Low-temperature thermochronology methodology and applications (Part 1)
-
摘要:
低温热年代学方法,是指部分退火/滞留带(封闭温度)低于300 ℃的放射性测年方法,主要包括裂变径迹和(U-Th)/He测年技术,可定量限定上地壳的矿物/岩石在地质过程中经历的温度历史,重建地质体的热演化历史,在基础地质学、矿床学、石油地质学、地貌学以及行星学等方面已有广泛的应用。文章简要梳理了两种测年方法的发展过程、原理、实验技术和基本数据组成,并探讨了影响这些测年方法准确性的因素,以及低温热年代学新方法的研究进展。低温热年代学数据通常需要结合地质背景等限定,利用数值模拟对数据加以解释,因此文章还简述了当前常用的热年代学数值模拟工具。这些方法的应用可让我们更为深入地理解地质过程和地貌演化。
-
关键词:
- 低温热年代学 /
- 裂变径迹 /
- (U-Th)/He测年 /
- 热历史模拟
Abstract:Low-temperature thermochronology methods refer to radiometric dating techniques with partial annealing/retention zones (closure temperatures) below 300 ℃. These methods can quantitatively determine the temperature history experienced by minerals/rocks in the upper crust during geological process, reconstruct the thermal evolution of geological bodies, hence have been widely applied in the fields of basic geology, ore geology, oil and gas basins, geomorphology, and planetary science. The main methods include fission track and (U-Th)/He dating techniques.This paper briefly reviews the development process, principles, experimental techniques, and basic data composition of the two dating methods, and discusses the factors affecting the accuracy of these dating methods as well as the research progress of the new low-temperature thermochronology methods. Low-temperature thermochronology data usually need to be combined with geological constraints and interpreted by numerical modeling, and in the final part of the article, we briefly describe the commonly used numerical simulation tools in thermochronology. The application of these methods can deepen our understanding on geological processes and geomorphic evolution.
-
-
图 1 常用低温热年代学方法及其封闭温度体系(Chew and Spikings, 2015; Jones et al., 2019; Malusà and Fitzgerald, 2019; Reiners et al., 2018)
Figure 1.
图 3 EDM和LA-ICP-MS两种裂变径迹方法的实验流程图(修改自Kohn et al., 2024)
Figure 3.
图 4 EDM和LA-ICP-MS两种裂变径迹方法的年龄对比图(数据引自Seiler et al., 2023)
Figure 4.
图 5 磷灰石裂变径迹年龄与氯含量的关系图(a)(来自美国蒙大拿州Stillwater Complex的磷灰石颗粒样本,数据引自Kohn et al., 2002)和磷灰石颗粒氯含量与其Dpar值的关系图(b)(数据引自Donelick et al., 2005)
Figure 5.
图 6 磷灰石封闭裂变径迹退火各向异性的极坐标图(修改自Donelick et al., 1999)
Figure 6.
图 7 裂变径迹年龄数据雷达图(a)(Vermeesch, 2009)和磷灰石裂变径迹长度直方分布图(b)
Figure 7.
图 9 不同冷却速率下磷灰石和锆石(U-Th)/He封闭温度(a)和不同粒径磷灰石单颗粒年龄(b)(Rsv: 等表面积-体积比的球体半径)(数据引自Flowers et al., 2023b)
Figure 9.
图 10 不同[eU]含量的磷灰石(U-Th)/He单颗粒年龄(a)(数据引自Flowers et al., 2023b)和不同α剂量的锆石(U-Th)/He封闭温度(b)(Guenthner et al., 2013)
Figure 10.
图 11 基于低温热年代学数据利用HeFTy(a)和QTQt(b)软件的热历史反演结果(数据引自Li et al., 2017,藏南白垩纪日喀则弧前盆地)
Figure 11.
图 12 基于低温热年代学数据利用Pecube反演的构造地貌演化模式图(数据引自Cai et al., 2023)
Figure 12.
