低温热年代学方法及其应用(一)

李广伟, 蔡东旭, 李新未, 杨一帆, 李小雅, 何智浚. 2025. 低温热年代学方法及其应用(一). 华东地质, 46(2): 127-148. doi: 10.16788/j.hddz.32-1865/P.2024.12.007
引用本文: 李广伟, 蔡东旭, 李新未, 杨一帆, 李小雅, 何智浚. 2025. 低温热年代学方法及其应用(一). 华东地质, 46(2): 127-148. doi: 10.16788/j.hddz.32-1865/P.2024.12.007
LI Guangwei, CAI Dongxu, LI Xinwei, YANG Yifan, LI Xiaoya, HE Zhijun. 2025. Low-temperature thermochronology methodology and applications (Part 1). East China Geology, 46(2): 127-148. doi: 10.16788/j.hddz.32-1865/P.2024.12.007
Citation: LI Guangwei, CAI Dongxu, LI Xinwei, YANG Yifan, LI Xiaoya, HE Zhijun. 2025. Low-temperature thermochronology methodology and applications (Part 1). East China Geology, 46(2): 127-148. doi: 10.16788/j.hddz.32-1865/P.2024.12.007

低温热年代学方法及其应用(一)

  • 基金项目: 国家重点研发计划专项“东亚陆缘古太平洋板块俯冲的构造-岩浆活动及浅部效应(编号:2022YFF0800401)”、国家科技重大专项“中生代东亚汇聚岩石圈巨变与浅层响应(编号:2024ZD1001104)”和国家自然科学基金面上 “碎屑低温热年代学限定冈底斯带早新生代隆升-剥蚀过程及其侧向差异性(编号:42272111)”项目联合资助。
详细信息
    作者简介: 李广伟,1982年生,男,教授,博士,主要从事低温热年代学方法及应用等研究工作。Email: guangweili@nju.edu.cn
  • 中图分类号: P597.3

Low-temperature thermochronology methodology and applications (Part 1)

  • 低温热年代学方法,是指部分退火/滞留带(封闭温度)低于300 ℃的放射性测年方法,主要包括裂变径迹和(U-Th)/He测年技术,可定量限定上地壳的矿物/岩石在地质过程中经历的温度历史,重建地质体的热演化历史,在基础地质学、矿床学、石油地质学、地貌学以及行星学等方面已有广泛的应用。文章简要梳理了两种测年方法的发展过程、原理、实验技术和基本数据组成,并探讨了影响这些测年方法准确性的因素,以及低温热年代学新方法的研究进展。低温热年代学数据通常需要结合地质背景等限定,利用数值模拟对数据加以解释,因此文章还简述了当前常用的热年代学数值模拟工具。这些方法的应用可让我们更为深入地理解地质过程和地貌演化。

  • 加载中
  • 图 1  常用低温热年代学方法及其封闭温度体系(Chew and Spikings, 2015; Jones et al., 2019; Malusà and Fitzgerald, 2019; Reiners et al., 2018

    Figure 1. 

    图 2  裂变径迹(238U或235U)形成模式图(a)、(b)和磷灰石裂变径迹透射光显微照片(显示半径迹和封闭径迹)(c)

    Figure 2. 

    图 3  EDM和LA-ICP-MS两种裂变径迹方法的实验流程图(修改自Kohn et al., 2024

    Figure 3. 

    图 4  EDM和LA-ICP-MS两种裂变径迹方法的年龄对比图(数据引自Seiler et al., 2023

    Figure 4. 

    图 5  磷灰石裂变径迹年龄与氯含量的关系图(a)(来自美国蒙大拿州Stillwater Complex的磷灰石颗粒样本,数据引自Kohn et al., 2002)和磷灰石颗粒氯含量与其Dpar值的关系图(b)(数据引自Donelick et al., 2005)

    Figure 5. 

    图 6  磷灰石封闭裂变径迹退火各向异性的极坐标图(修改自Donelick et al., 1999)

    Figure 6. 

    图 7  裂变径迹年龄数据雷达图(a)(Vermeesch, 2009)和磷灰石裂变径迹长度直方分布图(b)

    Figure 7. 

    图 8  α 粒子射出效应(a)和α 粒子植入效应(b)示意图

    Figure 8. 

    图 9  不同冷却速率下磷灰石和锆石(U-Th)/He封闭温度(a)和不同粒径磷灰石单颗粒年龄(b)(Rsv: 等表面积-体积比的球体半径)(数据引自Flowers et al., 2023b

    Figure 9. 

    图 10  不同[eU]含量的磷灰石(U-Th)/He单颗粒年龄(a)(数据引自Flowers et al., 2023b)和不同α剂量的锆石(U-Th)/He封闭温度(b)(Guenthner et al., 2013

    Figure 10. 

    图 11  基于低温热年代学数据利用HeFTy(a)和QTQt(b)软件的热历史反演结果(数据引自Li et al., 2017,藏南白垩纪日喀则弧前盆地)

    Figure 11. 

    图 12  基于低温热年代学数据利用Pecube反演的构造地貌演化模式图(数据引自Cai et al., 2023)

    Figure 12. 

