribution to the chemistry, origin and evolution of magnetite[J]. Acta Mineralogical Sinica, 1982(3):166-174.

    [76]

    陈光远,孙岱生,殷辉安.成因矿物学与找矿矿物学[M].重庆:重庆出版社, 1987.CHEN G Y, SUN D S, YIN H A. Genetic mineralogy and prospecting mineralogy[M]. Chongqing:Chongqing Publishing House, 1987.

    [77]

    DUPUIS C, BEAUDOIN G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Mineralium Deposita, 2011, 46(3):1-17.

    [78]

    DARE S A S, BARNES S J, BEAUDOIN G, et al. Trace elements in magnetite as petrogenetic indica-tors[J]. Mineralium Deposita, 2014, 49(7):785-796.

    [79]

    WEN G, LI J W, HOFSTRA A H, et al. Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes:Insights from the Handan-Xingtai iron district, North China Craton[J]. Geochimica et Cosmochimica Acta, 2017, 213:255-270.

    [80]

    KNIPPING J L, BILENKER L D, SIMON A C, et al. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes[J]. Geochimica et Cosmochimica Acta, 2015, 171:15-38.

    [81]

    HEIDARIAN H, LENTZ D, ALIREZAEI S, et al. Using the chemical analysis of magnetite to constrain various stages in the formation and genesis of the Kiruna-type chadormalu magnetite-apatite deposit, Bafq district, Central Iran[J]. Mineralogy and Petrology, 2016, 110(6):927-942.

    [82]

    BROUGHM S G, HANCHAR J M, TORNOS F, et al. Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks:examples from Kiruna, Sweden, and El Laco, Chile[J]. Mineralium Deposita, 2017, 52(8):1223-1244.

    [83]

    XIE H, HUANG X, MENG Y, et al. Discrimination of mineralization types of skarn deposits by magnetite chemistry[J]. Minerals, 2022, 12(5):608.

    [84]

    HUANG X W, SAPPIN A A, BOUTROYÉ, et al. Trace element composition of igneous and hydrothermal magnetite from porphyry deposits:Relationship to deposit subtypes and magmatic affi-nity[J]. Economic Geology, 2019, 114(5):917-952.

    [85]

    HUANG X W, BOUTROYÉ, MAKVANDI S, et al. Trace element composition of iron oxides from IOCG and IOA deposits:relationship to hydrothermal alteration and deposit subtypes[J]. Mineralium Deposita, 2019, 54(4):525-552.

    [86]

    HONG S, ZUO R, HUANG X, et al. Distinguishing IOCG and IOA deposits via random forest algorithm based on magnetite composition[J]. Journal of Geochemical Exploration, 2021, 230:106859.

    [87]

    HU B, ZENG L P, LIAO W, et al. The origin and discrimination of high-Ti magnetite in magmatic-hydrothermal systems:insight from machine learning analysis[J]. Economic Geology, 2022, 117(7):1613-1627.

    [88]

    BÉDARDÉ, DE VAZELHES V D B, BEAUDOIN G. Performance of predictive supervised classification models of trace elements in magnetite for mineral exploration[J]. Journal of Geochemical Exploration, 2022, 236:106959.

    [89]

    ZHANG P, ZHANG Z, YANG J, et al. Machine learning prediction of ore deposit genetic type using magnetite geochemistry[J]. Natural Resources Research, 2023, 32(1):99-116.

    [90]

    WILLIAMS P J, BARTON M D, JOHNSON D A, et al. Iron oxide copper-gold deposits:geology, space-time distribution and possible modes of origin[M]//HEDENQUIST J W. Economic Geology 100th Anniversary Volume. Littelton, Colorado:Society of Economic Geologists, 2005:371-405.

    [91]

    NASLUND H R, HENRÍQUEZ F, NYSTRÖM J O, et al. Magmatic iron ores and associated mineralization:examples from the Chilean high Andes and coastal Cordillera[M]//PORTER T M. Hydrothermal iron oxide copper-gold and related deposits:a global perspective. Adelaide:PGC Publishing, 2002:207-226.

    [92]

    SIMON A C, KNIPPING J, REICH M, et al. Kiruna-type iron oxide-apatite (IOA) and iron oxide copper-gold (IOCG) deposits form by a combination of igneous and magmatic-hydrothermal processes:evidence from the Chilean iron belt[J]. Economic Geology Special Publications, 2018, 21:89-114.