表 1 裂变径迹发表数据基本组成
Table 1. Fair fission track data reporting
数据内容 说 明 样品号 分析样品的编号 样品基本信息 包括经纬度、高程、地区及岩性等 年龄数据 统计颗粒数(No.) 样品分析的单颗粒数量 自发径迹条数(Ns) 所有颗粒自发径迹(238U裂变产生的天然径迹)总条数 自发径迹密度(ρs) 样品颗粒统计面积内的平均径迹密度 (105 cm−2) 诱发径迹条数(Ni) 限EDM方法:中子照射轰击235U原子使其裂变而产生的径迹总条数 诱发径迹密度(ρi) 限EDM方法:样品颗粒统计面积内的平均径迹密度 (105 cm−2) 平均238U含量 限LA-ICP-MS方法:样品颗粒的238U平均含量值及其误差(σ) 池年龄(Pooled age) 计算裂变径迹年龄及其误差 中心年龄(Central age) 计算裂变径迹年龄及其误差 P(χ2) 卡方检验是用来统计检验分析的颗粒属于同一年龄群体的一种方法,介于0~1 离散度(Dispersion) 评价单颗粒年龄离散程度,介于0~1,或者百分数 退火参数 (磷灰石)样品Dpar或Cl、F、OH含量(EPM或LA-ICP-MS测定)或多元素综合值rm的平均值 长度数据 主要针对磷灰石裂变径迹 平均径迹长度 统计的封闭径迹平均长度(μm)及其方差 径迹条数(n) 样品统计封闭径迹的条数 退火参数 如Dpar或Cl、F、OH含量(EPM或LA-ICP-MS测定)或多元素综合值rm的平均值或范围 单颗粒原始数据 建议均作为附件提供 年龄数据 自发径迹条数(Ns) 单颗粒自发径迹条数 统计面积(Area) 单颗粒统计径迹的面积 自发径迹密度(ρs) 单颗粒统计面积内的径迹密度 (105 cm−2) 诱发径迹条数(Ni) 限EDM方法:单颗粒中子照射轰击235U原子使其裂变而产生的径迹的条数 诱发径迹密度(ρi) 限EDM方法:单颗粒统计面积内的径迹密度 (105 cm−2) 238U含量 限LA-ICP-MS方法:单颗粒的238U含量及其误差(σ) 池年龄(Pooled age) 计算裂变径迹年龄及其误差 中心年龄(Central age) 计算裂变径迹年龄及其误差 P(χ2) 卡方检验是用来统计检验分析的颗粒属于同一年龄群体的一种方法,介于0~1 离散度(Dispersion) 评价单颗粒年龄离散程度,介于0~1,或者百分数 退火参数 (磷灰石)单颗粒的Dpar或Cl、F、OH含量(EPM或LA-ICP-MS测定)或多元素综合值rm 长度数据 主要针对磷灰石裂变径迹 单条径迹长度 测量每条封闭径迹的真实长度(μm) 与c轴夹角 测量的每条封闭径迹与该颗粒晶体c轴的夹角 退火参数 封闭径迹所在的单颗粒的Dpar或Cl、F、OH含量(EPM或LA-ICP-MS测定)或多元素综合值rm 注:由于锆石等矿物的裂变径迹退火机制尚未研究清楚,因此其裂变径迹一般仅给出年龄数据,对其封闭径迹长度暂不统计。 表 2 (U-Th)/He发表数据基本组成
Table 2. Fair (U-Th)/He reporting
数据内容 说 明 传统单颗粒溶样法 样品号 分析样品的编号 样品基本信息 包括经纬度、高程、地区及岩性等 年龄数据 包含所有测定的单颗粒数据 4He 单颗粒释放的4He体积量(ncc, 标准温压下)或4He分子数(nmol/g) 颗粒质量(m) 单颗粒矿物的质量(mg) FT 值 α粒子射出效应校正(Farley et al.,1996) U含量 单颗粒的U含量(μg/g) Th含量 单颗粒的Th含量(μg/g) Sm含量 单颗粒的Sm含量(μg/g,一般可忽略) [eU] [eU] = U + 0.238·Th + 0.0012 ·Sm (Flowers et al., 2023b)未校正年龄 未经FT校正的年龄及其误差(可忽略),可为:1σ或2σ 校正年龄 经过FT校正的年龄及其误差,1σ或2σ 颗粒大小 单颗粒的长、宽等或等表面积与体积比的球体半径RSV 晶体形态 单颗粒晶体的完整度:2T.完整;1T.一端完整;0T.两端均不完整 4He/3He方法 同样需要上述传统方法的数据,外加下面数据 辐照信息 辐照实验室、条件等 分布加热温度 ℃ 分布加热温度 ℃ 加热时间 s、min、h 每步加热3He释放量 单颗粒释放的4He体积量(ncc, 标准温压下)或4He分子数(nmol/g) 每步加热4He释放量 单颗粒释放的4He体积量(ncc, 标准温压下)或4He分子数(nmol/g) 或者每步加热4He/3He比值 气体累计积累量(f) 分步加热He气体累计释放量(%) -
[1] BENDER M L. 1973. Helium-uranium dating of corals[J]. Geochimica et Cosmochimica Acta,37(5):1229-1247. doi: 10.1016/0016-7037(73)90058-6
[2] BOYCE J W, HODGES K V, OLSZEWSKI W J, JERCINOVIC M J, CARPENTER B D, REINERS P W. 2006. Laser microprobe (U-Th)/He geochronology[J]. Geochimica et Cosmochimica Acta,70(12):3031-3039. doi: 10.1016/j.gca.2006.03.019
[3] BRAUN J, GEMIGNANI L, VAN DER BEEK P. 2018. Extracting information on the spatial variability in erosion rate stored in detrital cooling age distributions in river sands[J]. Earth Surface Dynamics,6(1):257-270. doi: 10.5194/esurf-6-257-2018
[4] BRAUN J, VAN DER BEEK P, VALLA P, ROBERT X, HERMAN F, GLOTZBACH C, PEDERSEN V, PERRY C, SIMON-LABRIC T, PRIGENT C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE[J]. Tectonophysics,524-525:1-28. doi: 10.1016/j.tecto.2011.12.035
[5] BRENNAN C J, STOCKLI D F, PATTERSON D B. 2020. Zircon 4He/3He fractional loss step-heating and characterization of parent nuclide distribution[J]. Chemical Geology,549:119692. doi: 10.1016/j.chemgeo.2020.119692
[6] BROWN R W, BEUCHER R, ROPER S, PERSANO C, STUART F, FITZGERALD P. 2013. Natural age dispersion arising from the analysis of broken crystals. Part I: Theoretical basis and implications for the apatite (U-Th)/He thermochronometer[J]. Geochimica et Cosmochimica Acta,122:478-497. doi: 10.1016/j.gca.2013.05.041
