长江三角洲QDQ2钻孔晚更新世以来沉积物粒度特征及其古环境意义

陈嘉诺, 孙高远, 温永祥, 李思琦, 王鑫宇, 刘凯, 蒋仁, 周效华. 2024. 长江三角洲QDQ2钻孔晚更新世以来沉积物粒度特征及其古环境意义. 华东地质, 45(4): 466-477. doi: 10.16788/j.hddz.32-1865/P.2024.21.019
引用本文: 陈嘉诺, 孙高远, 温永祥, 李思琦, 王鑫宇, 刘凯, 蒋仁, 周效华. 2024. 长江三角洲QDQ2钻孔晚更新世以来沉积物粒度特征及其古环境意义. 华东地质, 45(4): 466-477. doi: 10.16788/j.hddz.32-1865/P.2024.21.019
CHEN Jianuo, SUN Gaoyuan, WEN Yongxiang, LI Siqi, WANG Xinyu, LIU Kai, JIANG Ren, ZHOU Xiaohua. 2024. Grain sizes characteristics of sediments from QDQ2 borehole in the Yangtze River Delta since the Late Pleistocene and their paleoenvironmental significance. East China Geology, 45(4): 466-477. doi: 10.16788/j.hddz.32-1865/P.2024.21.019
Citation: CHEN Jianuo, SUN Gaoyuan, WEN Yongxiang, LI Siqi, WANG Xinyu, LIU Kai, JIANG Ren, ZHOU Xiaohua. 2024. Grain sizes characteristics of sediments from QDQ2 borehole in the Yangtze River Delta since the Late Pleistocene and their paleoenvironmental significance. East China Geology, 45(4): 466-477. doi: 10.16788/j.hddz.32-1865/P.2024.21.019

长江三角洲QDQ2钻孔晚更新世以来沉积物粒度特征及其古环境意义

  • 基金项目: 中国地质调查局 “重要经济区与新型城镇区域地质调查(编号:DD20240025)”、“长三角经济区区域地质调查(编号:DD20230201)”和江苏省重大科技示范“碳达峰碳中和科技创新专项资金(编号:BE2022859)”项目联合资助。
详细信息
    作者简介: 陈嘉诺,1997年生,男,硕士研究生,主要从事海洋地质学研究工作。Email:18700656655@163.com
    通讯作者: 孙高远,1988年生,男,副教授,博士,主要从事沉积学与海洋地质学研究工作。Email:sungy@hhu.edu.cn
  • 中图分类号: P535;P532

Grain sizes characteristics of sediments from QDQ2 borehole in the Yangtze River Delta since the Late Pleistocene and their paleoenvironmental significance

More Information
  • 文章以江苏省南通市启东地区QDQ2钻孔沉积物为研究对象,通过沉积物的粒度分析,探讨晚更新世以来长江三角洲的沉积演化过程及其对古环境的指示。QDQ2钻孔沉积物主要由粉砂和黏土组成,总体粒径偏细。用加速器质谱(AMS)14C方法测得埋深约117 m、86 m和40 m处的 沉积物年龄分别为40 057 cal yr B.P.、36 105 cal yr B.P.和10 112 cal yr B.P.。结合长江三角洲地区其他钻孔的岩性、粒度特征以及测年数据, 将QDQ2钻孔晚更新世以来的地层自下而上划分为上更新统(128.2~50.56 m)和全新统(50.56~0 m)。上更新统按沉积物粒度特征进一步划分为3段:下段(128.2~108.85 m)以粉砂为主,分选性良好,粒度频率曲线多为单峰式;中段(108.85~73.45 m)以粗砂为主,粒度频率曲线整体为双峰式或多峰式;上段(73.45~50.56 m)以粉砂为主,呈现以单峰式或双峰式为主的频率曲线。全新统(50.56~0 m)以粉砂为主,砂级含量较少。基于沉积特征分析,认为该地区晚更新世以来至少发生过两次明显的海平面波动:晚更新世中期(108.85~73.45 m)的第一次海退,随后快速海侵;晚更新世晚期(末次冰盛期)(52.56~50.56 m)发生区域海退至最低海平面,全新世的海侵至中期达最高海平面。在近现代滩涂围垦等人类活动的影响下,研究区逐渐发展至现今的地貌。该研究为恢复长江三角洲地区晚更新世以来的沉积环境演化提供了重要信息。

  • 加载中
  • 图 1  中国东部大地构造单元简图(a)及长江三角洲区域和钻孔位置图(b)

    Figure 1. 