    表 1  裂变径迹发表数据基本组成

    Table 1.  Fair fission track data reporting

    数据内容 说 明
    样品号 分析样品的编号
    样品基本信息 包括经纬度、高程、地区及岩性等
    年龄数据
    统计颗粒数(No.) 样品分析的单颗粒数量
    自发径迹条数(Ns 所有颗粒自发径迹(238U裂变产生的天然径迹)总条数
    自发径迹密度(ρs 样品颗粒统计面积内的平均径迹密度 (105 cm−2
    诱发径迹条数(Ni 限EDM方法:中子照射轰击235U原子使其裂变而产生的径迹总条数
    诱发径迹密度(ρi 限EDM方法:样品颗粒统计面积内的平均径迹密度 (105 cm−2
    平均238U含量 限LA-ICP-MS方法:样品颗粒的238U平均含量值及其误差(σ
    池年龄(Pooled age) 计算裂变径迹年龄及其误差
    中心年龄(Central age) 计算裂变径迹年龄及其误差
    P2) 卡方检验是用来统计检验分析的颗粒属于同一年龄群体的一种方法,介于0~1
    离散度(Dispersion) 评价单颗粒年龄离散程度,介于0~1,或者百分数
    退火参数 (磷灰石)样品Dpar或Cl、F、OH含量(EPM或LA-ICP-MS测定)或多元素综合值rm的平均值
    长度数据 主要针对磷灰石裂变径迹
    平均径迹长度 统计的封闭径迹平均长度(μm)及其方差
    径迹条数(n 样品统计封闭径迹的条数
    退火参数 Dpar或Cl、F、OH含量(EPM或LA-ICP-MS测定)或多元素综合值rm的平均值或范围
    单颗粒原始数据 建议均作为附件提供
    年龄数据
    自发径迹条数(Ns 单颗粒自发径迹条数
    统计面积(Area) 单颗粒统计径迹的面积
    自发径迹密度(ρs 单颗粒统计面积内的径迹密度 (105 cm−2
    诱发径迹条数(Ni 限EDM方法:单颗粒中子照射轰击235U原子使其裂变而产生的径迹的条数
    诱发径迹密度(ρi 限EDM方法:单颗粒统计面积内的径迹密度 (105 cm−2
    238U含量 限LA-ICP-MS方法:单颗粒的238U含量及其误差(σ
    池年龄(Pooled age) 计算裂变径迹年龄及其误差
    中心年龄(Central age) 计算裂变径迹年龄及其误差
    P2) 卡方检验是用来统计检验分析的颗粒属于同一年龄群体的一种方法,介于0~1
    离散度(Dispersion) 评价单颗粒年龄离散程度,介于0~1,或者百分数
    退火参数 (磷灰石)单颗粒的Dpar或Cl、F、OH含量(EPM或LA-ICP-MS测定)或多元素综合值rm
    长度数据 主要针对磷灰石裂变径迹
    单条径迹长度 测量每条封闭径迹的真实长度(μm)
    与c轴夹角 测量的每条封闭径迹与该颗粒晶体c轴的夹角
    退火参数 封闭径迹所在的单颗粒的Dpar或Cl、F、OH含量(EPM或LA-ICP-MS测定)或多元素综合值rm
    注:由于锆石等矿物的裂变径迹退火机制尚未研究清楚,因此其裂变径迹一般仅给出年龄数据,对其封闭径迹长度暂不统计。
    下载: 导出CSV

    表 2  (U-Th)/He发表数据基本组成

    Table 2.  Fair (U-Th)/He reporting

    数据内容 说 明
    传统单颗粒溶样法
    样品号 分析样品的编号
    样品基本信息 包括经纬度、高程、地区及岩性等
    年龄数据 包含所有测定的单颗粒数据
    4He 单颗粒释放的4He体积量(ncc, 标准温压下)或4He分子数(nmol/g)
    颗粒质量(m) 单颗粒矿物的质量(mg)
    FT α粒子射出效应校正(Farley et al.,1996
    U含量 单颗粒的U含量(μg/g)
    Th含量 单颗粒的Th含量(μg/g)
    Sm含量 单颗粒的Sm含量(μg/g,一般可忽略)
    [eU] [eU] = U + 0.238·Th + 0.0012·Sm (Flowers et al., 2023b
    未校正年龄 未经FT校正的年龄及其误差(可忽略),可为:1σ或2σ
    校正年龄 经过FT校正的年龄及其误差,1σ或2σ
    颗粒大小 单颗粒的长、宽等或等表面积与体积比的球体半径RSV
    晶体形态 单颗粒晶体的完整度:2T.完整;1T.一端完整;0T.两端均不完整
    4He/3He方法 同样需要上述传统方法的数据,外加下面数据
    辐照信息 辐照实验室、条件等
    分布加热温度
    分布加热温度
    加热时间 s、min、h
    每步加热3He释放量 单颗粒释放的4He体积量(ncc, 标准温压下)或4He分子数(nmol/g)
    每步加热4He释放量 单颗粒释放的4He体积量(ncc, 标准温压下)或4He分子数(nmol/g)
    或者每步加热4He/3He比值
    气体累计积累量(f 分步加热He气体累计释放量(%)
    下载: 导出CSV
  • [1]