[7] BURTNER R L, NIGRINI A, DONELICK R A. 1994. Thermochronology of Lower Cretaceous source rocks in the Idaho-Wyoming thrust belt[J]. AAPG bulletin,78(10):1613-1636.
[8] CAI D X, WANG X Y, LI G W, JIAO R H, KOHN B, ZHU W B, DE GRAVE J, LU H Y. 2023. Fault systems impede incision of the Yarlung river into the Tibetan plateau[J]. Communications Earth & Environment,4(1):200.
[9] CARLSON W D, DONELICK R A, KETCHAM R A. 1999. Variability of apatite fission-track annealing kinetics: I. Experimental results[J]. American Mineralogist,84(9):1213-1223. doi: 10.2138/am-1999-0901
[10] CHEN Y L, DING R X, SUN Z, LU S C. 2024. Advancements in(U-Th)/He thermochronology of new minerals[J]. Advances in Earth Science,39(4):357-373 (in Chinese with English abstract).
[11] CHEW D M, DONELICK R A. 2012. Combined apatite fission track and U-Pb dating by LA-ICPMS[C]//EGU General Assembly Conference Abstracts. Washington: EGU, 2012: 1192.
[12] CHEW D M, SPIKINGS R A. 2015. Geochronology and thermochronology using apatite: time and temperature, lower crust to surface[J]. Elements,11(3):189-194. doi: 10.2113/gselements.11.3.189
[13] COGNÉ N, GALLAGHER K. 2021. Some comments on the effect of uranium zonation on fission track dating by LA-ICP-MS[J]. Chemical Geology,573:120226. doi: 10.1016/j.chemgeo.2021.120226
[14] COX R, KOSLER J, SYLVESTER P, HODYCH J. 2000. Apatite fission-track (FT) dating by LAM-ICO-MS analysis[C]//Goldschmidt Conference. Oxford: Cambridge University Press, 322.
[15] DANIŠÍK M, PFAFF K, EVANS N J, MANOLOUKOS C, STAUDE S, MCDONALD B J, MARKL G. 2010. Tectonothermal history of the Schwarzwald Ore District (Germany): an apatite triple dating approach[J]. Chemical Geology,278(1-2):58-69. doi: 10.1016/j.chemgeo.2010.08.022
[16] DODSON M H. 1973. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology,40(3):259-274. doi: 10.1007/BF00373790
[17] DONELICK R A, KETCHAM R A, CARLSON W D. 1999. Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects[J]. American Mineralogist,84(9):1224-1234. doi: 10.2138/am-1999-0902
[18] DONELICK R A, MILLER D S. 1991. Enhanced TINT fission track densities in low spontaneous track density apatites using 252Cf-derived fission fragment tracks: A model and experimental observations[J]. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements,18(3):301-307. doi: 10.1016/1359-0189(91)90022-A
[19] DONELICK R A, O’SULLIVAN P B, KETCHAM R A. 2005. Apatite fission-track analysis[J]. Reviews in Mineralogy and Geochemistry,58(1):49-94. doi: 10.2138/rmg.2005.58.3
[20] EVANS N J, BYRNE J P, KEEGAN J T, DOTTER L E. 2005. Determination of uranium and thorium in zircon, apatite, and fluorite: Application to laser (U-Th)/He thermochronology[J]. Journal of Analytical Chemistry,60(12):1159-1165. doi: 10.1007/s10809-005-0260-1
[21] EVANS N J, MCINNES B I A, MCDONALD B, DANIŠÍK M, BECKER T, VERMEESCH P, SHELLEY M, MARILLO-SIALER E, PATTERSON D B. 2015. An in situ technique for (U-Th-Sm)/He and U-Pb double dating[J]. Journal of Analytical Atomic Spectrometry,30(7):1636-1645. doi: 10.1039/C5JA00085H