    [93]

    HUANG X W, BEAUDOIN G, DE TONI A F, et al. Iron-oxide trace element fingerprinting of iron oxide copper-gold and iron oxide-apatite deposits:a review[M]//CORRIVEAU L, POTTER E G, MUMIN A H. Mineral systems with iron oxide copper-gold (IOCG) and affiliated deposits. Toronto:Geological Association of Canada, 2022:347-364.

    [94]

    HUANG X W, ZHOU M F, BEAUDOIN G, et al. Origin of the volcanic-hosted Yamansu Fe deposit, Eastern Tianshan, NW China:constraints from pyrite Re-Os isotopes, stable isotopes, and in situ magnetite trace elements[J]. Mineralium Deposita, 2018, 53(7):1039-1060.

    [95]

    SIMPSON B, FITZHERBERT J, MOLTZEN J, et al. Magnetite trace element characteristics and their use as a proximity indicator to the Avoca Tank Cu-Au prospect, Girilambone copper province, New South Wales, Australia[J]. Mineralium Deposita, 2024, 59(1):169-187.

    [96]

    MAKVANDI S, GHASEMZADEH-BARVARZ M, BEAUDOIN G, et al. Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes:application to mineral exploration[J]. Ore Geology Reviews, 2016, 78:388-408.

    [97]

    PISIAK L K, CANIL D, LACOURSE T, et al. Magnetite as an indicator mineral in the exploration of porphyry deposits:a case study in till near the Mount Polley Cu-Au deposit, British Columbia, Canada[J]. Economic Geology, 2017, 112(4):919-940.

    [98]

    MCCURDY M W, PETER J M, MCCLENAGHAN M B, et al. Evaluation of magnetite as an indicator mineral for porphyry Cu exploration:a case study using bedrock and stream sediments at the Casino porphyry Cu-Au-Mo deposit, Yukon, Canada[J]. Geochemistry:Exploration, Environment, Analysis, 2022, 22(2):geochem 2021-072.

    [99]

    MAKVANDI S, BEAUDOIN G, MCCLENAGHAN M B, et al. PCA of Fe-oxides MLA data as an advanced tool in provenance discrimination and indicator mineral exploration:case study from bedrock and till from the Kiggavik U deposits area (Nunavut, Canada)[J]. Journal of Geochemical Exploration, 2019, 197:199-211.

    [100]

    SIEVWRIGHT R H, WILKINSON J J, O'NEILL H S C, et al. Thermodynamic controls on element partitioning between titanomagnetite and andesitic-dacitic silicate melts[J]. Contributions to Mineralogy and Petrology, 2017, 172(62):1-33.

    [101]

    SIEVWRIGHT R H, O'NEILL H S C, TOLLEY J, et al. Diffusion and partition coefficients of minor and trace elements in magnetite as a function of oxygen fugacity at 1150 ℃[J]. Contributions to Mineralogy and Petrology, 2020, 175(40):1-21.

    [102]

    ILTON E S, EUGSTER H P. Base metal exchange between magnetite and a chloride-rich hydrothermal fluid[J]. Geochimica et Cosmochimica Acta, 1989, 53(2):291-301.

    [103]

    TAUSON V L, SMAGUNOV N V, LIPKO S V. Cocrystallization coefficients of Cr, V, and Fe in hydrothermal ore systems (from experimental data)[J]. Russian Geology and Geophysics, 2017, 58(8):949-955.

    [104]

    SOSSI P A, PRYTULAK J, O'NEILL H S C. Experimental calibration of vanadium partitioning and stable isotope fractionation between hydrous granitic melt and magnetite at 800 ℃ and 0.5 GPa[J]. Contributions to Mineralogy and Petrology, 2018, 173:27.

    [105]

    洪双,左仁广,胡浩,等.磁铁矿元素地球化学大数据构建及其在矿床成因分类中的应用[J].地学前缘, 2021, 28(3):87-96.

    HONG S, ZUO R G, HU H, et al. Magnetite geochemical big data:Dataset construction and application in genetic classification of ore deposits[J]. Earth Science Frontiers, 2021, 28(3):87-96.

  • 加载中
计量
  • 文章访问数:  2489
  • PDF下载数:  252
  • 施引文献:  0
出版历程
收稿日期:  2023-12-09
修回日期:  2024-02-21

目录