    图 2  QDQ2钻孔与启东地区其他钻孔地层对比图(Gao et al., 2019, 2020, 2022; Zhang et al., 2018

    Figure 2. 

    图 3  QDQ2钻孔典型岩芯照片及沉积特征

    Figure 3. 

    图 4  QDQ2钻孔样品粒度频率分布曲线图(a、c、e、g)与概率累计曲线图(b、d、f、h):全新统50.56~0 m(a、b);上更新统上段73.45~50.56 m(c、d);上更新统中段108.85~73.45 m(e、f);上更新统下段128.2~108.85 m(g、h)

    Figure 4. 

    图 5  QDQ2钻孔岩性、粒度参数特征及与海平面变化对比图(全球海平面变化参考Spratt and Lisiecki(2016),中国区域海平面变化参考Yue et al.(2024)和赵希涛等(1979))

    Figure 5. 

    表 1  QDQ2钻孔样品信息及AMS14C测年结果

    Table 1.  Sample information and the AMS14C dating results of QDQ2 borehole

    钻孔编号 样品编号 测年材料 深度/m 惯用年龄/yr B.P. 日历年龄/cal yr B.P.
    年龄中值 校正年龄
    QDQ2 BF36 贝壳 40.2 9 460 ± 30 10 112 10 277~9 946
    QDQ2 ZS4 贝壳 86~86.5 32 490 ± 220 36 105 36 630~35 580
    QDQ2 ZS8 贝壳 117.3~117.8 35 950 ±320 40 057 40 660~39 453
    下载: 导出CSV

    表 2  福克-沃德粒度参数分级表(Folk 和 Ward, 1957

    Table 2.  Granularity parameter classification of Folk and Ward (Folk and Ward, 1957)

    标准偏差 偏度 峰度
    $ {\sigma }_{1} $ 级别 $ {SK}_{1} $ 级别 $ {K}_{G} $ 级别
    <0.35 分选性极好 0.3~1.0 很正偏态 <0.67 很平坦
    0.35~0.50 分选性好 0.1~0.3 正偏态 0.67~0.90 平坦
    0.50~0.70 分选性较好 0.1~−0.1 近对称 0.90~1.11 中等
    0.70~1.00 分选性中等 −0.1~−0.3 负偏态 1.11~1.56 尖锐
    1.00~2.00 分选性较差 −0.3~−1.0 很负偏态 1.56~3.00 很尖锐
    2.00~4.00 分选性差 >3.00 非常尖锐
    >4.00 分选性极差
    下载: 导出CSV
  • [1]

    CHAPPELL J, OMURA A, ESAT T, MCCULLOCH M, PANDOLFI J, OTA Y, PILLANS B. 1996. Reconciliaion of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records[J]. Earth and Planetary Science Letters,141(1-4):227-236. doi: 10.1016/0012-821X(96)00062-3

    [2]

    DE HAAS T, PIERIK H J, VAN DER SPEK A J F, COHEN K M, VAN MAANEN B, KLEINHANS M G. 2018. Holocene evolution of tidal systems in the Netherlands: effects of rivers, coastal boundary conditions, eco-engineering species, inherited relief and human interference[J]. Earth-Science Reviews,177:139-163. doi: 10.1016/j.earscirev.2017.10.006

    [3]

    FAN T L, FAN Y X. 2010. A comparison of grain size expression methods: a case study[J]. Gansu Geology,19(2):32-37 (in Chinese with English abstract).

    [4]

    FOLK R L, WARD W C. 1957. Brazos River bar: a study in the significance of grain size parameters[J]. Journal of Sedimentary Research,27(1):3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D

    [5]

    GAO L, LONG H. 2023. Luminescence chronology constraints on the sedimentary stratigraphy of the Yangtze River delta since MIS5[J]. Quaternary Sciences,43(1):33-45 (in Chinese with English abstract).