[22] FANALE F P, SCHAEFFER O A. 1965. Helium-uranium ratios for Pleistocene and tertiary fossil aragonites[J]. Science,149(3681):312-317. doi: 10.1126/science.149.3681.312
[23] FARLEY K A. 2000. Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite[J]. Journal of Geophysical Research: Solid Earth,105(B2):2903-2914. doi: 10.1029/1999JB900348
[24] FARLEY K A, FLOWERS R M. 2012. (U-Th)/Ne and multidomain (U-Th)/He systematics of a hydrothermal hematite from eastern Grand Canyon[J]. Earth and Planetary Science Letters,359-360:131-140. doi: 10.1016/j.jpgl.2012.10.010
[25] FARLEY K A, SHUSTER D L, KETCHAM R A. 2011. U and Th zonation in apatite observed by laser ablation ICPMS, and implications for the (U-Th)/He system[J]. Geochimica et Cosmochimica Acta,75(16):4515-4530. doi: 10.1016/j.gca.2011.05.020
[26] FARLEY K A, STOCKLI D F. 2002. (U-Th)/He dating of phosphates: apatite, monazite, and xenotime[J]. Reviews in Mineralogy and Geochemistry,48(1):559-577. doi: 10.2138/rmg.2002.48.15
[27] FARLEY K A, WOLF R A, SILVER L T. 1996. The effects of long alpha-stopping distances on (U-Th)/He ages[J]. Geochimica et Cosmochimica Acta,60(21):4223-4229. doi: 10.1016/S0016-7037(96)00193-7
[28] FEDO C M, SIRCOMBE K N, RAINBIRD R H. 2003. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry,53(1):277-303. doi: 10.2113/0530277
[29] FERREIRA M P, MACEDO R, COSTA V, REYNOLDS J H, RILEY JR J E, ROWE M W. 1975. Rare-gas dating, II. Attempted uranium-helium dating of young volcanic rocks from the Madeira Archipelago[J]. Earth and Planetary Science Letters,25(2):142-150. doi: 10.1016/0012-821X(75)90190-9
[30] FLEROV G N, PETRJAK K A. 1940. Spontaneous fission of uranium[J]. Physical Review, 58(1): 89.
[31] FLOWERS R M, FARLEY K A. 2012. Apatite 4He/3He and (U-Th)/He evidence for an ancient Grand Canyon[J]. Science,338(6114):1616-1619. doi: 10.1126/science.1229390
[32] FLOWERS R M, KETCHAM R A, ENKELMANN E, GAUTHERON C, REINERS P W, METCALF J R, DANIŠÍK M, STOCKLI D F, BROWN R W. 2023a. (U-Th)/He chronology: Part 2. Considerations for evaluating, integrating, and interpreting conventional individual aliquot data[J]. GSA Bulletin,135(1-2):137-161. doi: 10.1130/B36268.1
[33] FLOWERS R M, WERNICKE B P, FARLEY K A. 2008. Unroofing, incision, and uplift history of the southwestern Colorado Plateau from apatite (U-Th)/He thermochronometry[J]. Geological Society of America Bulletin,120(5-6):571-587. doi: 10.1130/B26231.1
[34] FLOWERS R M, ZEITLER P K, DANIŠÍK M, REINERS P W, GAUTHERON C, KETCHAM R A, METCALF J R, STOCKLI D F, ENKELMANN E, BROWN R W. 2023b. (U-Th)/He chronology: Part 1. Data, uncertainty, and reporting[J]. Bulletin of the Geological Society of America,135(1-2):104-136. doi: 10.1130/B36266.1
[35] FOX M, HERMAN F, WILLETT S D, MAY D A. 2013. A linear inversion method to infer exhumation rates in space and time from thermochronometric data[J]. Earth Surface Dynamics Discussions,2(1):207-259.
[36] GALBRAITH R F. 2005. Statistics for fission track analysis[M]. Boca Raton: Chapman & Hall/CRC, 1-219.
[37] GALLAGHER K. 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology[J]. Journal of Geophysical Research: Solid Earth,117(B2):B02408.
