Formation mechanism of natural mineral water in Guinan area of the southern Qinghai Lake
-
摘要:
贵南地区地处黄河上游龙羊峡段水源涵养功能区,矿泉水资源十分丰富,研究程度较低,基本处于未开发利用的天然状态,且研究区内部分村镇饮用水困难,研究矿泉水的赋存分布与形成机制对区内矿泉水可持续开发利用及解决分散村镇居民饮水问题具有重要意义。采用统计分析、水化学同位素等图解分析方法,系统梳理研究区矿泉水的分布特征,从水化学、同位素及围岩微量元素背景值等方面综合探讨锶型天然矿泉水的成藏机制。结果表明: 贵南地区地下水体中Sr含量为0.42~2.46 mg/L,平均含量为0.92 mg/L,整体属于弱碱性锶型矿泉水; 水化学组分主要受水-岩相互作用控制,区域岩石中高Sr的背景值为矿泉水的形成提供了物质来源,高度发育的基岩裂隙为矿泉水的形成提供了良好的运移空间。研究成果可解决部分居民用水困难, 为后续矿泉水资源可持续开发利用提供定向靶区,助力青海省矿泉水高质量发展。
Abstract:Guinan area is located in the water conservation function area of Longyangxia section in the upper reaches of the Yellow River. The mineral water resources are very rich but with low degree of research. This area is basically in a natural state without exploitation or utilization, and the drinking water in some villages and towns is difficult to get. It is of great significance to study its occurrence, distribution and formation mechanism for the sustainable development and utilization of mineral water in this area and to solve the problem of drinking water in scattered villages and towns. The distribution characteristics of mineral water in the study area were systematically sorted out by statistical analysis, water chemical isotope and other graphic analysis methods. The accumulation mechanism of strontium-type natural mineral water was comprehensively discussed from the aspects of water chemistry, isotope and trace element background value of surrounding rocks. The results show that the strontium content in the groundwater in Guinan area ranges from 0.42 to 2.46 mg/L, with an average content of 0.92 mg/L, which belongs to the weakly alkaline strontium mineral water. Its hydrochemical composition is mainly controlled by water-rock interaction, and the background value of high strontium in regional rocks provides the material source for the formation of mineral water. The highly developed bedrock fissures provide a good migration space for the formation of mineral water. The research results could solve the difficulty of water use for some residents and provide a directional target area for the sustainable development and utilization of subsequent mineral water resources, and help the high-quality development of mineral water in Qinghai Province.
-
-
图 10 上升矿泉附近MT反演图(据文献[25]修改)
Figure 10.
表 1 研究区地表水与地下水水化学指标
Table 1. Hydrochemical indexes of surface water and groundwater in the study area
测试项目 地表水(河水) 矿泉水 最大值 最小值 平均值 标准差 最大值 最小值 平均值 标准差 pH值 8.17 6.85 7.88 0.31 8.01 6.19 7.45 0.41 TDS/(mg·L-1) 378.52 196.70 302.38 52.23 696.18 128.89 448.94 255.23 Na++K+/(mg·L-1) 58.36 1.62 22.05 14.18 127.62 3.65 38.61 35.29 Ca2+/(mg·L-1) 521.00 42.08 92.43 111.10 236.47 24.05 79.53 44.80 Mg2+/(mg·L-1) 29.16 10.94 18.91 5.36 136.08 4.86 31.85 27.69 Cl-/(mg·L-1) 31.91 14.18 22.82 5.46 262.33 10.64 58.21 59.62 SO42-/(mg·L-1) 146.76 14.49 44.44 29.96 207.88 6.47 81.93 64.39 HCO3-/(mg·L-1) 347.81 152.55 240.27 46.56 652.91 47.81 264.58 128.00 Sr2+/(mg·L-1) 0.49 0.22 0.28 0.96 2.46 0.42 0.92 0.49 表 2 研究区岩石主要微量元素含量(数据来自文献[21])
