基于WFBG技术的崩岸场地变形和渗流特征研究——以扬中指南村为例

梅世嘉, 姜月华, 杨海, 周权平, 陈孜, 贾正阳, 金阳, 张鸿, 张博. 2024. 基于WFBG技术的崩岸场地变形和渗流特征研究——以扬中指南村为例. 华东地质, 45(2): 228-239. doi: 10.16788/j.hddz.32-1865/P.2024.02.008
引用本文: 梅世嘉, 姜月华, 杨海, 周权平, 陈孜, 贾正阳, 金阳, 张鸿, 张博. 2024. 基于WFBG技术的崩岸场地变形和渗流特征研究——以扬中指南村为例. 华东地质, 45(2): 228-239. doi: 10.16788/j.hddz.32-1865/P.2024.02.008
MEI Shijia, JIANG Yuehua, YANG Hai, ZHOU Quanping, CHEN Zi, JIA Zhengyang, JIN Yang, ZHANG Hong, ZHANG Bo. 2024. Deformation and seepage characteristics of the bank collapse site based on WFBG technology—a case study of Zhinan Village, Yangzhong. East China Geology, 45(2): 228-239. doi: 10.16788/j.hddz.32-1865/P.2024.02.008
Citation: MEI Shijia, JIANG Yuehua, YANG Hai, ZHOU Quanping, CHEN Zi, JIA Zhengyang, JIN Yang, ZHANG Hong, ZHANG Bo. 2024. Deformation and seepage characteristics of the bank collapse site based on WFBG technology—a case study of Zhinan Village, Yangzhong. East China Geology, 45(2): 228-239. doi: 10.16788/j.hddz.32-1865/P.2024.02.008

基于WFBG技术的崩岸场地变形和渗流特征研究——以扬中指南村为例

  • 基金项目:

    国家重点研发计划"岩溶发育特征的快速探测与精细刻画技术和装备研发(编号:2022YFC3705001)"和中国地质调查局"长江经济带暨长三角一体化发展区资源环境承载能力监测评价(编号:DD20221728)"项目联合资助。

详细信息
    作者简介: 梅世嘉,1993年生,男,工程师,硕士,主要从事水文地质工程地质调查研究工作。Email:meishijia@mail.cgs.gov.cn。
    通讯作者: 杨海,1988年生,男,高级工程师,博士,现从事水文地质环境地质领域研究工作。Email:yhasan@163.com。
  • 中图分类号: P954;P642.2

Deformation and seepage characteristics of the bank collapse site based on WFBG technology—a case study of Zhinan Village, Yangzhong

More Information
  • 崩岸灾害对长江岸线城镇和重大基础设施安全构成严重威胁,目前常用的监测技术存在参数受限、监测频率低等问题。为了提升崩岸灾害的监测和预警效果,文章引入了基于弱光栅(WFBG)技术的实时监测方法。该方法利用弱光栅串传感器作为测量单元,采用时分/波分混合复用解调技术和换算公式,通过主动施加热源以区分地下水流速的大小,实现了崩岸场地内应变、温度、位移、流速等多个参数的实时监测。在扬中市指南村崩岸场地实验中,WD02孔的监测数据反映20~30 m和62~80 m深度存在两个流速异常区域,流速分别达2.98×10-6 m/s和3.4×10-6 m/s,较上下相邻地层高出近1倍。因此,应密切关注这两个异常区域的地层。实践表明,该技术具有定位准确、数据丰富和实时监测的优势,能够克服极端天气条件下的挑战,可为崩岸灾害的监测预警提供一种先进可靠的手段。
  • 加载中
  • [1]

    夏军强, 邓珊珊. 冲积河流崩岸机理、数值模拟及预警技术研究进展[J]. 长江科学院院报, 2021, 38(11): 1-10.

    XIA J Q, DENG S S. Review on bank erosion processes in alluvial rivers: mechanism, modelling and early-warning[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(11): 1-10.

    [2]

    姜月华, 程和琴, 周权平, 等. 重大水利工程对长江中下游干流河槽和岸线地质环境影响研究[J]. 中国地质, 2021, 48(6): 1681-1696.

    JIANG Y H, CHENG H Q, ZHOU Q P, et al. The influence of major water conservancy projects on the geological environment of channel and shoreline in the middle and lower reaches of the Yangtze River[J]. Geology in China, 2021, 48(6): 1681-1696.

    [3]

    许全喜, 董炳江, 袁晶, 等. 三峡工程运用后长江中下游河道冲刷特征及其影响[J]. 湖泊科学, 2023, 35(2): 650-661.