    [6]

    GAO L, LONG H, HOU Y D, FENG Y Y. 2022. Chronology constraints on the complex sedimentary stratigraphy of the paleo-Yangtze incised valley in China[J]. Quaternary Science Reviews,287:107573. doi: 10.1016/j.quascirev.2022.107573

    [7]

    GAO L, LONG H, TAMURA T, HOU Y D, SHEN J. 2021. A~130ka terrestrial-marine interaction sedimentary history of the northern Jiangsu coastal plain in China[J]. Marine Geology,435:106455. doi: 10.1016/j.margeo.2021.106455

    [8]

    GAO L, LONG H, TAMURA T, YE L T, HOU Y D, SHEN J. 2020. Refined chronostratigraphy of a late Quaternary Sedimentary sequence from the Yangtze River delta based on K-feldspar luminescence dating[J]. Marine Geology,427:106271. doi: 10.1016/j.margeo.2020.106271

    [9]

    GAO L, LONG H, ZHANG P, TAMURA T, FENG W L, MEI Q Q. 2019. The sedimentary evolution of Yangtze River delta since MIS3: a new chronology evidence revealed by OSL dating[J]. Quaternary Geochronology,49:153-158. doi: 10.1016/j.quageo.2018.03.010

    [10]

    HOITINK A J F, NITTROUER J A, PASSALACQUA P, SHAW J B, LANGENDOEN E J, HUISMANS Y, VAN MAREN D S. 2020. Resilience of river deltas in the Anthropocene[J]. Journal of Geophysical Research: Earth Surface,125(3):e2019JF005201. doi: 10.1029/2019JF005201

    [11]

    HUANG X Y, GAO M S, HOU G H, ZHANG G, DANG X Z. 2021. Grain size characteristics and seasonal variation of the Ninghai-Xishuanghe lobe tidal flat sediments in southern Yellow River Delta[J]. East China Geology,42(2):229-238 (in Chinese with English abstract).

    [12]

    HUANG X Y, GAO M S, HOU G H, ZHANG G, DANG X Z. 2023. Grain size characteristics and environmental response of marine sediments in Laizhou Bay[J]. East China Geology,44(4):402-414 (in Chinese with English abstract).

    [13]

    IPCC. 2013. Summary for policymakers[C]//Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 2013. Cambridge: Cambridge University Press.

    [14]

    JACOBS M B, HAYS J D. 1972. Paleo-climatic events indicated by mineralogical changes in deep-sea sediments[J]. Journal of Sedimentary Research,42(4):889-898.

    [15]

    JIA J J, GAO S, XUE Y Z. 2002. Grain-size parameters derived from graphic and moment methods: a comparative study[J]. Oceanologia et Limnologia Sinica,33(6):577-582 (in Chinese with English abstract).

    [16]

    JIANG R, YU J J, LAO J X, ZENG J W, PENG B. 2015. Characteristics and implications of the quaternary magnetostratigraphy in borehole ZKA4 from the northern flank of Yangtze River Delta[J]. Geological Survey of China,2(7):30-34 (in Chinese with English abstract).

    [17]

    JIANG J J. 2013. Contrast of stratum division and constructive analysis of fault activities about Quaternary layers in Suzhou City area. China University of Geosciences (Beijing) (in Chinese with English abstract

    [18]

    JIANG Y H, ZHOU Q P, NI H Y, CHEN L D, CHENG H Q, LEI M T, GE W Y, MA T, SHI B, CHENG Z Y, DUAN X J, SU J W, ZHU J Q, XIU L C, XIANG F, ZHU Z M, FENG N Q, XIE Z S, TAN J M, PENG K, GUO S Q, FU Y P, REN H Y, SUN J P, YANG Q, ZHU J L, WANG D H, LI M H, LIU G N, FAN C Z, WANG X F, SHI Y J, WANG H M, DONG X Z, CHEN H Y, HAO S F, DENG Y M, LI Y, XIAO Z Y, YANG H, LIU L, JIN Y, ZHANG H, MEI S J, QI Q J, LÜ J S, HOU L L, CHEN G, CHEN Z, JIA Z Y. 2023. Progress of environmental geological investigation and research in the Yangtze River Economic Zone[J]. East China Geology,44(3):239-261 (in Chinese with English abstract).

    [19]

    KRUMBEIN W C. 1934. Size frequency distributions of sediments[J]. Journal of Sedimentary Research,4(2):65-77.

    [20]

    LI G X, LI P, LIU Y, QIAO L L, MA Y Y, XU J S, YANG Z G. 2014. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum[J]. Earth-Science Reviews,139:390-405. doi: 10.1016/j.earscirev.2014.09.007

    [21]

    LIU X M, LUO Y. 2013. Application of grain size analysis in sediments research[J]. Experimental Technology and Management,30(8):20-23 (in Chinese with English abstract).