Table 2. Major trace elements content in rocks in the study area (datas according to reference [21])
岩石名称 元素含量/10-6 Sn As Sb Bi Hg Te P Cr Rb Zr Hf Ba Co Cu 粉砂岩 4.2 9.51 0.73 0.46 0.01 0.033 596 83 117 187 4.9 446 17.1 37.1 细砂岩 2.1 5.62 0.06 0.06 < 0.005 0.041 356 27.1 44.2 82.2 2.4 688 5.4 9.7 砂岩 2.2 57.17 0.71 0.21 0.021 0.045 476 476 84.3 150 4.8 172 511 13.3 灰岩 < 0.5 0.85 0.19 0.04 < 0.005 0.026 212 3.9 8.6 31.8 1.2 79.9 6.5 6.4 泰勒值(1964) 2 1.8 0.2 0.17 0.08 - 1 050 100 90 165 3 425 25 55 岩石名称 元素含量/10-6 Sr V Zn Li Be Sc Ga Nb Mo Ta W Pb Th Ni 粉砂岩 602 88 106 48.8 2.34 12.6 18.9 16.4 0.21 1.31 1.57 8.42 13.3 35.8 细砂岩 1 751 28.1 19.3 18.8 0.73 5.97 4.41 4.42 0.1 0.33 0.32 9.15 7.55 12.5 砂岩 1 790 38.8 45.6 17.9 1.04 5.11 9.29 7.99 < 0.1 0.69 0.69 8.25 1 22.3 灰岩 2 264 15.00 9.40 7.70 0.29 2.60 1.77 1.48 < 0.1 0.10 0.14 1.07 3.23 13.5 泰勒值(1964) 375 135 70 20 2.8 22 15 20 1.5 2 1.5 12.5 9 75 -
[1] 王大纯, 张人权, 史毅虹, 等. 水文地质学基础[M]. 北京: 地质出版社, 1995.
Wang D C, Zhang R Q, Shi Y H, et al. Fundamentals of Hydrogeology[M]. Beijing: Geology Press, 1995.
[2] 李忠海, 韩丽伟, 赵彦涛, 等. 不同浓度锶对MC3T3-E1细胞增殖、ALP活性及成骨分化的影响[J]. 中国骨与关节杂志, 2016, 5(3): 221-225. doi: 10.3969/j.issn.2095-252X.2016.03.015
Li Z H, Han L W, Zhao Y T, et al. Effects of strontium on the proliferation, ALP activity and the differentiation of MC3T3 cells[J]. Chinese Journal of Bone and Joint, 2016, 5(3): 221-225. doi: 10.3969/j.issn.2095-252X.2016.03.015
[3] 钟卫权, 黄叔怀. 锌对人体健康及运动能力的影响[J]. 中国临床康复, 2002(3): 410-411.
Zhong W Q, Huang S H. Effects of Zinc on human health and exercise capacity[J]. Chinese Journal of Tissue Engineering Research, 2002(3): 410-411.
[4] 孙厚云, 刘卫, 樊彦超, 等. 河北承德锶元素地球化学特征与富锶生态产业发展潜力[J/OL]. 中国地质, (2024-02-29)[2024-04-20].
Sun H Y, Liu W, Fan Y C, et al. Geochemical characteristics of strontium and development potential of strontium-rich ecological industry in Chengde, Hebei Province[J/OL]. Geology in China, (2024-02-29)[2024-04-20].
[5] 陶兰初, 邹祖建, 涂春霖, 等. 滇东富源地区岩溶地下水水化学特征及控制因素[J]. 地球与环境, 2024, 52(2): 253-265.
Tao L C, Zou Z J, Tu C L, et al. Hydrogeochemical characteristics and controlling factors of the karst groundwater in the area of Fuyuan, Estern Yunnan[J]. Earth and Environment, 2024, 52(2): 253-265.
[6] 朱雪芹, 刘文波, 李志明, 等. 承德地区天然含锶矿泉水空间分布及特征分析[J]. 水文地质工程地质, 2020, 47(6): 65-73.
Zhu X Q, Liu W B, Li Z M, et al. Distribution and characterization analyses of strontium-bearing mineral spring water in the Chengde region[J]. Hydrogeology and Engineering Geology, 2020, 47(6): 65-73.
