基于层次分析法的输变电工程地质环境适宜性评价

徐铼1, 姜峰2, 吴千丰2, 丁磊2, 刘帅2. 2022. 基于层次分析法的输变电工程地质环境适宜性评价. 中国地质调查, 9(6): 93-99. doi: 10.19388/j.zgdzdc.2022.06.12
引用本文: 徐铼1, 姜峰2, 吴千丰2, 丁磊2, 刘帅2. 2022. 基于层次分析法的输变电工程地质环境适宜性评价. 中国地质调查, 9(6): 93-99. doi: 10.19388/j.zgdzdc.2022.06.12
XU Lai, JIANG Feng, WU Qianfeng, DING Lei, LIU Shuai. 2022. Geological environmental suitability assessment of power transmission and transformation engineering based on analytic hierarchy process. Geological Survey of China, 9(6): 93-99. doi: 10.19388/j.zgdzdc.2022.06.12
Citation: XU Lai, JIANG Feng, WU Qianfeng, DING Lei, LIU Shuai. 2022. Geological environmental suitability assessment of power transmission and transformation engineering based on analytic hierarchy process. Geological Survey of China, 9(6): 93-99. doi: 10.19388/j.zgdzdc.2022.06.12

基于层次分析法的输变电工程地质环境适宜性评价

  • 基金项目:

    国网江苏省电力有限公司“基于多源地学数据宿迁地区输电线路三维地质模型可视化及工程地质评价系统研究(编号:J2021157)”项目资助

详细信息
    作者简介: 徐铼(1976—),男,工程师,从事电网基建工程建设方面的研究工作。Email: 18251825513@hhu.com。
  • 中图分类号: P681.7

Geological environmental suitability assessment of power transmission and transformation engineering based on analytic hierarchy process

  • 地质环境适宜性评价是输变电工程规划选址的重要组成部分。针对影响宿豫区输变电工程建设和安全运行的地质环境特点,选取了岩土体承载力、液化指数、发震构造、地震动峰值加速度、地面高程、地形坡度、河流水系及路网密度等8个因素作为评价指标,并利用层次分析方法确定了各因素的权重; 在此基础上,利用GIS的多因素空间拟合功能得到宿豫区输电线路工程适宜性分类图。研究结果表明: 宿豫区除骆马湖水系外基本都属于输变电工程适宜和较适宜区; 受构造断裂影响,郯庐断裂带周边地区的适宜性较差,需要避让。
  • 加载中
  • [1]

    王学良,刘海洋,王瑞琪,等.山区输变电工程崩塌(滚石)灾害识别与预测方法[J].工程地质学报,2018,26(1): 172-178.

    [2]

    Wang X L, Liu H Y, Wang R Q, et al.The approach of rock collapse(rockfall) identification and prediction for power transmission and transformation project in mountain area[J]. Journal of Engineering Geology, 2018,26(1): 172-178.

    [2]

    施慧. “两型电网”发展建设评价体系及其应用研究[D].北京:华北电力大学(北京),2011.

    [4]

    Shi H. Research on Application of Two-oriented Power Grid Development and Construction Evaluation Index [D]. Beijing: North China Electric Power University(Beijing), 2011.

    [3]

    周孝信,鲁宗相,刘应梅,等.中国未来电网的发展模式和关键技术[J].中国电机工程学报,2014,34(29): 4999-5008.

    [6]

    Zhou X X, Lu Z X, Liu Y M, et al.Development models and key technologies of future grid in China[J]. Proceedings of the CSEE,2014,34(29): 4999-5008.

    [4]

    范荣全,董斌,李源亮,等.川西地区输变电工程地质环境质量评价[J].科学技术与工程,2020,20(2): 544-549.

    [8]

    Fan R Q, Dong B, Li Y L, et al.Geological environmental qua-lity assessment of power transmission and transformation engineering in western Sichuan[J]. Science Technology and Engineering,2020,20(2): 544-549.

    [5]

    陈鹏云,曹波,罗弦,等.中国电网主要自然灾害运行数据及特征分析[J].中国电力,2014,47(7): 57-61.

    [10]

    Chen P Y, Chao B, Luo X, et al.Operation data and feature analysis of the main natural disasters of power network in Chi-na[J]. Electric Power,2014,47(7): 57-61.