    [22]

    LIU J S, XU H Z, JIANG Y M, WANG J, HE X J. 2020. Mesozoic and Cenozoic basin structure and tectonic evolution in the East China Sea basin[J]. Acta Geologica Sinica,94(3):675-691 (in Chinese with English abstract).

    [23]

    LIU X G, YANG J W, HU L, XIA B, SUN F R, WANG J, DONG J L. 2023. Research on quaternary multiple stratigraphic division of ZKA02 in the north flank of the Yangtze River Delta[J]. Journal of Stratigraphy,47(1):49-58 (in Chinese with English abstract).

    [24]

    MIAO Q Y, ZHU Z G, CHEN H G, ZONG K H, LUO D, WU J Q, PAN M B. 2017. Classification of Quaternary stratigraphic structures and comparison of sedimentary characteristics on both sides of the Yangtze River in the Zhenjiang area[J]. East China Geology, 38(3): 175-183. (in Chinese with English abstract

    [25]

    MIAO W D, LI S J, FENG J S, GAO L, E J. 2016. Stratigraphic division of NB5 core in the Yangtze delta area and its environmental change information[J]. Geology in China,43(6):2022-2035 (in Chinese with English abstract).

    [26]

    MIAO W D, LI S J, WANG R H. 2008. Stratigraphic and paleomagnetic characteristics revealed by the J9 hole in the north flank of the Yangtze River delta[J]. Geology in China,35(3):489-495 (in Chinese with English abstract).

    [27]

    OGBE O B. 2021. Reservoir sandstone grain-size distributions: implications for sequence stratigraphic and reservoir depositional modelling in Otovwe field, onshore Niger Delta Basin, Nigeria[J]. Journal of Petroleum Science and Engineering,203:108639. doi: 10.1016/j.petrol.2021.108639

    [28]

    SONG B, LI Z, SAITO Y, OKUNO J, LI Z, LU A Q, HUA D, LI J, LI Y X, NAKASHIMA R. 2013. Initiation of the Changjiang (Yangtze) delta and its response to the mid-Holocene sea level change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 388: 81-97.

    [29]

    SPRATT R M, LISIECKI L E. 2016. A Late Pleistocene sea level stack[J]. Climate of the Past,12(4):1079-1092. doi: 10.5194/cp-12-1079-2016

    [30]

    UDDEN J A. 1898. The mechanical composition of wind deposits[M]. Augustana: Augustana Library Publications, 1-69.

    [31]

    WANG T. 2010. Environmental changes and effects of human activities in Nantong area, Jiangsu Province of China SINCE 7000 a BP[J]. Resources and Environment in the Yangtze Basin,19(S2):193-202 (in Chinese with English abstract).

    [32]

    WANG Z Q. 2016. Stratigraphic subdivision and transgressions analysis of quaternary in south Jiangsu province[D]. Beijing: China University of Geosciences (Beijing) (in Chinese with English abstract).

    [33]

    WANG Y, GUO B Y, GUO D F, ZHANG B, SU J W, DAI J C. 2023. Quaternary sedimentary characteristics and paleochannel evolution in the Anqing valley of the Yangtze River[J]. East China Geology,44(3):300-312 (in Chinese with English abstract).

    [34]

    WANG Z H, JONES B G, CHEN T, ZHAO B C, ZHAN Q. 2013. A raised OIS 3 sea level recorded in coastal sediments, southern Changjiang delta plain, China[J]. Quaternary Research,79(3):424-438. doi: 10.1016/j.yqres.2013.03.002

    [35]

    WANG P X, MIN Q B, BIAN Y H, CHENG X R. 1981. Strata of quaternary transgressions in East China: a preliminary study[J]. Acta Geologica Sinica,55(1):1-13 (in Chinese with English abstract).

    [36]

    WANG J T, WANG P X. 1980. Relationship between sea-level changes and climatic fluctuations in East China since late Pleistocene[J]. Acta Geographica Sinica,35(4):299-312 (in Chinese with English abstract).

    [37]

    WANG H, ZHENG X, QIAN P, WU C, RENG S F, ZHAO Q. 2021. An overview on the First Hard Soil Layer(FHSL) of the Late Pleistocene in the Yangtze River Delta[J]. Quaternary Sciences,41(6):1771-1780 (in Chinese with English abstract).

    [38]

    WEI Z X. 2004. Quaternary environmental evolution in eastern Yangtze Delta: coupling of neotectonic movement, paleoclimate and sea-level fluctuation[D]. Shanghai: East China Normal University (in Chinese with English abstract).