[7] 陈远铭. 泰莱盆地含锶矿泉水的分布特征及成因[D]. 北京: 中国地质大学(北京), 2019.
Chen Y M. Distribution Characteristics and Genesis of Strontium-Containing Mineral Water in Tailai Basin[D]. Beijing: China University of Geosciences (Beijing), 2019.
[8] 周鑫, 王璨, 郑鹏飞, 等. 湘南泥盆系碳酸盐岩区富锶饮用天然矿泉水成矿规律——以新田县新圩矿泉水为例[J]. 中国岩溶, 2022, 41(2): 197-209.
Zhou X, Wang C, Zheng P F, et al. Metallogenic regularity of strontium-rich drinking natural mineral water in Devonian carbonate area in southern Hunan: Taking strontium-rich drinking mineral water in Xinxu town, Xintian county as an example[J]. Carsologica Sinica, 2022, 41(2): 197-209.
[9] 祁泽学, 汪生斌, 刘魁, 等. 昆仑山北坡黑刺沟大型天然矿泉水成因分析[J]. 盐湖研究, 2024, 32(3): 21-31.
Qi Z X, Wang S B, Liu K, et al. Origin of mineral water in Heicigou of northern slope of eastern Kunlun Mountains[J]. Journal of Salt Lake Research, 2024, 32(3): 21-31.
[10] 祁泽学, 汪生斌, 李祥坤, 等. 柴达木盆地东缘天峻县阳陇沟天然饮用矿泉水成因分析[J/OL]. 宁夏大学学报: 自然科学版, (2023-05-06)[2024-04-20].
Qi Z X, Wang S B, Li X K, et al. Genetic analysis of natural drinking mineral water in Yanglonggou, Tianjun County, eastern margin of Qaidam Basin[J/OL]. Journal of Ningxia University (Natural Science Edition), (2023-05-06)[2024-04-20].
[11] 易晓明, 曹健. 湖南省饮用天然矿泉水及开发利用[M]. 长沙: 中南大学出版社, 2020.
Yi X M, Cao J. Drinking Natural Mineral Water and its Development and Utilization in Hunan Province[M]. Changsha: Central South University Press, 2020.
[12] 张彦林, 丁宏伟, 付东林, 等. 甘肃省锶矿泉水的富集环境及其形成机理研究[J]. 中国地质, 2020, 47(6): 1688-1701.
Zhang Y L, Ding H W, Fu D L, et al. A study of enrichment environment and formation mechanism of strontium mineral water in Gansu Province[J]. Geology in China, 2020, 47(6): 1688-1701.
[13] 巴瑞寿, 赵振, 何胜, 等. 青海省贵南地区城区地下热水资源勘查报告[R]. 青海省环境地质勘查局, 2021.
Ba R S, Zhao Z, He S, et al. Exploration Report of Underground hot Water Resources in Guinan County, Qinghai Province[R]. Environmental Geological Exploration Bureau of Qinghai Province, 2021.
[14] 中华人民共和国国家卫生健康委员会, 国家市场监督管理总局. GB 8537—2018食品安全国家标准饮用天然矿泉水[S]. 北京: 中国标准出版社, 2018.
National Health Commission of the People's Republic of China, State Administration for Market Regulation. GB 8537—2018 National Food Safety Standard for Drinking Natural Mineral Water[S]. Beijing: China Standards Press, 2018.
[15] 巴瑞寿, 吴萍, 哈伟, 等. 青海省贵南地区城区饮用天然矿泉水调查评价专题报告[R]. 青海省环境地质勘查局, 2019.
Ba R S, Wu P, Ha W, et al. A Special Report on the Investigation and Evaluation of Drinking Natural Mineral Water in the Urban Area of Guinan County, Qinghai Province[R]. Environmental Geological Exploration Bureau of Qinghai Province, 2019.
[16] 中华人民共和国国家卫生健康委员会, 国家市场监督管理总局. GB 8538—2022食品安全国家标准饮用天然矿泉水检验方法[S]. 北京: 中国标准出版社, 2022.
National Health Commission of the People's Republic of China, State Administration for Market Regulation. GB 8538—2022 National Food Safety Standard for Drinking Natural Mineral Water[S]. Beijing: China Standards Press, 2022.
