Discussion on the geological features and sedimentary environment of the Early Carboniferous Jiujialu Formation in Jinsha area of central Guizhou
-
摘要: 贵州中部地区铝土矿及制陶用黏土岩资源丰富,具有潜在开发优势。文章通过对黔中金沙地区早石炭世大塘期九架炉组的路线详查、剖面测制和矿物鉴定等研究工作,结合指相微量元素分析古环境,研究表明:①. 该地层岩石显微结构表现为黏土质铝质岩具显微渗流豆结构、硅质岩呈不等晶结构和铁质岩呈泥晶团粒结构,3个不同显微结构暗示了研究区具有大陆沉积环境特征,岩石类型及岩性组合特征大致反映其整体为还原环境、低能量水动力背景下的陆源碎屑沉积;②. Th/U比值(2.00~7.07)表明该地层黏土岩基本形成于弱氧化环境, Th/U比值随沉积过程逐渐升高反映了氧化作用逐渐加强的过程;③. 指示元素B含量((15.3~299.0)×10-6)、Sr含量((14.8~72.9)×10-6)、Ba含量((57.0~664)×10-6)、B/Ga比值(0.63~6.17)和Sr/Ba比值(0.03~1.11),暗示地层形成早期经历了多次海进—海退过程,并最终过渡为陆相环境。推测金沙地区石炭世大塘期九架炉组位于陆表海地带,因受限于当时古岩溶洼地与隆起的形态、位置及古海水侵入的方向,使得该地层在不同区域表现出复杂沉积特征。Abstract: There are abundant bauxite and ceramic-making claystone resources with advantageous and developmental potential in the central area of Guizhou Province. Through the research into the route survey, section measurement and mineral identification on Jiujialu Formation in Datang age of GuiZhou Province, in combination with the analysis of paleoenvironment by finger trace element, the findings firstly illustrate that: the microscope observation on this strata of rocks shows vadose pisolith structure of the aluminous clay rocks, isocrystalline structure of the siliceous rocks and micrite-cluster structure of the ferraginous rocks, suggesting a characteristic of continental sedimentary environment in the study area, meanwhile, the rock type and lithology combination characteristics roughly reflect that the whole area is terrigenous clastic deposition under the settings of the reducing environment and low energy hydrodynamic. Secondly, the Th/U ratio indicates that the clay rocks of Jiujialu Formation in the Datang age are basically formed in a weak oxidation environment, and with the rising ratio during the deposition process, the oxidation gradually strengthened at the same time. Lastly, the values of facies element B, Sr and Ba, and the ratios of B/Ga and Sr/Ba indicate that the clay rocks in the Datang age of Jiujialu Formation underwent several transgressions stages and regressions stages in the Early Carboniferous, and eventually turned into a continental environment. It is inferred that Jiujialu Formation in the Datang age of Early Carboniferous in Jinsha area was located in the epicontinental sea zone. As constrained by the shape and position of the palaeokarst and the direction of seawater influx, Jiujialu Formation in Jinsha area appears complex sedimentary characteristics in different areas.
-
-
[1] 戴传固, 王雪华, 陈建书, 等. 中国区域地质志·贵州志[M]. 北京: 地质出版社, 2017. DAI C G, WANG X H, CHEN J S, et al. Regional geological record of China-Guizhou[M]. Beijing: Geological Publishing House, 2017.
[2] 翁申富, 陈群, 韩忠华, 等. 中国矿产地质志·贵州卷·铝土矿[M]. 北京: 地质出版社, 2019. WENG S F, CHEN Q, HAN Z H, et al. Geology of mineral resources in China-Guizhou volume-bau-xite[M]. Beijing: Geology Press, 2019.
[3] 刘平, 韩忠华, 聂坤. 贵州铝土矿含矿岩系特征、形成时代、古地理环境及成因探讨——纪念黔中发现铝土矿80周年[J]. 贵州地质, 2021, 38(3): 269-282.
LIU P, HAN Z H, NIE K. Study on the rock series characteristics, formation age, paleogeographic environment and genesis of bauxite in Guizhou——Commemorating the 80th anniversary of the discovery of bauxite in Central Guizhou[J]. Guizhou Geology, 2021, 38(3): 269-282.