    [6]

    郑卫锋,张天光,陈大斌,等.我国输电线路基础工程现状与研究新进展[J].水利与建筑工程学报,2020,18(2): 169-175.

    [12]

    Zheng W F, Zhang T G, Chen D B, et al.Current status and latest research progress of tower foundation to transmission line in China[J]. Journal of Water Resources and Architectural Engineering,2020,18(2): 169-175.

    [7]

    程东幸,张建民,刘厚健,等.冻土区输电线路塔基选位的影响因素分析[J].工程地质学报,2009,17(3): 329-334.

    [14]

    Cheng D X, Zhang J M, Liu H J, et al.The influence factor analysis for site select of transmission line in frozen earth area[J]. Journal of Engineering Geology, 2009,17(3): 329-334.

    [8]

    李学丰,马良荣,孔亮,等.750 kV输电线路工程沿线宁夏黄土的特性分析[J].电力建设,2010,31(5): 7-12.

    [16]

    Li X F, Ma L R, Kong L, et al.Loess property along the line of 750 kV power transmission project in Ningxia Region[J]. Electric Power Construction, 2010,31(4): 7-12.

    [9]

    杨宗佶,丁朋朋,乔建平,等.输电线路地质灾害易损性评价—以四川路茂线为例[J].中国地质灾害与防治学报,2017,28(4): 113-118,124.

    [18]

    Yang Z J, Ding P P, Qiao J P, et al.Vulnerability evaluation of geological hazards along a transmission line: A case stualy of the Lumao line,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2017,28(4):113-118,124.

    [10]

    江世雄,吴飞,车艳红,等.生态保护红线的环境敏感区域输变电工程选址选线方法研究[J].环境科学与管理,2022,47(3): 41-45.

    [20]

    Jiang S X, Wu F, Che Y H, et al.Location and route selection method of power transmission and projects in environmentally sensitive areas based on ecological protection red line[J]. Environmental Science and Management,2022,47(3): 41-45.

    [11]

    刘厚健. 西北地区大型电力工程规划选址中的常见地质问题[J].工程地质学报,2020,10(Sl): 172-178.

    [22]

    Liu H J.The common geologic problems during site selection for planning large electrical power project in the northwest[J]. Journal of Engineering Geology, 2020,10(S1): 172-178.

    [12]

    刘厚健,张旭红.中国首条750 kV输电线路的地质环境稳定性研究[J].工程地质学报,2007,15(Sl): 328-332.

    [24]

    Liu H J, Zhang X H.Stability research on geological environment of the first 750 kV transmission line in China[J]. Journal of Engineering Geology,2007,15(S1): 328-332.

    [13]

    马良荣,李学丰,孔亮,等.750 kV兰州东—银川东输电线路沿线岩土的工程特性分析[J].工程地质学报,2008,15(S1): 655-660.

    [26]

    Ma L R, Li X F, Kong L, et al.Engineering characteristic analysis of rock and soil along 750 kV transmission line from east of Lanzhou to east of Yinchuan[J]. Journal of Engineering Geo-logy,2008,15(S1): 655-660.

    [14]

    高文龙. 采空区特高压输电杆塔的稳定性研究[D].北京: 中国矿业大学(北京),2009.

    [28]

    Gao W L. Stability of UHV Transmission Tower on Goaf [D]. Beijing: China University of Mining and Technology (Beijing), 2009.

    [15]

    钱进,刘厚健,俞祁浩,等.青藏500 kV输电工程沿线冻土工程特性及其对策探讨[J]. 中国农村水利水电, 2009(4): 106-111.

    [30]

    Qian J, Liu H J, Yi Q H, et al. A discussion permafrost engineering characteristics along Qinghai-Tibet 500 kV power transmission line and countermeasures[J]. China Rural Water and Hydropower. 2009(4): 106-111.

    [16]

    潘华,梁作放,李永奎,等.基于熵权物元的输变电工程安全评价模型及应用[J].数学的实践与认识,2018,48(22): 13-20.

    [32]

    Pan H, Liang Z F, Li Y K, et al.Safety evaluation model of power transmission project based on entropy weight matter and its application[J]. Mathematics in practice and theory, 2018,48(22): 13-20.

    [17]

    刘建林,张琛.输变电工程环境影响综合评价指标体系的研究[J].能源环境保护,2017,31(3): 42-45,27.