[38] GALLAGHER K, PARRA M. 2020. A new approach to thermal history modelling with detrital low temperature thermochronological data[J]. Earth and Planetary Science Letters,529:115872. doi: 10.1016/j.jpgl.2019.115872
[39] GAUTHERON C, BARBARAND J, KETCHAM R A, TASSAN-GOT L, VAN DER BEEK P, PAGEL M, PINNA-JAMME R, COUFFIGNAL F, FIALIN M. 2013. Chemical influence on α-recoil damage annealing in apatite: implications for (U-Th)/He dating[J]. Chemical Geology,351:257-267. doi: 10.1016/j.chemgeo.2013.05.027
[40] GLEADOW A J W, BELTON D X, KOHN B P, BROWN R W. 2002. Fission track dating of phosphate minerals and the thermochronology of apatite[J]. Reviews in Mineralogy and Geochemistry,48(1):579-630. doi: 10.2138/rmg.2002.48.16
[41] GLEADOW A J W, GLEADOW S J, BELTON D X, KOHN B P, KROCHMAL M S, BROWN R W. 2009. Coincidence mapping a key strategy for automated counting in fission track dating[M]//LISKER F, VENTURA B, GLASMACHER U A. Thermochronological methods: from palaeotemperature constraints to landscape evolution models. London: Geological Society of London, 25-36.
[42] GLEADOW A, HARRISON M, KOHN B, LUGO-ZAZUETA R, PHILLIPS D. 2015. The fish canyon tuff: a new look at an old low-temperature thermochronology standard[J]. Earth and Planetary Science Letters,424:95-108. doi: 10.1016/j.jpgl.2015.05.003
[43] GLEADOW A, KOHN B, SEILER C. 2019. The future of fission-track thermochronology[M]//MALUSÀ M G, FITZGERALD P G. Fission-track thermochronology and its application to geology. Cham: Springer, 77-92.
[44] GUENTHNER W R, REINERS P W, KETCHAM R A, NASDALA L, GIESTER G. 2013. Helium diffusion in natural zircon: radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology[J]. American Journal of Science,313(3):145-198. doi: 10.2475/03.2013.01
[45] HASEBE N, BARBARAND J, JARVIS K, CARTER A, HURFORD A J. 2004. Apatite fission-track chronometry using laser ablation ICP-MS[J]. Chemical Geology,207(3-4):135-145. doi: 10.1016/j.chemgeo.2004.01.007
[46] HASEBE N, TAMURA A, ARAI S. 2013. Zeta equivalent fission-track dating using LA-ICP-MS and examples with simultaneous U-Pb dating[J]. Island Arc,22(3):280-291. doi: 10.1111/iar.12040
[47] HOLDEN N E, HOFFMAN D C. 2000. Spontaneous fission half-lives for ground-state nuclide (Technical report)[J]. Pure and Applied Chemistry,72(8):1525-1562. doi: 10.1351/pac200072081525
[48] HORNE A M, VAN SOEST M C, HODGES K V. 2019. U/Pb and (U-Th-Sm)/He “double” dating of detrital apatite by laser ablation: a critical evaluation[J]. Chemical Geology,506:40-50. doi: 10.1016/j.chemgeo.2018.12.004
[49] HOUSE M A, WERNICKE B P, FARLEY K A. 2001. Paleo-geomorphology of the Sierra Nevada, California, from (U-TH)/He ages in apatite[J]. American Journal of Science,301(2):77-102. doi: 10.2475/ajs.301.2.77
[50] HUANG X W, MENG Y M, QI L, ZHOU M F, GAO J F, TAN H M R, XIE H, TAN M, YANG Z S, GAO Y H, ZHANG X. 2024. Magnetite: research methods and applications to ore deposit research[J]. East China Geology,45(1):1-15 (in Chinese with English abstract).
[51] HUANG H B, YUAN J, LING B, BAI X, LI M J, LIU J K. 2023. Technical development of arc-emission spectroscopy and its application in geological sample analysis[J]. East China Geology,44(1):103-117 (in Chinese with English abstract).
[52] HURFORD A J. 2019. An historical perspective on fission-track thermochronology[M]//MALUSÀ M G, FITZGERALD P G. Fission-track thermochronology and its application to geology. Cham: Springer, 3-23.
[53] HURLEY P M. 1954. The helium age method and the distribution and migration of helium in rocks[M]. New York: Wiley, Nuclear Geology, 301-329.
[54] JIAO R H, CAI S Z, BRAUN J. 2024. Solving crustal heat transfer for thermochronology using physics-informed neural networks[J]. Geochronology,6(2):227-245. doi: 10.5194/gchron-6-227-2024
[55] JONES S, GLEADOW A, KOHN B, REDDY S M. 2019. Etching of fission tracks in monazite: An experimental study[J]. Terra Nova,31(3):179-188. doi: 10.1111/ter.12382
[56] KETCHAM R A. 2019. Fission-track annealing: from geologic observations to thermal history modeling[M]//MALUSÀ M G, FITZGERALD P G. Fission-track thermochronology and its application to geology. Cham: Springer, 49-75.