    XU Q X, DONG B J, YUAN J, et al. Scouring effect of the middle and lower reaches of the Yangtze River and its impact after the impoundment of the Three Gorges Project[J]. Journal of Lake Sciences, 2023, 35(2): 650-661.

    [4]

    刘世振, 冯国正, 张亭, 等. 一种基于水-雨-工情的新型堤防崩岸综合监测技术应用及探讨[J]. 水利水电技术(中英文), 2022, 53(S1): 107-110.

    LIU S Z, FENG G Z, ZHANG T, et al. Application and discussion of a new comprehensive monitoring technology for bank collapse monitoring based on hydrological condition and rain conditions and engineering conditions[J]. Water Resources and Hydropower Engineering, 2022, 53(S1): 107-110.

    [5]

    李洁, 夏军强, 张晓雷, 等. 黄河下游准平衡状态下平滩流量及面积与水沙条件的关系[J]. 泥沙研究, 2015, 40(5): 37-43.

    LI J, XIA J Q, ZHANG X L, et al. Relationships between bankfull discharge-area and flow-sediment condition in Lower Yellow River under quasi equili-brium[J]. Journal of Sediment Research, 2015, 40(5): 37-43.

    [6]

    冯传勇, 郑亚慧, 周儒夫. 长江中下游崩岸监测技术应用研究[J]. 水利水电快报, 2018, 39(3): 47-50, 52.

    FENG C Y, ZHENG Y H, ZHOU R F. Application research on bank collapse monitoring technology in the middle and lower reaches of the Yangtze River[J]. Express Water Resources & Hydropower Information, 2018, 39(3): 47-50, 52.

    [7]

    邓宇, 赖修蔚, 郭亮. 长江中下游崩岸监测及分析研究[J]. 人民长江, 2018, 49(15): 13-17.

    DENG Y, LAI X W, GUO L. Monitoring and analysis of bank collapse in middle and lower reaches of Yangtze River[J]. Yangtze River, 2018, 49(15): 13-17.

    [8]

    高超. 基于MSS/TM/ETM图像的长江马芜铜段江心洲演化研究[J]. 遥感技术与应用, 2012, 27(1): 135-141.

    GAO C. Study on channel islands in Ma-Wu-Tong section of Yangtze River based on MSS/TM/ETM remote sensing image[J]. Remote Sensing Technology and Application, 2012, 27(1): 135-141.

    [9]

    ZOLINA T, STRELKOV S, KUPCHIKOVA N, et al. Monitoring of the collapse of the shores of reservoirs and the technology of their surface and deep fixing[C]. E3S Web of Conferences, 2020, 157: 02011.

    [10]

    靳婷婷, 段学军, 邹辉. 岸线资源利用变化与影响因素——以长江南京段为例[J]. 华东地质, 2021, 42(1): 9-20.

    JIN T T, DUAN X J, ZOU H. Change and influencing factors of shoreline resources utilization in the Nanjing section of the Yangtze River[J]. East China Geology, 2021, 42(1): 9-20.

    [11]

    HEMMELDER S, MARRA W, MARKIES H, et al. Monitoring river morphology & bank erosion using UAV imagery—a case study of the river Buëch, Hautes-Alpes, France[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73: 428-437.

    [12]

    刘世振, 樊小涛, 冯国正, 等. 现代高时空分辨率崩岸应急监测技术研究进展与展望[J]. 长江科学院院报, 2019, 36(10): 85-88, 93.

    LIU S Z, FAN X T, FENG G Z, et al. Modern emergency monitoring technology for bank collapse with high spatio-temporal resolution: review and pros-pect[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 85-88, 93.

    [13]

    白宇, 郑志忠, 修连存, 等. 无人机高光谱遥感技术在自然资源调查中的应用进展[J]. 华东地质, 2022, 43(4): 527-538.

    BAI Y, ZHENG Z Z, XIU L C, et al. UAV hyperspectral remote sensing technology and its application progress in natural resources survey[J]. East China Geology, 2022, 43(4): 527-538.

    [14]

    LYONS N J, STAREK M J, WEGMANN K W, et al. Bank erosion of legacy sediment at the transition from vertical to lateral stream incision[J]. Earth Surface Processes and Landforms, 2015, 40(13): 1764-1778.

    [15]

    胡维忠. 长江中下游干流河道崩岸状况及其防治[J]. 长江技术经济, 2020, 4(1): 17-20.