    [39]

    WENTWORTH C K. 1922. A scale of grade and class terms for clastic sediments[J]. The Journal of Geology,30(5):377-392. doi: 10.1086/622910

    [40]

    XU L Q, XU F, ZHOU T F. 2015. Grain-size features of lacustrine sediments from Chaohu Lake and its sedimentary Implications[J]. Scientia Geographica Sinica,35(10):1318-1324 (in Chinese with English abstract).

    [41]

    YAN L. 2012. Grain size distribution and its environmental significance of Nanton since the quaternary[D]. Beijing: China University of Geosciences (Beijing) (in Chinese with English abstract).

    [42]

    YUE Y F, TANG L C, YU K F, HUANG R Y. 2024. Coral records of mid-Holocene sea-level highstands and climate responses in the northern South China Sea[J]. Acta Oceanologica Sinica,43(2):43-57. doi: 10.1007/s13131-023-2264-9

    [43]

    ZHANG X, DALRYMPLE R W, LIN C M. 2018. Facies and stratigraphic architecture of the late Pleistocene to early Holocene tide-dominated paleo-Changjiang (Yangtze River) delta[J]. GSA Bulletin,130(3-4):455-483. doi: 10.1130/B31663.1

    [44]

    ZHANG W, DU D D, LI Z W, WU W Y, LI X J, BAI Y H. 2022. Grain size characteristics of sediments in sandy land around the Poyang Lake and its influencing factors[J]. Journal of Desert Research,42(5):122-132 (in Chinese with English abstract).

    [45]

    ZHANG J Q, TANG L L, ZHOU H. 2008. The response to the variety of paleoclimate and sea level in the East China Sea after the late Pleistocence[J]. Transactions of Oceanology and Limnology,(1):25-31 (in Chinese with English abstract).

    [46]

    ZHANG X N, ZHANG H C, CHANG F Q, XIE P, LI H Y, WU H, OUYANG C T, LIU F W, PENG W, ZHANG Y, LIU Q, DUAN L Z, ASHRAF U. 2021. Long-range transport of Aeolian deposits during the last 32 kyr inferred from rare earth elements and grain-size analysis of sediments from Lake Lugu, Southwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 567: 110248.

    [47]

    ZHAO X T, GENG X S, ZHANG J W. 1979. Sea level changes of the eastern China during the past 20000 years[J]. Acta Oceanologica Sinica,1(2):269-281 (in Chinese with English abstract).

    [48]

    ZHAO B C, WANG Z H, CHEN J, CHEN Z Y. 2008. Marine sediment records and relative sea level change during late Pleistocene in the Changjiang delta area and adjacent continental shelf[J]. Quaternary International,186(1):164-172. doi: 10.1016/j.quaint.2007.08.006

    [49]

    姜佳佳. 2013. 苏州地区第四纪地层划分对比与断裂构造活动性分析[D]. 北京:中国地质大学(北京).

    [50]

    范天来, 范育新. 2010. 频率分布曲线和概率累积曲线在沉积物粒度数据分析中应用的对比[J]. 甘肃地质,19(2):32-37. doi: 10.11928/j.issn.1001-7410.2023.01.03

    [51]

    高磊, 隆浩. 2023. MIS5以来长江三角洲地区沉积环境演变的光释光年代证据[J]. 第四纪研究,43(1):33-45.

    [52]

    黄学勇, 高茂生, 侯国华, 张戈, 党显璋. 2021. 黄河三角洲南部宁海—西双河叶瓣潮滩沉积物粒度特征与季节变化分析[J]. 华东地质,42(2):229-238.

    [53]

    黄学勇, 高茂生, 侯国华, 张戈, 党显璋. 2023. 莱州湾海洋沉积物粒度特征及其环境响应分析[J]. 华东地质,44(4):402-414. doi: 10.3321/j.issn:0029-814X.2002.06.002

    [54]

    贾建军, 高抒, 薛允传. 2002. 图解法与矩法沉积物粒度参数的对比[J]. 海洋与湖沼,33(6):577-582.

    [55]

    蒋仁, 于俊杰, 劳金秀, 曾建威, 彭博. 2015. 长江三角洲北翼ZKA4钻孔剖面第四纪磁性地层特征及其意义[J]. 中国地质调查,2(7):30-34.