[57] KETCHAM R A, CARTER A, HURFORD A J. 2015. Inter-laboratory comparison of fission track confined length and etch figure measurements in apatite[J]. American Mineralogist,100(7):1452-1468. doi: 10.2138/am-2015-5167
[58] KETCHAM R A, DONELICK R A, CARLSON W D. 1999. Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales[J]. American Mineralogist,84(9):1235-1255. doi: 10.2138/am-1999-0903
[59] KETCHAM R A, GAUTHERON C, TASSAN-GOT L. 2011. Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology: refinement of the baseline case[J]. Geochimica et Cosmochimica Acta,75(24):7779-7791. doi: 10.1016/j.gca.2011.10.011
[60] KOHN B, CHUNG L, GLEADOW A. 2019. Fission-track analysis: field collection, sample preparation and data acquisition[M]//MALUSÀ M G, FITZGERALD P G. Fission-Track Thermochronology and Its Application to Geology. Cham: Springer, 25-48.
[61] KOHN B P, GLEADOW A J W, BROWN R W, GALLAGHER K, O'SULLIVAN P B, FOSTER D A. 2002. Shaping the Australian crust over the last 300 million years: insights from fission track thermotectonic imaging and denudation studies of key terranes[J]. Australian Journal of Earth Sciences,49(4):697-717. doi: 10.1046/j.1440-0952.2002.00942.x
[62] KOHN B P, KETCHAM R A, VERMEESCH P, BOONE S C, HASEBE N, CHEW D, BERNET M, CHUNG L, DANIŠÍK M, GLEADOW A J W. 2024. Interpreting and reporting fission-track chronological data[J]. GSA Bulletin,136(9-10):3891-3920. doi: 10.1130/B37245.1
[63] LI G W. 2021. A brief review of key issues in tectonic geomorphology and low temperature thermochronology applications[J]. Acta Geologica Sinica,95(1):214-226 (in Chinese with English abstract).
[64] LI G W, KOHN B, SANDIFORD M, XU Z Q. 2017. India-Asia convergence: Insights from burial and exhumation of the Xigaze fore-arc basin, south Tibet[J]. Journal of Geophysical Research: Solid Earth,122(5):3430-3449. doi: 10.1002/2017JB014080
[65] LI G W, KOHN B, SANDIFORD M, XU Z Q, WEI L J. 2015. Constraining the age of Liuqu Conglomerate, southern Tibet: implications for evolution of the India–Asia collision zone[J]. Earth and Planetary Science Letters,426:259-266. doi: 10.1016/j.jpgl.2015.06.010
[66] LI R Y, XU Z Y, SU C, YANG R. 2022. Automatic identification of semi-tracks on apatite and mica using a deep learning method[J]. Computers & Geosciences,162:105081.
[67] LI C P, ZHENG D W, ZHOU R J, YU J X, WANG Y Z, PANG J Z, WANG Y, HAO Y Q, LI Y J. 2021. Late Oligocene tectonic uplift of the East Kunlun Shan: expansion of the northeastern Tibetan Plateau[J]. Geophysical Research Letters,48(3):e2020GL091281. doi: 10.1029/2020GL091281
[68] MALUSÀ M G, FITZGERALD P G. 2019. Fission-track thermochronology and its application to geology[M]. Cham: Springer, 1-393.
[69] MBONGO DJIMBI D, GAUTHERON C, ROQUES J, TASSAN-GOT L, GERIN C, SIMONI E. 2015. Impact of apatite chemical composition on (U-Th)/He thermochronometry: An atomistic point of view[J]. Geochimica et Cosmochimica Acta,167:162-176. doi: 10.1016/j.gca.2015.06.017
[70] PRICE P B, WALKER R M. 1962. Observation of fossil particle tracks in natural micas[J]. Nature,196(4856):732-734. doi: 10.1038/196732a0
[71] PRICE P B, WALKER R M. 1963. Fossil tracks of charged particles in mica and the age of minerals[J]. Journal of Geophysical Research,68(16):4847-4862. doi: 10.1029/JZ068i016p04847
[72] RAHN M K, BRANDON M T, BATT G E, GARVER J I. 2004. A zero-damage model for fission-track annealing in zircon[J]. American Mineralogist,89(4):473-484. doi: 10.2138/am-2004-0401
[73] REINERS P W, CAMPBELL I H, NICOLESCU S, ALLEN C M, HOURIGAN J K, GARVER J I, MATTINSON J M, COWAN D S. 2005. (U-Th)/(He-Pb) double dating of detrital zircons[J]. American Journal of Science,305(4):259-311. doi: 10.2475/ajs.305.4.259
[74] REINERS P W, CARLSON R W, RENNE P R, COOPER K M, GRANGER D E, MCLEAN N M, SCHOENE B. 2018. Geochronology and thermochronology[M]. Hoboken: John Wiley & Sons Ltd. , 1-491.