[4] 殷科华, 叶德书, 沈大兴, 等. 息烽—遵义早石炭世大塘期岩相古地理特征[J]. 沉积学报, 2009, 27(4): 606-613.
YIN K H, YE D S, SHEN D X, et al. Characteristics of lithofacies Paleogeography during Datangian age (Early Carboniferous) in Xifeng and Zunyi, Guizhou[J]. Acta Sedimentologica Sinica, 2009, 27(4): 606-613.
[5] 刘平, 廖友常, 张雅静. 黔中—渝南石炭纪铝土矿含矿岩系中的海相沉积特征[J]. 中国地质, 2015, 42(2): 641-654.
LIU P, LIAO Y C, ZHANG Y J. Characteristics of marine deposits of the bauxite-bearing rock series in central Guizhou-southern Chongqing area[J]. Geology in China, 2015, 42(2): 641-654.
[6] 贵州省地质矿产勘查开发局贵州省地质调查院. 1∶25万遵义市幅域调查地质成果报告[R]. 贵阳: 贵州省地质矿产勘查开发局贵州省地质调查院, 2004. Guizhou Provincial Bureau of Geology and Mineral Resources Exploration and Development Guizhou Provincial Institute of Geological Survey. Report on the geological results of 1∶250 000 Zunyi City[R]. Gui yang: Guizhou Bureau of Geology and Mineral Resources Exploration and Development Guizhou Institute of Geological Survey, 2004.
[7] 贵州省地质矿产勘查开发局106地质大队. 1∶5万安底幅区调说明书[R]. 遵义: 贵州省地质矿产勘查开发局106地质大队, 1994. Guizhou Province Bureau of Geology and Mineral Exploration and Development 106 Geological Group. 1∶50 000 Andian area adjustment manual[R]. Zunyi: Guizhou Province Bureau of Geology and Mineral Exploration and Development 106 Geological Brigade, 1994.
[8] 吕留彦, 陈仁, 于宁, 等. 黔中开阳地区早石炭世大塘期岩相古地理对铝土矿成矿的制约[J]. 矿物学报, 2021, 41(4/5): 509-519.
LÜ L Y, CHEN R, YU N, et al. Constraints of the Early Carboniferous Datangian lithofacies paleogeography on the bauxite mineralization in the Kaiyang area, central Guizhou, China[J]. Acta Mineralogica Sinica, 2021, 41(4/5): 509-519.
[9] 邓旭升, 杜远生, 余文超, 等. "黔中隆起"和贵州晚古生代古地理演化及其对铝土矿的控矿作用[J]. 古地理学报, 2020, 22(5): 872-892.
DENG X S, DU Y S, YU W C, et al. "Qianzhong Uplift" and evolution of the Late Paleozoic palaeogeography and its control on formation of bauxite in Guizhou Province[J]. Journal of Palaeogeography, 2020, 22(5): 872-892.
[10] 高道德, 盛章琪, 石善华, 等. 贵州中部铝土矿地质研究[M]. 贵州: 贵州科技出版社, 1992. GAO D D, SHENG Z Q, SHI S H, et al. Studies on the bauxite deposit in central Guizhou, China[M]. Guizhou: Guizhou Science and Technology Publishing House Co., Ltd., 1992.
[11] 陈华, 邓超. 贵州猫场铝土矿成矿环境分析[J]. 贵州地质, 2010, 27(3): 198-201.
CHEN H, DENG C. Analysis on the metallogenic environment of Maochang bauxite in Guizhou[J]. Guizhou Geology, 2010, 27(3): 198-201.
[12] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 硅酸盐岩石化学分析方法 第28部分: 16个主次成分量测定: GB/T 14506.28—2010[S]. 北京: 中国标准出版社, 2011. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Methods for chemical analysis of silicate rocks——Part 28: Determination of 16 major and minor elements content: GB/T 14506.28—2010[S]. Beijing: Standards Press of China, 2011.
[13] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 硅酸盐岩石化学分析方法 第30部分: 44个元素量测定: GB/T 14506.30-2010[S]. 北京: 中国标准出版社, 2011. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Methods for chemical analysis of silicate rocks——Part 30: Determination of 44 elements: GB/T 14506.30-2010[S]. Beijing: Standards Press of China, 2011.