    HU W Z. Bank collapse and its prevention in the main stream of the middle and lower reaches of the Yangtze River[J]. Technology and Economy of Changjiang, 2020, 4(1): 17-20.

    [16]

    张燕君, 谢晓鹏, 毕卫红. 基于弱光栅的高速高复用分布式温度传感网络[J]. 中国激光, 2013, 40(4): 0405006. ZHANG Y J, XIE X P, BI W H. High-speed high-multiplexing distributed temperature sensor network based on weak-reflection fiber gratings[J]. Chinese Journal of Lasers, 2013, 40(4): 0405006.

    [17]

    陈考奎, 李院峰, 周次明, 等. 基于弱光纤布拉格光栅阵列的桥梁应变测量[J]. 激光与光电子学进展, 2022, 59(7): 0706003. CHEN K K, LI Y F, ZHOU C M, et al. Bridge strain measurement based on weak fiber Bragg grating array[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0706003.

    [18]

    廖令军, 莫成, 岳琪迪, 等. 基于弱光栅技术的基坑围护结构变形自动化监测研究[J]. 建筑结构, 2021, 51(S1): 1963-1969.

    LIAO L J, MO C, YUE Q D, et al. Research on deformation automatic monitoring of foundation pit retaining structure based on weak FBG[J]. Building Structure, 2021, 51(S1): 1963-1969.

    [19]

    ZHANG C, TAO Y, TONG X L, et al. Application of the encapsulation technology of WFBG distributed array sensors in track monitoring system[C]//26th International Conference on Optical Fiber Sensors. Lausanne: Optica Publishing Group, 2018: WF39.

    [20]

    亓乐, 孟志浩, 孙长帅, 等. 基于弱光栅技术的钢管桩静载荷试验[J]. 建筑结构, 2021, 51(S2): 1645-1650.

    QI L, MENG Z H, SUN C S, et al. Static load test of steel pipe pile based on weak-reflection fiber grat-ings[J]. Building Structure, 2021, 51(S2): 1645-1650.

    [21]

    WANG X C, YAN Z J, WANG F, et al. A distributed and key-position fiber sensing system based on LPFG and WFBG assisted OTDR[C]//Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 2014. Barcelona: Optica Publishing Group, 2014: BW3D.7.

    [22]

    YE X, ZHU H H, WANG J, et al. Subsurface multi-physical monitoring of a reservoir landslide with the fiber-optic nerve system[J]. Geophysical Research Letters, 2022, 49(11): e2022GL098211.

    [23]

    何健辉, 张进才, 陈勇, 等. 基于弱光栅技术的地面沉降自动化监测系统[J]. 水文地质工程地质, 2021, 48(1): 146-153.

    HE J H, ZHANG J C, CHEN Y, et al. Automatic land subsidence monitoring system based on weak-reflection fiber gratings[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 146-153.

    [24]

    DE MOURA C C, DE OLIVEIRA V, KALINOWSKI H J. Characterization of encapsulated temperature sensors based on Bragg gratings[C]//26th International Conference on Optical Fiber Sensors. Lausanne: Optica Publishing Group, 2018: ThE30.

    [25]

    YAN J F, SHI B, ZHU H H, et al. A quantitative monitoring technology for seepage in slopes using DTS[J]. Engineering Geology, 2015, 186: 100-104.

    [26]

    戚海博, 顾凯, 张博, 等. 基于单孔热响应测试的地下水渗流场评价——以扬中指南村崩岸场地为例[J]. 工程地质学报, 2022, 30(5): 1713-1720.

    QI H B, GU K, ZHANG B, et al. Evaluation of groundwater flow field based on single-borehole thermal response test——a case study of Zhinan village bank collapse site[J]. Journal of Engineering Geology, 2022, 30(5): 1713-1720.

    [27]

    段超喆, 施斌, 曹鼎峰, 等. 一种准分布式内加热刚玉管FBG渗流速率监测方法[J]. 防灾减灾工程学报, 2018, 38(3): 504-510.

    DUAN C Z, SHI B, CAO D F, et al. A quasi-distributed seepage velocity monitoring method using FBG embedded in internal heated alundum tube[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(3): 504-510.

    [28]

    朱鸿鹄, 殷建华, 张林, 等. 大坝模型试验的光纤传感变形监测[J]. 岩石力学与工程学报, 2008, 27(6): 1188-1194.

    ZHU H H, YIN J H, ZHANG L, et al. Deformation monitoring of dam model test by optical fiber sen-sors[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1188-1194.