    BENDER M L. 1973. Helium-uranium dating of corals[J]. Geochimica et Cosmochimica Acta,37(5):1229-1247. doi: 10.1016/0016-7037(73)90058-6

    [2]

    BOYCE J W, HODGES K V, OLSZEWSKI W J, JERCINOVIC M J, CARPENTER B D, REINERS P W. 2006. Laser microprobe (U-Th)/He geochronology[J]. Geochimica et Cosmochimica Acta,70(12):3031-3039. doi: 10.1016/j.gca.2006.03.019

    [3]

    BRAUN J, GEMIGNANI L, VAN DER BEEK P. 2018. Extracting information on the spatial variability in erosion rate stored in detrital cooling age distributions in river sands[J]. Earth Surface Dynamics,6(1):257-270. doi: 10.5194/esurf-6-257-2018

    [4]

    BRAUN J, VAN DER BEEK P, VALLA P, ROBERT X, HERMAN F, GLOTZBACH C, PEDERSEN V, PERRY C, SIMON-LABRIC T, PRIGENT C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE[J]. Tectonophysics,524-525:1-28. doi: 10.1016/j.tecto.2011.12.035

    [5]

    BRENNAN C J, STOCKLI D F, PATTERSON D B. 2020. Zircon 4He/3He fractional loss step-heating and characterization of parent nuclide distribution[J]. Chemical Geology,549:119692. doi: 10.1016/j.chemgeo.2020.119692

    [6]

    BROWN R W, BEUCHER R, ROPER S, PERSANO C, STUART F, FITZGERALD P. 2013. Natural age dispersion arising from the analysis of broken crystals. Part I: Theoretical basis and implications for the apatite (U-Th)/He thermochronometer[J]. Geochimica et Cosmochimica Acta,122:478-497. doi: 10.1016/j.gca.2013.05.041

    [7]

    BURTNER R L, NIGRINI A, DONELICK R A. 1994. Thermochronology of Lower Cretaceous source rocks in the Idaho-Wyoming thrust belt[J]. AAPG bulletin,78(10):1613-1636.

    [8]

    CAI D X, WANG X Y, LI G W, JIAO R H, KOHN B, ZHU W B, DE GRAVE J, LU H Y. 2023. Fault systems impede incision of the Yarlung river into the Tibetan plateau[J]. Communications Earth & Environment,4(1):200.

    [9]

    CARLSON W D, DONELICK R A, KETCHAM R A. 1999. Variability of apatite fission-track annealing kinetics: I. Experimental results[J]. American Mineralogist,84(9):1213-1223. doi: 10.2138/am-1999-0901

    [10]

    CHEN Y L, DING R X, SUN Z, LU S C. 2024. Advancements in(U-Th)/He thermochronology of new minerals[J]. Advances in Earth Science,39(4):357-373 (in Chinese with English abstract).

    [11]

    CHEW D M, DONELICK R A. 2012. Combined apatite fission track and U-Pb dating by LA-ICPMS[C]//EGU General Assembly Conference Abstracts. Washington: EGU, 2012: 1192.

    [12]

    CHEW D M, SPIKINGS R A. 2015. Geochronology and thermochronology using apatite: time and temperature, lower crust to surface[J]. Elements,11(3):189-194. doi: 10.2113/gselements.11.3.189

    [13]

    COGNÉ N, GALLAGHER K. 2021. Some comments on the effect of uranium zonation on fission track dating by LA-ICP-MS[J]. Chemical Geology,573:120226. doi: 10.1016/j.chemgeo.2021.120226

    [14]

    COX R, KOSLER J, SYLVESTER P, HODYCH J. 2000. Apatite fission-track (FT) dating by LAM-ICO-MS analysis[C]//Goldschmidt Conference. Oxford: Cambridge University Press, 322.

    [15]

    DANIŠÍK M, PFAFF K, EVANS N J, MANOLOUKOS C, STAUDE S, MCDONALD B J, MARKL G. 2010. Tectonothermal history of the Schwarzwald Ore District (Germany): an apatite triple dating approach[J]. Chemical Geology,278(1-2):58-69. doi: 10.1016/j.chemgeo.2010.08.022

    [16]

    DODSON M H. 1973. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology,40(3):259-274. doi: 10.1007/BF00373790

    [17]

    DONELICK R A, KETCHAM R A, CARLSON W D. 1999. Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects[J]. American Mineralogist,84(9):1224-1234. doi: 10.2138/am-1999-0902

    [18]

    DONELICK R A, MILLER D S. 1991. Enhanced TINT fission track densities in low spontaneous track density apatites using 252Cf-derived fission fragment tracks: A model and experimental observations[J]. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements,18(3):301-307. doi: 10.1016/1359-0189(91)90022-A

    [19]