[14] 中华人民共和国国土资源部. 区域地球化学样品分析方法 第11部分: 银、硼和锡量测定 交流电弧-发射光谱法: DZ/T 0279.11-2016[S]. 北京: 中国标准出版社, 2016. Ministry of Land and Resources of the People's Republic of China. Analysis methods for regional geochemical sample-part 11: Determination of silver, boron and tin content by alternating current arc-emission spectrometry: DZ/T 0279.11-2016[S]. Beijing: Standards Press of China, 2016.
[15] 黄海波,袁静,凌波,等.电弧发射光谱技术发展及其在地质领域的应用[J].华东地质,2023,44(1):103-117.
HUANG H B,YUAN J,LING B,et al.Technical development of arcemission spectroscopy and its application in geological sample analysis[J].East China Geology,2023,44(1):103-117.
[16] 中华人民共和国教育部. 多晶体X射线衍射方法通则: JY/T 0587-2020[S]. 北京: 中国标准出版社, 2020. Ministry of Education of the People's Republic of China. General rules for X-ray polycrystalline diffractometry: JY/T 0587-2020[S]. Beijing: Standards Press of China, 2020.
[17] ROGERS J J W, ADAMS J A S. Handbook of thorium and uranium geochemistry[M]. Beijing: Atomic Press, 1976.
[18] ADAMS J A S, OSMOND J K, ROGERS J J W. The geochemistry of thorium and uranium[J]. Physics and Chemistry of the Earth, 1959, 3: 298-348.
[19] BARNES C E, COCHRAN J K. Uranium removal in oceanic sediments and the oceanic U balance[J]. Earth and Planetary Science Letters, 1990, 97(1/2): 94-101.
[20] WIGNALL P B, TWITCHETT R J. Oceanic anoxia and the end Permian mass extinction[J]. Science, 1996, 272(5265): 1155-1158.
[21] 常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1): 91-99.
CHANG H J, CHU X L, FENG L J, et al. Redox sensitive trace elements as paleoenvironments pro-xies[J]. Geological Review, 2009, 55(1): 91-99.
[22] ZHANG S H, LIU C Y, LIANG H, et al. Paleoenvironmental conditions, organic matter accumulation, and unconventional hydrocarbon potential for the Permian Lucaogou Formation organic-rich rocks in Santanghu Basin, NW China[J]. International Journal of Coal Geology, 2018, 185: 44-60.
[23] JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111-129.
[24] LUKAS T C, LOUGHNAN F C, EADES J L. Origin of bauxite at Eufaula, Alabama, USA[J]. Clay Minerals, 1983, 18(2): 127-138.
[25] 刘宝珺, 曾允孚. 岩相古地理基础和工作方法[M]. 北京: 地质出版社, 1985: 311-316.
LIU B J, ZENG Y F. Lithofacies paleogeography base and ways of working[M]. Beijing: Geological Publishing House, 1985: 311-316.
[26] 陈代演, 王华. 贵州中北部铝土矿若干微量元素特征及其成因意义[J]. 贵州工业大学学报, 1997, 26(2): 37-42.
CHEN D Y, WANG H. Trace elements characteristic and genetic significance of bauxite deposits in central-northern Guizhou[J]. Journal of Guizhou University of Technology, 1997, 26(2): 37-42.
[27] 邓宏文, 钱凯, 刘淑范, 等. 沉积地球化学与环境分析[M]. 兰州: 甘肃科学技术出版社, 1993. DENG H W, QIAN K, LIU S F, et al. Sedimentary geochemistry and environmental analysis[M]. Lanzhou: Gansu Science and Technology Publishing House, 1993.
[28] 李进龙, 陈东敬. 古盐度定量研究方法综述[J]. 油气地质与采收率, 2003, 10(5): 1-3.
LI J L, CHEN D J. Summary of quantified research method on paleosalinity[J]. Petroleum Geology and Recovery Efficiency, 2003, 10(5): 1-3.
[29] 王益友, 郭文莹, 张国栋. 几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用[J]. 同济大学学报, 1979, 7(2): 51-60.