    [29]

    何斌, 徐剑飞, 何宁, 等. 分布式光纤传感技术在高面板堆石坝内部变形监测中的应用[J]. 岩土工程学报, 2023, 45(3): 627-633.

    HE B, XU J F, HE N, et al. Application of inner deformation monitoring of concrete face rockfill dams based on distributed optical fiber technology[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 627-633.

    [30]

    刘春, 施斌, 吴静红, 等. 排灌水条件下砂黏土层变形响应模型箱试验[J]. 岩土工程学报, 2017, 39(9): 1746-1752.

    LIU C, SHI B, WU J H, et al. Model box tests on response of deformation of sand and clay layer under draining-recharging condition[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1746-1752.

    [31]

    张荫民, 祝连庆, 骆飞, 等. 单FBG双波长掺铒光纤激光器的设计与实验研究[J]. 半导体光电, 2014, 35(5): 789-792.

    ZHANG Y M, ZHU L Q, LUO F, et al. Design and experimental study of dual-wavelength erbium-doped fiber laser using single fiber Bragg grating[J]. Semiconductor Optoelectronics, 2014, 35(5): 789-792.

    [32]

    卢毅, 施斌, 席均, 等. 基于BOTDR的地裂缝分布式光纤监测技术研究[J]. 工程地质学报, 2014, 22(1): 8-13.

    LU Y, SHI B, XI J, et al. Field study of BOTDR-based distributed monitoring technology for ground fissures[J]. Journal of Engineering Geology, 2014, 22(1): 8-13.

    [33]

    DIAO N R, LI Q Y, FANG Z H. Heat transfer in ground heat exchangers with groundwater advec-tion[J]. International Journal of Thermal Sciences, 2004, 43(12): 1203-1211.

    [34]

    ZHANG W K, YANG H X, GUO X Q, et al. Investigation on groundwater velocity based on the finite line heat source seepage model[J]. International Journal of Heat and Mass Transfer, 2016, 99: 391-401.

    [35]

    BAKKER M, CALJÉ R, SCHAARS F, et al. An active heat tracer experiment to determine groundwater velocities using fiber optic cables installed with direct push equipment[J]. Water Resources Research, 2015, 51(4): 2760-2772.

    [36]

    杨达源, 黄贤金, 施利锋, 等. 1973~2017年扬中市江岸冲淤遥感监测及古河道塌江分析[J]. 长江流域资源与环境, 2018, 27(12): 2796-2804.

    YANG D Y, HUANG X J, SHI L F, et al. Erosion and siltation monitoring along the river bank of Yangzhong City during 1973-2017 by remote sensing and analyzing the bank collapse[J]. Resources and Environment in the Yangtze Basin, 2018, 27(12): 2796-2804.

    [37]

    于俊杰, 王明路, 魏乃颐, 等. 镇江扬中地区工程地质条件及其评价[J]. 地质学刊, 2013, 37(1): 127-131.

    YU J J, WANG M L, WEI N Y, et al. On engineering geological conditions and evaluation of Yangzhong area in Zhenjiang[J]. Journal of Geology, 2013, 37(1): 127-131.

    [38]

    赵维阳, 胡勇, 张胡. 长江下游过江隧道工程河段极限冲刷深度研究[J]. 水运工程, 2023(1): 120-126.

    ZHAO W Y, HU Y, ZHANG H. Maximum scouring depth for river reach of underwater tunnel project in lower reaches of the Yangtze River[J]. Port & Waterway Engineering, 2023(1): 120-126.

    [39]

    姚仕明, 胡呈维, 渠庚. 三峡水库下游河道演变与生态治理研究进展[J]. 长江科学院院报, 2021, 38(10): 16-26.

    YAO S M, HU C W, QU G. Research advances in river evolution and ecological regulation in the downstream of the Three Gorges Reservoir[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(10): 16-26.

    [40]

    栾华龙, 刘同宦, 高华峰, 等. 新水沙情势下长江中下游干流岸线保护研究——以扬中市2017年江堤崩岸治理为例[J]. 人民长江, 2019, 50(8): 14-19.

    LUAN H L, LIU T H, GAO H F, et al. River bank protection of middle and lower reaches of Yangtze River under new flow and sediment condition: case of levee collapse in Yangzhong City in 2017[J]. Yangtze River, 2019, 50(8): 14-19.

    [41]

    李强, 王乃茹, 曹双, 等. 长江中下游岸滩稳定性评价指标体系构建及应用[J]. 人民长江, 2022, 53(8): 1-8.