    [34]

    Liu J L, Zhang C.Study on environmental impact assessment index of electric power transmission[J]. Energy Environmental Protection, 2017,31(3): 42-45,27.

    [18]

    高杨杨,潘华,薛小龙,等.基于三角模糊数的云模型在输变电工程项目安全评价中的应用[J].科技管理研究,2016,36(13): 53-57,71.

    [36]

    Gao Y Y, Pan H, Xue X L, et al.Security assessment of power transmission project based on triangular fuzzy number cloud model[J]. Science and Technology Management Research, 2016,36(13): 53-57,71.

    [19]

    吴昊,安帅,柴俊,等.基于熵权法的集对分析模型在配电站项目后评价中的应用[J].电力与能源,2018,39(1):49-52.

    [38]

    Wu Hao, An Shuai, Cai Jun, et al.Application of set pair model to substation project post-evaluation based on entropy weight[J]. Power & Energy, 2018,39(1): 49-52.

    [20]

    张舒尧. 输变电工程地质环境评价指标体系研究[D].北京: 中国地质大学(北京),2016.

    [40]

    Zhang S Y. Study on Geological Environment Evaluation Index System of Power Transmission Engineering [D]. Beijing: China University of Geosciences (Beijing),2016.

    [21]

    关国杰,杨磊.基于MapGIS的层次分析法在输电线路工程地质分析评价中的应用[J]. 勘察科学技术, 2016(S1): 58-62.

    [42]

    Guan G J, Yang L.Application of AHP based on MapGIS in geological analysis and evaluation of transmission line engineer-ing[J]. Site Investigation Science and Technology, 2016(S1): 58-62.

    [22]

    张炳江. 层次分析法及其应用案例[M].北京:电子工业出版社,2014.

    [44]

    Zhang B J.Analytic Hierarchy Process and Its Application Ca-ses [M]. Beijing: Publishing House of Electronics Industry, 2014.

    [23]

    陈新民,严三保,阎长虹,等.场地断裂活动效应的风险分析与评价—以宿迁三线船闸为例[J]. 防灾减灾工程学报, 2003(1):29-33.

    [46]

    Chen X M, Yan S B, Yan C H, et al.Risk analysis and evaluation of site fault activity effects: A case study of Suqian ship lock group[J]. Journal of Disaster Prevention and Mitigation Engineering, 2003(1): 29-33.

    [24]

    秦晶晶,刘保金,许汉刚,等.地震折射和反射方法研究郯庐断裂带宿迁段的浅部构造特征[J].地球物理学报,2020,63(2):505-516.

    [48]

    Qin J J, Liu B J, Xu H G, et al.Exploration of shallow structural characteristics in the Suqian segment of the Tanlu fault zone based on seismic refraction and refection method[J]. Chinese Journal of Geophysics, 2020,63(2): 505-516.

    [25]

    杨岳勤. 徐盐客运专线穿越郯庐断裂带工程对策研究[J].铁道工程学报,2019,36(1):6-11.

    [50]

    Yang Y Q.The research of countermeasures for Xuzhou-Yancheng high speed railway to cross the Tanlu fault zone[J]. Journal of Railway Engineering Society, 2019,36(1): 6-11.

    [26]

    戴波,赵启光,张敏,等.土壤氡对郯庐断裂宿迁段F5断裂探测和活动性的研究[J].地震工程学报,2020,42(6): 1479-1486.

    [52]

    Dai B, Zhao Q G, Zhang M, et al.Detection and activity of the fault F5 in Suqian segment of the Tanlu fault by using soil Radon[J]. China Earthquake Engineering Journal, 2020,42(6): 1479-1486.

    [27]

    许汉刚,范小平,冉勇康,等.郯庐断裂带宿迁段F5断裂浅层地震勘探新证据[J].地震地质,2016,38(1):31-43.

    [54]

    Xu H G, Fan X P, Ran Y K, et al.New evidences of the Holocene fault in Suqian segment of the tanlu fault zone discovered by shallow seismic exploration method[J]. Seismology and Geo-logy, 2016,38(1): 31-43.

  • 加载中
计量
  • 文章访问数:  180
  • PDF下载数:  35
  • 施引文献:  0
出版历程
收稿日期:  2022-06-29
修回日期:  2022-09-24
刊出日期:  2022-12-20

目录