    DONELICK R A, O’SULLIVAN P B, KETCHAM R A. 2005. Apatite fission-track analysis[J]. Reviews in Mineralogy and Geochemistry,58(1):49-94. doi: 10.2138/rmg.2005.58.3

    [20]

    EVANS N J, BYRNE J P, KEEGAN J T, DOTTER L E. 2005. Determination of uranium and thorium in zircon, apatite, and fluorite: Application to laser (U-Th)/He thermochronology[J]. Journal of Analytical Chemistry,60(12):1159-1165. doi: 10.1007/s10809-005-0260-1

    [21]

    EVANS N J, MCINNES B I A, MCDONALD B, DANIŠÍK M, BECKER T, VERMEESCH P, SHELLEY M, MARILLO-SIALER E, PATTERSON D B. 2015. An in situ technique for (U-Th-Sm)/He and U-Pb double dating[J]. Journal of Analytical Atomic Spectrometry,30(7):1636-1645. doi: 10.1039/C5JA00085H

    [22]

    FANALE F P, SCHAEFFER O A. 1965. Helium-uranium ratios for Pleistocene and tertiary fossil aragonites[J]. Science,149(3681):312-317. doi: 10.1126/science.149.3681.312

    [23]

    FARLEY K A. 2000. Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite[J]. Journal of Geophysical Research: Solid Earth,105(B2):2903-2914. doi: 10.1029/1999JB900348

    [24]

    FARLEY K A, FLOWERS R M. 2012. (U-Th)/Ne and multidomain (U-Th)/He systematics of a hydrothermal hematite from eastern Grand Canyon[J]. Earth and Planetary Science Letters,359-360:131-140. doi: 10.1016/j.jpgl.2012.10.010

    [25]

    FARLEY K A, SHUSTER D L, KETCHAM R A. 2011. U and Th zonation in apatite observed by laser ablation ICPMS, and implications for the (U-Th)/He system[J]. Geochimica et Cosmochimica Acta,75(16):4515-4530. doi: 10.1016/j.gca.2011.05.020

    [26]

    FARLEY K A, STOCKLI D F. 2002. (U-Th)/He dating of phosphates: apatite, monazite, and xenotime[J]. Reviews in Mineralogy and Geochemistry,48(1):559-577. doi: 10.2138/rmg.2002.48.15

    [27]

    FARLEY K A, WOLF R A, SILVER L T. 1996. The effects of long alpha-stopping distances on (U-Th)/He ages[J]. Geochimica et Cosmochimica Acta,60(21):4223-4229. doi: 10.1016/S0016-7037(96)00193-7

    [28]

    FEDO C M, SIRCOMBE K N, RAINBIRD R H. 2003. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry,53(1):277-303. doi: 10.2113/0530277

    [29]

    FERREIRA M P, MACEDO R, COSTA V, REYNOLDS J H, RILEY JR J E, ROWE M W. 1975. Rare-gas dating, II. Attempted uranium-helium dating of young volcanic rocks from the Madeira Archipelago[J]. Earth and Planetary Science Letters,25(2):142-150. doi: 10.1016/0012-821X(75)90190-9

    [30]

    FLEROV G N, PETRJAK K A. 1940. Spontaneous fission of uranium[J]. Physical Review, 58(1): 89.

    [31]

    FLOWERS R M, FARLEY K A. 2012. Apatite 4He/3He and (U-Th)/He evidence for an ancient Grand Canyon[J]. Science,338(6114):1616-1619. doi: 10.1126/science.1229390

    [32]

    FLOWERS R M, KETCHAM R A, ENKELMANN E, GAUTHERON C, REINERS P W, METCALF J R, DANIŠÍK M, STOCKLI D F, BROWN R W. 2023a. (U-Th)/He chronology: Part 2. Considerations for evaluating, integrating, and interpreting conventional individual aliquot data[J]. GSA Bulletin,135(1-2):137-161. doi: 10.1130/B36268.1

    [33]

    FLOWERS R M, WERNICKE B P, FARLEY K A. 2008. Unroofing, incision, and uplift history of the southwestern Colorado Plateau from apatite (U-Th)/He thermochronometry[J]. Geological Society of America Bulletin,120(5-6):571-587. doi: 10.1130/B26231.1

    [34]

    FLOWERS R M, ZEITLER P K, DANIŠÍK M, REINERS P W, GAUTHERON C, KETCHAM R A, METCALF J R, STOCKLI D F, ENKELMANN E, BROWN R W. 2023b. (U-Th)/He chronology: Part 1. Data, uncertainty, and reporting[J]. Bulletin of the Geological Society of America,135(1-2):104-136. doi: 10.1130/B36266.1

    [35]

    FOX M, HERMAN F, WILLETT S D, MAY D A. 2013. A linear inversion method to infer exhumation rates in space and time from thermochronometric data[J]. Earth Surface Dynamics Discussions,2(1):207-259.

    [36]

    GALBRAITH R F. 2005. Statistics for fission track analysis[M]. Boca Raton: Chapman & Hall/CRC, 1-219.

    [37]

    GALLAGHER K. 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology[J]. Journal of Geophysical Research: Solid Earth,117(B2):B02408.