WANG Y Y, GUO W Y, ZHANG G D. Application of some geochemical indicators in determining of sedimentary environment of the Funing group (Paleogene), Jin-Hu depression, Kiangsu province[J]. Journal of Tongji University, 1979, 7(2): 51-60.
[30] 范玉海, 屈红军, 王辉, 等. 微量元素分析在判别沉积介质环境中的应用——以鄂尔多斯盆地西部中区晚三叠世为例[J]. 中国地质, 2012, 39(2): 382-389.
FAN Y H, QU H J, WANG H, et al. The application of trace elements analysis to identifying sedimentary media environment: a case study of Late Triassic strata in the middle part of western Ordos Basin[J]. Geology in China, 2012, 39(2): 382-389.
[31] 郑荣才, 柳梅青. 鄂尔多斯盆地长6油层组古盐度研究[J]. 石油与天然气地质, 1999, 20(1): 20-25.
ZENG R C, LIU M Q. Study on palaeosalinity of chang-6 oil reservoir set in ordos basin[J]. Oil and Gas Geology, 1999, 20(1): 20-25.
[32] 文华国, 郑荣才, 唐飞, 等. 鄂尔多斯盆地耿湾地区长6段古盐度恢复与古环境分析[J]. 矿物岩石, 2008, 28(1): 114-120.
WEN H G, ZHENG R C, TANG F, et al. Reconstruction and analysis of paleosalanity and paleoenvironment of the chang 6 member in the Gengwan region, ordos basin[J]. Journal of Mineralogy and Petrology, 2008, 28(1): 114-120.
[33] 刘刚, 周东升. 微量元素分析在判别沉积环境中的应用——以江汉盆地潜江组为例[J]. 石油实验地质, 2007, 29(3): 307-310, 314.
LIU G, ZHOU D S. Application of microelements analysis in identifying sedimentary environment——taking Qianjiang formation in the Jianghan basin as an example[J]. Petroleum Geology & Experiment, 2007, 29(3): 307-310, 314.
[34] 王爱华, 叶思源, 刘建坤, 等. 不同选择性提取方法锶钡比的海陆相沉积环境判别探讨——以现代黄河三角洲为例[J]. 沉积学报, 2020, 38(6): 1226-1238.
WANG A H, YE S Y, LIU J K, et al. Discrimination between marine and terrestrial sedimentary environments by the selectively extracted Sr/Ba ratio: A case of sediments in the Yellow River Delta[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1226-1238.
[35] 范忠仁. 河南省中西部铝土矿微量元素比值特征及其成因意义[J]. 地质与勘探, 1989, 25(7): 23-27.
FAN Z R. Characteristic ratios of trace elements and genetci significance of bauxite deposits in central-western Henan[J]. Geology and Exploration, 1989, 25(7): 23-27.
[36] 张晓龙, 冀华丽, 李媛姝, 等. 微量元素分析在南堡凹陷南部的应用[J]. 特种油气藏, 2015, 22(2): 67-69.
ZHANG X L, JI H L, LI Y S, et al. Application of analysis on trace elements in sedimentary environment, Southern Nanpu sag[J]. Special Oil & Gas Reservoirs, 2015, 22(2): 67-69.
[37] 同济大学海洋地质系. 海、陆相地层辨认标志[M]. 北京: 科学出版社, 1980. Department of Marine Geology, Tongji University. Identification marks for Marine and terrestrial strata[M]. Beijing: Science Press, 1980.
[38] 孙镇城. 中国新生代咸化湖泊沉积环境与油气生成[M]. 北京: 石油工业出版社, 1997: 133-137.
SUN Z C. Sedimentary environment and hydrocarbon generation in Cenozoic saline lakes in China[M]. Beijing: Petroleum Industry Press, 1997: 133-137.
[39] 史忠生, 陈开远, 史军, 等. 运用锶钡比判定沉积环境的可行性分析[J]. 断块油气田, 2003, 10(2): 12-16.
SHI Z S, CHEN K Y, SHI J, et al. Feasibility analysis of the application of the ratio of strontium to barium on the identifying sedimentary environment[J]. Fault-Block Oil & Gas Field, 2003, 10(2): 12-16.
-
计量
- 文章访问数: 350
- PDF下载数: 44
- 施引文献: 0