    [56]

    姜月华, 周权平, 倪化勇, 陈立德, 程和琴, 雷明堂, 葛伟亚, 马腾, 施斌, 程知言, 段学军, 苏晶文, 朱锦旗, 修连存, 向芳, 朱志敏, 冯乃琦, 谢忠胜, 谭建民, 彭轲, 郭盛乔, 伏永朋, 任海彦, 孙建平, 杨强, 朱继良, 王东辉, 李明辉, 刘广宁, 范晨子, 王新峰, 史玉金, 王寒梅, 董贤哲, 陈焕元, 郝社峰, 邓娅敏, 李云, 肖则佑, 杨海, 刘林, 金阳, 张鸿, 梅世嘉, 齐秋菊, 吕劲松, 侯莉莉, 陈刚, 陈孜, 贾正阳. 2023. 长江经济带环境地质调查研究进展[J]. 华东地质,44(3):239-261.

    [57]

    刘秀明, 罗祎. 2013. 粒度分析在沉积物研究中的应用[J]. 实验技术与管理,30(8):20-23. doi: 10.3969/j.issn.1002-4956.2013.08.007

    [58]

    刘金水, 许怀智, 蒋一鸣, 王军, 何新建. 2020. 东海盆地中、新生代盆架结构与构造演化[J]. 地质学报,94(3):675-691. doi: 10.3969/j.issn.0001-5717.2020.03.001

    [59]

    苗巧银,朱志国, 陈火根, 宗开红, 骆丁, 武健强, 潘明宝. 2017. 镇江地区长江南北两岸第四纪地层结构划分与沉积特征对比[J].华东地质, 38(3): 175-183.

    [60]

    缪卫东, 李世杰, 冯金顺, 高立, 鄂建. 2016. 长江三角洲NB5孔第四纪地层划分及环境变化信息[J]. 中国地质,43(6):2022-2035. doi: 10.12029/gc20160613

    [61]

    王涛. 2010. 近7000年来南通地区环境演变及人类活动影响[J]. 长江流域资源与环境,19(S2):193-202.

    [62]

    王子奇. 2016. 苏南地区第四纪地层划分与海侵事件分析[D]. 北京: 中国地质大学(北京).

    [63]

    王毅, 郭炳跃, 郭东峰, 张斌, 苏晶文, 戴俊成. 2023. 长江安庆段河谷区第四系沉积特征与古河道演化[J]. 华东地质,44(3):300-312.

    [64]

    汪品先, 闵秋宝, 卞云华, 成鑫荣. 1981. 我国东部第四纪海侵地层的初步研究[J]. 地质学报,55(1):1-13.

    [65]

    王靖泰, 汪品先. 1980. 中国东部晚更新世以来海面升降与气候变化的关系[J]. 地理学报,35(4):299-312. doi: 10.3321/j.issn:0375-5444.1980.04.003

    [66]

    王辉, 郑祥民, 钱鹏, 吴超, 任少芳, 赵庆. 2021. 长江三角洲晚更新世第一硬土层研究进展[J]. 第四纪研究,41(6):1771-1780. doi: 10.11928/j.issn.1001-7410.2021.06.22

    [67]

    魏子新. 2004. 长江三角洲东部第四纪沉积环境演化: 新构造运动、古气候与海平面变化的耦合作用[D]. 上海: 华东师范大学.

    [68]

    徐利强, 徐芳, 周涛发. 2015. 巢湖沉积物粒度特征及其沉积学意义[J]. 地理科学,35(10):1318-1324.

    [69]

    颜乐. 2012. 南通市第四纪沉积物粒度特征及沉积环境分析[D]. 北京: 中国地质大学(北京).

    [70]

    张雯, 杜丁丁, 李志文, 吴汪洋, 李向洁, 白永会. 2022. 鄱阳湖沙地沉积物粒度特征及其影响因素[J]. 中国沙漠,42(5):122-132.

    [71]

    张军强, 唐璐璐, 邹昊. 2008. 晚更新世以来古气候与海平面变化在东海地区的响应[J]. 海洋湖沼通报,(1):25-31. doi: 10.3969/j.issn.1003-6482.2008.01.004

    [72]

    赵希涛, 耿秀山, 张景文. 1979. 中国东部20000年来的海平面变化[J]. 海洋学报,1(2):269-281.

  • 加载中

(5)

(2)

计量
  • 文章访问数:  137
  • PDF下载数:  18
  • 施引文献:  0
出版历程
收稿日期:  2024-01-17
修回日期:  2024-11-01
录用日期:  2024-11-01
刊出日期:  2024-12-28

目录