    [38]

    GALLAGHER K, PARRA M. 2020. A new approach to thermal history modelling with detrital low temperature thermochronological data[J]. Earth and Planetary Science Letters,529:115872. doi: 10.1016/j.jpgl.2019.115872

    [39]

    GAUTHERON C, BARBARAND J, KETCHAM R A, TASSAN-GOT L, VAN DER BEEK P, PAGEL M, PINNA-JAMME R, COUFFIGNAL F, FIALIN M. 2013. Chemical influence on α-recoil damage annealing in apatite: implications for (U-Th)/He dating[J]. Chemical Geology,351:257-267. doi: 10.1016/j.chemgeo.2013.05.027

    [40]

    GLEADOW A J W, BELTON D X, KOHN B P, BROWN R W. 2002. Fission track dating of phosphate minerals and the thermochronology of apatite[J]. Reviews in Mineralogy and Geochemistry,48(1):579-630. doi: 10.2138/rmg.2002.48.16

    [41]

    GLEADOW A J W, GLEADOW S J, BELTON D X, KOHN B P, KROCHMAL M S, BROWN R W. 2009. Coincidence mapping a key strategy for automated counting in fission track dating[M]//LISKER F, VENTURA B, GLASMACHER U A. Thermochronological methods: from palaeotemperature constraints to landscape evolution models. London: Geological Society of London, 25-36.

    [42]

    GLEADOW A, HARRISON M, KOHN B, LUGO-ZAZUETA R, PHILLIPS D. 2015. The fish canyon tuff: a new look at an old low-temperature thermochronology standard[J]. Earth and Planetary Science Letters,424:95-108. doi: 10.1016/j.jpgl.2015.05.003

    [43]

    GLEADOW A, KOHN B, SEILER C. 2019. The future of fission-track thermochronology[M]//MALUSÀ M G, FITZGERALD P G. Fission-track thermochronology and its application to geology. Cham: Springer, 77-92.

    [44]

    GUENTHNER W R, REINERS P W, KETCHAM R A, NASDALA L, GIESTER G. 2013. Helium diffusion in natural zircon: radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology[J]. American Journal of Science,313(3):145-198. doi: 10.2475/03.2013.01

    [45]

    HASEBE N, BARBARAND J, JARVIS K, CARTER A, HURFORD A J. 2004. Apatite fission-track chronometry using laser ablation ICP-MS[J]. Chemical Geology,207(3-4):135-145. doi: 10.1016/j.chemgeo.2004.01.007

    [46]

    HASEBE N, TAMURA A, ARAI S. 2013. Zeta equivalent fission-track dating using LA-ICP-MS and examples with simultaneous U-Pb dating[J]. Island Arc,22(3):280-291. doi: 10.1111/iar.12040

    [47]

    HOLDEN N E, HOFFMAN D C. 2000. Spontaneous fission half-lives for ground-state nuclide (Technical report)[J]. Pure and Applied Chemistry,72(8):1525-1562. doi: 10.1351/pac200072081525

    [48]

    HORNE A M, VAN SOEST M C, HODGES K V. 2019. U/Pb and (U-Th-Sm)/He “double” dating of detrital apatite by laser ablation: a critical evaluation[J]. Chemical Geology,506:40-50. doi: 10.1016/j.chemgeo.2018.12.004

    [49]

    HOUSE M A, WERNICKE B P, FARLEY K A. 2001. Paleo-geomorphology of the Sierra Nevada, California, from (U-TH)/He ages in apatite[J]. American Journal of Science,301(2):77-102. doi: 10.2475/ajs.301.2.77

    [50]

    HUANG X W, MENG Y M, QI L, ZHOU M F, GAO J F, TAN H M R, XIE H, TAN M, YANG Z S, GAO Y H, ZHANG X. 2024. Magnetite: research methods and applications to ore deposit research[J]. East China Geology,45(1):1-15 (in Chinese with English abstract).

    [51]

    HUANG H B, YUAN J, LING B, BAI X, LI M J, LIU J K. 2023. Technical development of arc-emission spectroscopy and its application in geological sample analysis[J]. East China Geology,44(1):103-117 (in Chinese with English abstract).

    [52]

    HURFORD A J. 2019. An historical perspective on fission-track thermochronology[M]//MALUSÀ M G, FITZGERALD P G. Fission-track thermochronology and its application to geology. Cham: Springer, 3-23.

    [53]

    HURLEY P M. 1954. The helium age method and the distribution and migration of helium in rocks[M]. New York: Wiley, Nuclear Geology, 301-329.

    [54]

    JIAO R H, CAI S Z, BRAUN J. 2024. Solving crustal heat transfer for thermochronology using physics-informed neural networks[J]. Geochronology,6(2):227-245. doi: 10.5194/gchron-6-227-2024

    [55]

    JONES S, GLEADOW A, KOHN B, REDDY S M. 2019. Etching of fission tracks in monazite: An experimental study[J]. Terra Nova,31(3):179-188. doi: 10.1111/ter.12382

    [56]

    KETCHAM R A. 2019. Fission-track annealing: from geologic observations to thermal history modeling[M]//MALUSÀ M G, FITZGERALD P G. Fission-track thermochronology and its application to geology. Cham: Springer, 49-75.