[17] 中华人民共和国自然资源部. DZ/T 0064.1—2021地下水质分析方法第1部分: 一般要求[S]. 北京: 地质出版社, 2021.
Ministry of Natural Resources, People's Republic of China. DZ/T 0064.1—2021 Groundwater Quality-Part 1: General Requirements[S]. Beijing: Geology Press, 2021.
[18] 中华人民共和国自然资源部. DZ/T 0173—2022大地电磁测深法技术规程[S]. 北京: 地质出版社, 2022.
Ministry of Natural Resources, People's Republic of China. DZ/T 0173—2022 Code of Practice for Magnetotelluric Sounding[S]. Beijing: Geology Press, 2022.
[19] Liu J T, Gao Z J, Wang Z Y, et al. Hydrogeochemical processes and suitability assessment of groundwater in the Jiaodong Peninsula, China[J]. Environmental Monitoring and Assessment, 2020, 192(6): 384. http://www.xueshufan.com/publication/3027653341
[20] Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1099. http://www.onacademic.com/detail/journal_1000036919852110_a845.html
[21] 祁生胜, 马志康, 安守文, 等. 贵南地区幅、河南县幅1∶ 25万区域地质调查报告[R]. 青海省地质调查院, 2008.
Qi S S, Ma Z K, An S W, et al. Guinan County Sheet, Henan County Sheet 1∶ 250 000 Regional Geological Survey Report[R]. Qinghai Provincial Geological Survey Institute, 2008.
[22] 肖勇. 柴达木盆地南缘地下水循环演化模式及其变化趋势研究[D]. 北京: 中国地质大学(北京), 2018.
Xiao Y. Groundwater Circulationpatternsand Itschange Trendin Southern Qaidam Basin, Northwest China[D]. Beijing: China University of Geosciences (Beijing), 2018.
[23] 郭彤, 刘之葵, 陈成. 重庆市铜锣峡背斜地热水资源的形成与水力联系分析[J]. 桂林理工大学学报, 2018, 38(1): 61-68. doi: 10.3969/j.issn.1674-9057.2018.01.008
Guo T, Liu Z K, Chen C. Analysis on hydraulic connection and formation of geothermal water resources in Tongluo Mountain anticline, Chongqing[J]. Journal of Guilin University of Technology, 2018, 38(1): 61-68. doi: 10.3969/j.issn.1674-9057.2018.01.008
[24] 吴华武, 李小雁, 赵国琴, 等. 青海湖流域降水和河水中δ18O和δD变化特征[J]. 自然资源学报, 2014, 29(9): 1552-1564.
Wu H W, Li X Y, Zhao G Q, et al. The variation characteristics of δ~(18)O and δD in precipitation and river water, Qinghai Lake Basin[J]. Journal of Natural Resources, 2014, 29(9): 1552-1564.
[25] 何胜, 马文鑫, 谢达娃当智, 等. 青海省贵南地区城区地下热水资源勘查物探报告[R]. 青海省环境地质勘查局, 2021.
He S, Ma W X, Xie D W D Z, et al. Geophysical Prospecting Report of Underground Hot Water Resources Exploration in Guinan County, Qinghai Province[R]. Qinghai Bureau of Environmental Geology Exploration, 2021.
[26] 杨艳林, 靖晶, 齐信, 等. 赣州北部丘陵山区浅层地下水化学特征及成因分析[J]. 中国地质调查, 2023, 10(6): 60-68.
Yang Y L, Jing J, Qi X, et al. Hydrochemical characteristics and formation mechanism analysis of shallow groundwater in the northern hilly region of Ganzhou[J]. Geological Survey of China, 2023, 10(6): 60-68.
[27] S. R Taglor. Abundance of Chemical Elements in the Continental cust: anew table[J]. Geochimicaet Cosmochimica Acta, 1964, 8(28): 1273-1285. http://ir.hfcas.ac.cn:8080/bitstream/334002/11943/1/Abundance%20of%20chemical%20elements%20in%20the%20continental%20crust%20a%20new%20table.pdf
-