    LI Q, WANG N R, CAO S, et al. Establishment of beach stability evaluation index system for middle and lower reaches of Changjiang River and its appli-cation[J]. Yangtze River, 2022, 53(8): 1-8.

    [42]

    潘杰, 杨冬, 朱探, 等. 超临界压力水在垂直上升内螺纹管中的传热特性[J]. 化工学报, 2011, 62(2): 307-314.

    PAN J, YANG D, ZHU T, et al. Heat transfer characteristics of supercritical pressure water in vertical upward rifled tube[J]. CIESC Journal, 2011, 62(2): 307-314.

    [43]

    殷术贵, 郭伟科, 黄栋, 等. 流延薄膜传热特性及冷却水量设计的仿真研究[J]. 华南理工大学学报(自然科学版), 2021, 49(12): 23-34.

    YIN S G, GUO W K, HUANG D, et al. Simulation study on heat transfer characteristics and cooling water design for the casting film[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(12): 23-34.

    [44]

    罗龙洪, 苏长城, 应强, 等. 长江扬中河段指南村窝崩应急治理及效果分析[J]. 江苏水利, 2020(2): 25-28.

    LUO L H, SU C C, YING Q, et al. Emergency treatment and effect analysis of arc collapsing in Zhinan Village, Yangzhong Reach of the Yangtze River[J]. Jiangsu Water Resources, 2020(2): 25-28.

    [45]

    周侗, 陈伟伦, 王俊, 等. 波动水位影响下的滨岸稳定性预警技术研究[J]. 中国农村水利水电, 2023(12): 77-84, 93.

    ZHOU T, CHEN W L, WANG J, et al. Research on forewarning technology of estuary riverbank stability under the influence of fluctuating river level[J]. China Rural Water and Hydropower, 2023(12): 77-84, 93.

    [46]

    孙启航, 夏军强, 邓珊珊, 等. 基于圆弧与平面滑动模式的上荆江崩岸过程模拟对比分析[J]. 应用基础与工程科学学报, 2023, 31(1): 38-51.

    SUN Q H, XIA J Q, DENG S S, et al. Comparison of simulated bank erosion processes in the upper Jingjiang reach using the circular and planar sliding modes[J]. Journal of Basic Science and Engineering, 2023, 31(1): 38-51.

    [47]

    徐富刚, 杨斌, 黎良辉, 等. 水流作用下临水岸坡稳定性计算模型[J]. 中国农村水利水电, 2020(1): 169-175, 180.

    XU F G, YANG B, LI L H, et al. Model for the stability calculation of waterside slope under water flow[J]. China Rural Water and Hydropower, 2020(1): 169-175, 180.

    [48]

    李诺, 夏军强, 邓珊珊, 等. 长江中游荆江河段典型断面崩岸预警方法及应用[J]. 人民长江, 2023, 54(3): 9-15.

    LI N, XIA J Q, DENG S S, et al. Study on early-warning method of bank collapse at typical sections of Jingjiang Reach of Middle Yangtze River and its application[J]. Yangtze River, 2023, 54(3): 9-15.

    [49]

    黎良辉, 罗星, 赵旭, 等. 降雨条件下临水岸坡失稳试验[J]. 南水北调与水利科技(中英文), 2021, 19(4): 758-767.

    LI L H, LUO X, ZHAO X, et al. Experiment on water bank instability under rainfall[J]. South-to-North Water Transfers and Water Science & Technology, 2021, 19(4): 758-767.

    [50]

    况卫明, 黎良辉, 赖敬飞, 等. 水位骤变条件下河流崩岸模型试验及机理研究[J]. 水电能源科学, 2021, 39(1): 130-133.

    KUANG W M, LI L H, LAI J F, et al. Model test and mechanism study of river bank collapse at sudden change of water level[J]. Water Resources and Power, 2021, 39(1): 130-133.

    [51]

    张家豪, 周丰年, 程和琴, 等. 多模态传感器系统在河槽边坡地貌测量中的应用[J]. 测绘通报, 2018(3): 102-107.

    ZHANG J H, ZHOU F N, CHENG H Q, et al. Application of multimodal sensor system in channel slope topographic surveying[J]. Bulletin of Surveying and Mapping, 2018(3): 102-107.

  • 加载中
计量
  • 文章访问数:  334
  • PDF下载数:  46
  • 施引文献:  0
出版历程
收稿日期:  2023-05-05
修回日期:  2023-11-15

目录