[75] REINERS P W, EHLERS T A. 2005. Low-temperature thermochronology: techniques, interpretations, and applications[M]. Chantilly: Mineralogical Society of America, 1-622.
[76] REINERS P W, FARLEY K A. 1999. Helium diffusion and (U-Th)/He thermochronometry of titanite[J]. Geochimica et Cosmochimica Acta,63(22):3845-3859. doi: 10.1016/S0016-7037(99)00170-2
[77] REINERS P W, FARLEY K A. 2001. Influence of crystal size on apatite (U-Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming[J]. Earth and Planetary Science Letters,188(3-4):413-420. doi: 10.1016/S0012-821X(01)00341-7
[78] REINERS P W, FARLEY K A, HICKES H J. 2002. He diffusion and (U-Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte[J]. Tectonophysics,349(1-4):297-308. doi: 10.1016/S0040-1951(02)00058-6
[79] REN Z T, LI S C, XIAO P, YANG X P, WANG H T. 2023. Artificial intelligent identification of apatite fission tracks based on machine learning[J]. Machine Learning: Science and Technology,4(4):045039. doi: 10.1088/2632-2153/ad0e17
[80] RUTHERFORD E. 1906. Radioactive transformations[M]. Vol. 3. New York: C. Scribner’s Sons, 5, 1-34.
[81] SAMBRIDGE M. 1999a. Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space[J]. Geophysical Journal International,138(2):479-494. doi: 10.1046/j.1365-246X.1999.00876.x
[82] SAMBRIDGE M. 1999b. Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble[J]. Geophysical Journal International,138(3):727-746. doi: 10.1046/j.1365-246x.1999.00900.x
[83] SCHILDGEN T F, EHLERS T A, WHIPP JR D M, VAN SOEST M C, WHIPPLE K X, HODGES K V. 2009. Quantifying canyon incision and Andean Plateau surface uplift, southwest Peru: A thermochronometer and numerical modeling approach[J]. Journal of Geophysical Research: Earth Surface,114(F4):F04014.
[84] SCHILDGEN T F, VAN DER BEEK P A, SINCLAIR H D, THIEDE R C. 2018. Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology[J]. Nature,559(7712):89-93. doi: 10.1038/s41586-018-0260-6
[85] SCHNEIDER D A, ISSLER D R. 2019. Application of low-temperature thermochronology to hydrocarbon exploration[M]//MALUSÀ M G, FITZGERALD P G. Fission-Track Thermochronology and Its Application to Geology. Cham: Springer, 315-333
[86] SEILER C, BOONE S C, KOHN B P, GLEADOW A J W. 2023. A grain-by-grain comparison of apatite fission-track analysis by LA-ICP-MS and the external detector method[J]. Chemical Geology,635:121623. doi: 10.1016/j.chemgeo.2023.121623
[87] SHUSTER D L, FARLEY K A. 2005. 4He/3He thermochronometry: theory, practice, and potential complications[J]. Reviews in Mineralogy & Geochemistry,58(1):181-203.
[88] SILK E C H, BARNES R S. 1959. Examination of fission fragment tracks with an electron microscope[J]. Philosophical Magazine,4(44):970-972. doi: 10.1080/14786435908238273
[89] SVOJTKA M, KOŠLER J. 2002. Fission-track dating of zircon by laser ablation ICPMS[J]. Geochimica et Cosmochimica Acta, 66(15A): A756.
[90] TAGAMI T, O’SULLIVAN P B. 2005. Fundamentals of fission-track thermochronology[J]. Reviews in Mineralogy and Geochemistry,58(1):19-47. doi: 10.2138/rmg.2005.58.2
[91] TIAN Y T, PAN L L, ZHANG G H, YAO X B. 2024. An efficient approach for inverting rock exhumation from thermochronologic age–elevation relationship[J]. Earth Surface Dynamics,12(2):477-492. doi: 10.5194/esurf-12-477-2024
[92] TRIPATHY-LANG A, FOX M, SHUSTER D L. 2015. Zircon 4He/3He thermochronometry[J]. Geochimica et Cosmochimica Acta,166:1-14. doi: 10.1016/j.gca.2015.05.027
[93] VAN DER BEEK P, SCHILDGEN T F. 2023. Short communication: age2exhume – a MATLAB/Python script to calculate steady-state vertical exhumation rates from thermochronometric ages and application to the Himalaya[J]. Geochronology,5(1):35-49. doi: 10.5194/gchron-5-35-2023
[94] VERMEESCH P. 2009. RadialPlotter: a Java application for fission track, luminescence and other radial plots[J]. Radiation Measurements,44(4):409-410. doi: 10.1016/j.radmeas.2009.05.003
[95] VERMEESCH P. 2010. HelioPlot, and the treatment of overdispersed (U-Th-Sm)/He data[J]. Chemical Geology,271(3-4):108-111. doi: 10.1016/j.chemgeo.2010.01.002
[96] VERMEESCH P. 2012. On the visualisation of detrital age distributions[J]. Chemical Geology,312-313:190-194. doi: 10.1016/j.chemgeo.2012.04.021
[97] VERMEESCH P, TIAN Y T. 2014. Thermal history modelling: HeFTy vs. QTQt[J]. Earth-Science Reviews,139:279-290. doi: 10.1016/j.earscirev.2014.09.010
[98] WAGNER G A, STORZER D. 1972. Fission track length reductions in minerals and the thermal history of rocks[J]. Transactions of the American Nuclear Society,15(1):127-128.