    [57]

    KETCHAM R A, CARTER A, HURFORD A J. 2015. Inter-laboratory comparison of fission track confined length and etch figure measurements in apatite[J]. American Mineralogist,100(7):1452-1468. doi: 10.2138/am-2015-5167

    [58]

    KETCHAM R A, DONELICK R A, CARLSON W D. 1999. Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales[J]. American Mineralogist,84(9):1235-1255. doi: 10.2138/am-1999-0903

    [59]

    KETCHAM R A, GAUTHERON C, TASSAN-GOT L. 2011. Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology: refinement of the baseline case[J]. Geochimica et Cosmochimica Acta,75(24):7779-7791. doi: 10.1016/j.gca.2011.10.011

    [60]

    KOHN B, CHUNG L, GLEADOW A. 2019. Fission-track analysis: field collection, sample preparation and data acquisition[M]//MALUSÀ M G, FITZGERALD P G. Fission-Track Thermochronology and Its Application to Geology. Cham: Springer, 25-48.

    [61]

    KOHN B P, GLEADOW A J W, BROWN R W, GALLAGHER K, O'SULLIVAN P B, FOSTER D A. 2002. Shaping the Australian crust over the last 300 million years: insights from fission track thermotectonic imaging and denudation studies of key terranes[J]. Australian Journal of Earth Sciences,49(4):697-717. doi: 10.1046/j.1440-0952.2002.00942.x

    [62]

    KOHN B P, KETCHAM R A, VERMEESCH P, BOONE S C, HASEBE N, CHEW D, BERNET M, CHUNG L, DANIŠÍK M, GLEADOW A J W. 2024. Interpreting and reporting fission-track chronological data[J]. GSA Bulletin,136(9-10):3891-3920. doi: 10.1130/B37245.1

    [63]

    LI G W. 2021. A brief review of key issues in tectonic geomorphology and low temperature thermochronology applications[J]. Acta Geologica Sinica,95(1):214-226 (in Chinese with English abstract).

    [64]

    LI G W, KOHN B, SANDIFORD M, XU Z Q. 2017. India-Asia convergence: Insights from burial and exhumation of the Xigaze fore-arc basin, south Tibet[J]. Journal of Geophysical Research: Solid Earth,122(5):3430-3449. doi: 10.1002/2017JB014080

    [65]

    LI G W, KOHN B, SANDIFORD M, XU Z Q, WEI L J. 2015. Constraining the age of Liuqu Conglomerate, southern Tibet: implications for evolution of the India–Asia collision zone[J]. Earth and Planetary Science Letters,426:259-266. doi: 10.1016/j.jpgl.2015.06.010

    [66]

    LI R Y, XU Z Y, SU C, YANG R. 2022. Automatic identification of semi-tracks on apatite and mica using a deep learning method[J]. Computers & Geosciences,162:105081.

    [67]

    LI C P, ZHENG D W, ZHOU R J, YU J X, WANG Y Z, PANG J Z, WANG Y, HAO Y Q, LI Y J. 2021. Late Oligocene tectonic uplift of the East Kunlun Shan: expansion of the northeastern Tibetan Plateau[J]. Geophysical Research Letters,48(3):e2020GL091281. doi: 10.1029/2020GL091281

    [68]

    MALUSÀ M G, FITZGERALD P G. 2019. Fission-track thermochronology and its application to geology[M]. Cham: Springer, 1-393.

    [69]

    MBONGO DJIMBI D, GAUTHERON C, ROQUES J, TASSAN-GOT L, GERIN C, SIMONI E. 2015. Impact of apatite chemical composition on (U-Th)/He thermochronometry: An atomistic point of view[J]. Geochimica et Cosmochimica Acta,167:162-176. doi: 10.1016/j.gca.2015.06.017

    [70]

    PRICE P B, WALKER R M. 1962. Observation of fossil particle tracks in natural micas[J]. Nature,196(4856):732-734. doi: 10.1038/196732a0

    [71]

    PRICE P B, WALKER R M. 1963. Fossil tracks of charged particles in mica and the age of minerals[J]. Journal of Geophysical Research,68(16):4847-4862. doi: 10.1029/JZ068i016p04847

    [72]

    RAHN M K, BRANDON M T, BATT G E, GARVER J I. 2004. A zero-damage model for fission-track annealing in zircon[J]. American Mineralogist,89(4):473-484. doi: 10.2138/am-2004-0401

    [73]

    REINERS P W, CAMPBELL I H, NICOLESCU S, ALLEN C M, HOURIGAN J K, GARVER J I, MATTINSON J M, COWAN D S. 2005. (U-Th)/(He-Pb) double dating of detrital zircons[J]. American Journal of Science,305(4):259-311. doi: 10.2475/ajs.305.4.259

    [74]

    REINERS P W, CARLSON R W, RENNE P R, COOPER K M, GRANGER D E, MCLEAN N M, SCHOENE B. 2018. Geochronology and thermochronology[M]. Hoboken: John Wiley & Sons Ltd. , 1-491.