[99] WAGNER G A, VAN DEN HAUTE P. 1992. Fission-track dating method[M]//WAGNER G A, HAUTE P. Fission-track dating. Dordrecht: Springer, 59-94.
[100] WOLF R A, FARLEY K A, SILVER L T. 1996. Helium diffusion and low-temperature thermochronometry of apatite[J]. Geochimica et Cosmochimica Acta,60(21):4231-4240. doi: 10.1016/S0016-7037(96)00192-5
[101] WU L, WANG F, SHAN J N, ZHANG W B, SHI W B, FENG H L. 2016. (U-Th)/He dating of international standard Durango apatite[J]. Acta Petrologica Sinica,32(6):1891-1900 (in Chinese with English abstract).
[102] XIANG D F, ZHANG Z Y, XIAO W J, ZHU W B, ZHENG D W, LI G W, ZHENG B H, SONG D F, HAN C M, PANG J Z. 2019. Episodic Meso-Cenozoic denudation of Chinese Tianshan: evidence from detrital apatite fission track and zircon U-Pb data, southern Junggar Basin margin, NW China[J]. Journal of Asian Earth Sciences,175:199-212. doi: 10.1016/j.jseaes.2018.07.042
[103] YOUNG D A. 1958. Etching of radiation damage in lithium fluoride[J]. Nature,182(4632):375-377. doi: 10.1038/182375a0
[104] ZEITLER P K. 2020. U-Th/He dating[M]//RINK W J, THOMPSON J. Encyclopedia of Scientific Dating Methods. Dordrecht: Springer, 1-14.
[105] ZEITLER P K, HERCZEG A L, MCDOUGALL I, HONDA M. 1987. U-Th-He dating of apatite: a potential thermochronometer[J]. Geochimica et Cosmochimica Acta,51(10):2865-2868. doi: 10.1016/0016-7037(87)90164-5
[106] ZHENG D W, WU Y, PANG J Z, LI Y J, WANG Y Z, MA Y, YU J X, WANG Y. 2016, Fundamentals, dating and application of U-Th/He thermochronology[J]. Quaternary Sciences, 36(5): 1027-1036 (in Chinese with English abstract).
[107] ZHOU Z Y. 2014. Low temperature thermochronology: principles & applications[M]. Beijing: Science Press, 1-230 (in Chinese).
[108] ZIEGLER J F. 2008. SRIM: The stopping range of ions in matter[R]. Annapolis: United States Naval Academy.
[109] 陈玉柳, 丁汝鑫, 孙转, 卢胜城. 2024. 新矿物(U-Th)/He年代学的研究进展[J]. 地球科学进展,39(4):357-373.
[110] 黄小文, 孟郁苗, 漆亮, 周美夫, 高剑峰, 谭侯铭睿, 谢欢, 谭茂, 杨志爽, 高英辉, 张鑫. 2024. 磁铁矿: 研究方法与矿床学应用[J]. 华东地质,45(1):1-15.
[111] 黄海波, 袁静, 凌波, 白晓, 李民敬, 刘建坤. 2023. 电弧发射光谱技术发展及其在地质领域的应用[J]. 华东地质,44(1):103-117.
[112] 李广伟. 2021. 构造地貌与低温热年代学若干问题探讨[J]. 地质学报,95(1):214-226.
[113] 吴林, 王非, 单竞男, 张炜斌, 师文贝, 冯慧乐. 2016. 国际标样Durango磷灰石(U-Th)/He年龄测定[J]. 岩石学报,32(6):1891-1900.
[114] 郑德文, 武颖, 庞建章, 李又娟, 王一舟, 马严, 俞晶星, 王英. 2016. U⁃Th/He热年代学原理、测试及应用[J]. 第四纪研究,36(5):1027-1036. doi: 10.11928/j.issn.1001-7410.2016.05.02
[115] 周祖翼. 2014. 低温年代学: 原理与应用[M]. 北京: 科学出版社, 1-230.
-