    [75]

    REINERS P W, EHLERS T A. 2005. Low-temperature thermochronology: techniques, interpretations, and applications[M]. Chantilly: Mineralogical Society of America, 1-622.

    [76]

    REINERS P W, FARLEY K A. 1999. Helium diffusion and (U-Th)/He thermochronometry of titanite[J]. Geochimica et Cosmochimica Acta,63(22):3845-3859. doi: 10.1016/S0016-7037(99)00170-2

    [77]

    REINERS P W, FARLEY K A. 2001. Influence of crystal size on apatite (U-Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming[J]. Earth and Planetary Science Letters,188(3-4):413-420. doi: 10.1016/S0012-821X(01)00341-7

    [78]

    REINERS P W, FARLEY K A, HICKES H J. 2002. He diffusion and (U-Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte[J]. Tectonophysics,349(1-4):297-308. doi: 10.1016/S0040-1951(02)00058-6

    [79]

    REN Z T, LI S C, XIAO P, YANG X P, WANG H T. 2023. Artificial intelligent identification of apatite fission tracks based on machine learning[J]. Machine Learning: Science and Technology,4(4):045039. doi: 10.1088/2632-2153/ad0e17

    [80]

    RUTHERFORD E. 1906. Radioactive transformations[M]. Vol. 3. New York: C. Scribner’s Sons, 5, 1-34.

    [81]

    SAMBRIDGE M. 1999a. Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space[J]. Geophysical Journal International,138(2):479-494. doi: 10.1046/j.1365-246X.1999.00876.x

    [82]

    SAMBRIDGE M. 1999b. Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble[J]. Geophysical Journal International,138(3):727-746. doi: 10.1046/j.1365-246x.1999.00900.x

    [83]

    SCHILDGEN T F, EHLERS T A, WHIPP JR D M, VAN SOEST M C, WHIPPLE K X, HODGES K V. 2009. Quantifying canyon incision and Andean Plateau surface uplift, southwest Peru: A thermochronometer and numerical modeling approach[J]. Journal of Geophysical Research: Earth Surface,114(F4):F04014.

    [84]

    SCHILDGEN T F, VAN DER BEEK P A, SINCLAIR H D, THIEDE R C. 2018. Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology[J]. Nature,559(7712):89-93. doi: 10.1038/s41586-018-0260-6

    [85]

    SCHNEIDER D A, ISSLER D R. 2019. Application of low-temperature thermochronology to hydrocarbon exploration[M]//MALUSÀ M G, FITZGERALD P G. Fission-Track Thermochronology and Its Application to Geology. Cham: Springer, 315-333

    [86]

    SEILER C, BOONE S C, KOHN B P, GLEADOW A J W. 2023. A grain-by-grain comparison of apatite fission-track analysis by LA-ICP-MS and the external detector method[J]. Chemical Geology,635:121623. doi: 10.1016/j.chemgeo.2023.121623

    [87]

    SHUSTER D L, FARLEY K A. 2005. 4He/3He thermochronometry: theory, practice, and potential complications[J]. Reviews in Mineralogy & Geochemistry,58(1):181-203.

    [88]

    SILK E C H, BARNES R S. 1959. Examination of fission fragment tracks with an electron microscope[J]. Philosophical Magazine,4(44):970-972. doi: 10.1080/14786435908238273

    [89]

    SVOJTKA M, KOŠLER J. 2002. Fission-track dating of zircon by laser ablation ICPMS[J]. Geochimica et Cosmochimica Acta, 66(15A): A756.

    [90]

    TAGAMI T, O’SULLIVAN P B. 2005. Fundamentals of fission-track thermochronology[J]. Reviews in Mineralogy and Geochemistry,58(1):19-47. doi: 10.2138/rmg.2005.58.2

    [91]

    TIAN Y T, PAN L L, ZHANG G H, YAO X B. 2024. An efficient approach for inverting rock exhumation from thermochronologic age–elevation relationship[J]. Earth Surface Dynamics,12(2):477-492. doi: 10.5194/esurf-12-477-2024

    [92]

    TRIPATHY-LANG A, FOX M, SHUSTER D L. 2015. Zircon 4He/3He thermochronometry[J]. Geochimica et Cosmochimica Acta,166:1-14. doi: 10.1016/j.gca.2015.05.027

    [93]

    VAN DER BEEK P, SCHILDGEN T F. 2023. Short communication: age2exhume – a MATLAB/Python script to calculate steady-state vertical exhumation rates from thermochronometric ages and application to the Himalaya[J]. Geochronology,5(1):35-49. doi: 10.5194/gchron-5-35-2023

    [94]

    VERMEESCH P. 2009. RadialPlotter: a Java application for fission track, luminescence and other radial plots[J]. Radiation Measurements,44(4):409-410. doi: 10.1016/j.radmeas.2009.05.003

    [95]

    VERMEESCH P. 2010. HelioPlot, and the treatment of overdispersed (U-Th-Sm)/He data[J]. Chemical Geology,271(3-4):108-111. doi: 10.1016/j.chemgeo.2010.01.002

    [96]

    VERMEESCH P. 2012. On the visualisation of detrital age distributions[J]. Chemical Geology,312-313:190-194. doi: 10.1016/j.chemgeo.2012.04.021

    [97]

    VERMEESCH P, TIAN Y T. 2014. Thermal history modelling: HeFTy vs. QTQt[J]. Earth-Science Reviews,139:279-290. doi: 10.1016/j.earscirev.2014.09.010

    [98]

    WAGNER G A, STORZER D. 1972. Fission track length reductions in minerals and the thermal history of rocks[J]. Transactions of the American Nuclear Society,15(1):127-128.

    [99]

    WAGNER G A, VAN DEN HAUTE P. 1992. Fission-track dating method[M]//WAGNER G A, HAUTE P. Fission-track dating. Dordrecht: Springer, 59-94.

    [100]

    WOLF R A, FARLEY K A, SILVER L T. 1996. Helium diffusion and low-temperature thermochronometry of apatite[J]. Geochimica et Cosmochimica Acta,60(21):4231-4240. doi: 10.1016/S0016-7037(96)00192-5

    [101]

    WU L, WANG F, SHAN J N, ZHANG W B, SHI W B, FENG H L. 2016. (U-Th)/He dating of international standard Durango apatite[J]. Acta Petrologica Sinica,32(6):1891-1900 (in Chinese with English abstract).

    [102]

    XIANG D F, ZHANG Z Y, XIAO W J, ZHU W B, ZHENG D W, LI G W, ZHENG B H, SONG D F, HAN C M, PANG J Z. 2019. Episodic Meso-Cenozoic denudation of Chinese Tianshan: evidence from detrital apatite fission track and zircon U-Pb data, southern Junggar Basin margin, NW China[J]. Journal of Asian Earth Sciences,175:199-212. doi: 10.1016/j.jseaes.2018.07.042

    [103]

    YOUNG D A. 1958. Etching of radiation damage in lithium fluoride[J]. Nature,182(4632):375-377. doi: 10.1038/182375a0

    [104]

    ZEITLER P K. 2020. U-Th/He dating[M]//RINK W J, THOMPSON J. Encyclopedia of Scientific Dating Methods. Dordrecht: Springer, 1-14.

    [105]

    ZEITLER P K, HERCZEG A L, MCDOUGALL I, HONDA M. 1987. U-Th-He dating of apatite: a potential thermochronometer[J]. Geochimica et Cosmochimica Acta,51(10):2865-2868. doi: 10.1016/0016-7037(87)90164-5

    [106]

    ZHENG D W, WU Y, PANG J Z, LI Y J, WANG Y Z, MA Y, YU J X, WANG Y. 2016, Fundamentals, dating and application of U-Th/He thermochronology[J]. Quaternary Sciences, 36(5): 1027-1036 (in Chinese with English abstract).

    [107]

    ZHOU Z Y. 2014. Low temperature thermochronology: principles & applications[M]. Beijing: Science Press, 1-230 (in Chinese).

    [108]

    ZIEGLER J F. 2008. SRIM: The stopping range of ions in matter[R]. Annapolis: United States Naval Academy.

    [109]

    陈玉柳, 丁汝鑫, 孙转, 卢胜城. 2024. 新矿物(U-Th)/He年代学的研究进展[J]. 地球科学进展,39(4):357-373.

    [110]

    黄小文, 孟郁苗, 漆亮, 周美夫, 高剑峰, 谭侯铭睿, 谢欢, 谭茂, 杨志爽, 高英辉, 张鑫. 2024. 磁铁矿: 研究方法与矿床学应用[J]. 华东地质,45(1):1-15.

    [111]

    黄海波, 袁静, 凌波, 白晓, 李民敬, 刘建坤. 2023. 电弧发射光谱技术发展及其在地质领域的应用[J]. 华东地质,44(1):103-117.

    [112]

    李广伟. 2021. 构造地貌与低温热年代学若干问题探讨[J]. 地质学报,95(1):214-226.

    [113]

    吴林, 王非, 单竞男, 张炜斌, 师文贝, 冯慧乐. 2016. 国际标样Durango磷灰石(U-Th)/He年龄测定[J]. 岩石学报,32(6):1891-1900.

    [114]

    郑德文, 武颖, 庞建章, 李又娟, 王一舟, 马严, 俞晶星, 王英. 2016. U⁃Th/He热年代学原理、测试及应用[J]. 第四纪研究,36(5):1027-1036. doi: 10.11928/j.issn.1001-7410.2016.05.02

    [115]

    周祖翼. 2014. 低温年代学: 原理与应用[M]. 北京: 科学出版社, 1-230.

  • 加载中

(12)

(2)

计量
  • 文章访问数:  60
  • PDF下载数:  11
  • 施引文献:  0
出版历程
收稿日期:  2024-12-10
修回日期:  2025-02-05
录用日期:  2025-02-05
刊出日期:  2025-06-28

目录