深孔保压取样球阀热-应力耦合仿真分析

王瑛俪, 李小洋, 李冰, 施山山, 吴纪修. 2024. 深孔保压取样球阀热-应力耦合仿真分析. 中国地质调查, 11(5): 153-160. doi: 10.19388/j.zgdzdc.2024.237
引用本文: 王瑛俪, 李小洋, 李冰, 施山山, 吴纪修. 2024. 深孔保压取样球阀热-应力耦合仿真分析. 中国地质调查, 11(5): 153-160. doi: 10.19388/j.zgdzdc.2024.237
WANG Yingli, LI Xiaoyang, LI Bing, SHI Shanshan, WU Jixiu. 2024. Simulation analysis of thermal-stress coupling for deep hole pressure retention sampling ball valves. Geological Survey of China, 11(5): 153-160. doi: 10.19388/j.zgdzdc.2024.237
Citation: WANG Yingli, LI Xiaoyang, LI Bing, SHI Shanshan, WU Jixiu. 2024. Simulation analysis of thermal-stress coupling for deep hole pressure retention sampling ball valves. Geological Survey of China, 11(5): 153-160. doi: 10.19388/j.zgdzdc.2024.237

深孔保压取样球阀热-应力耦合仿真分析

  • 基金项目:

    国家自然科学基金项目“海洋天然气水合物保压取样球阀密封失效机理及优化设计研究(编号: 42102352)”与国家重点研发计划项目“精准勘探定向钻进连续取心前沿技术研发(编号: 2021YFC2900200)”联合资助

详细信息
    作者简介: 王瑛俪(2001—),女,硕士在读,主要从事深部钻探取心技术研究。Email: wyl05202023@163.com。
    通讯作者: 李小洋(1988—),男,高级工程师,主要从事深部钻探取心技术研究。Email: Lixy0692@163.com
  • 中图分类号: P634

Simulation analysis of thermal-stress coupling for deep hole pressure retention sampling ball valves

More Information
    Corresponding author: LI Xiaoyang
  • 随着钻孔深度的不断加大,钻孔内的温度和压力也会越来越高,保压取样作为一种能够有效获取地下岩心原位赋存状态的技术方法,在高温高压的环境下能否有效实现原位保压成为检验保压取样可靠性的关键标志之一。为此,选取保压取样的关键机构球阀,开展热-应力耦合仿真分析,重点研究了球阀在[15,30] MPa、[0,250] ℃环境参数内的应力和变形规律。从仿真模拟结果可以看出: ①对比316L、42CrMo和Inconel718这3种材料在[15,30] MPa静压力作用下的最大等效应力与最大变形,同时考虑加工成本,优选42CrMo作为球阀制作材料; ②当温度从0 ℃增加到250 ℃时,球阀的最大变形也在增加,但增长率仅为1.05%,最大等效应力虽然有小的波动,但整体呈现增加趋势,最大波动幅度为12.76 MPa,处于球阀有效密封的允许范围内。仿真模拟结果可为保压球阀在深孔中的可靠密封提供理论数据。
  • 加载中
  • [1]

    张家强,毕彩芹,徐银波,等.非常规油气地质调查工程进展与主要成果[J].中国地质调查,2023,10(1):1-19.

    Zhang J Q,Bi C Q,Xu Y B,et al.Progresses and main achievements on unconventional oil and gas geological survey[J].Geological Survey of China,2023,10(1):1-19.

    [2]

    张家强,毕彩芹,李锋,等.新能源矿产调查工程进展[J].中国地质调查,2018,5(4):1-16.

    Zhang J Q,Bi C Q,Li F,et al.Progresses of the new energy mineral investigation project[J].Geological Survey of China,2018,5(4):1-16.

    [3]

    Wang Y X,Fu G,Lyu Q,et al.Accident case-driven study on the causal modeling and prevention strategies of coal-mine gas-explosion accidents:A systematic analysis of coal-mine accidents in China[J].Resources Policy,2024,88:104425.

    [4]

    刘贵康,李聪,游镇西,等.煤矿井下原位磁控多向保压取心原理与技术[J].煤田地质与勘探,2023,51(8):13-20.

    Liu G K,Li C,You Z X,et al.Principle and technology of in-situ magnetically controlled multidirectional pressure-preserved coring in the coal mine[J].Coal Geology & Exploration,2023,51(8):13-20.

    [5]

    郭振宇. 上覆远距离煤层卸压瓦斯地面抽采技术研究[J].能源与节能,2024(5):11-14.

    Guo Z Y.Surface extraction technology of depressurized gas in overlying long distance coal seams[J].Energy and Energy Conservation,2024(5):11-14.

    [6]

    李勇,徐立富,刘宇,等.深部煤层气水赋存机制、环境及动态演化[J].煤田地质与勘探,2024,52(2):40-51.

    Li Y,Xu L F,Liu Y,et al.Occurrence mechanism,environment and dynamic evolution of gas and water in deep coal seams[J].Coal Geology & Exploration,2024,52(2):40-51.

    [7]

    Chen J X,Yang R Y,Li J W,et al.Numerical investigation of abrasive SC-CO2 jet for horizontal well cavity completion in deep coal seams:insights from a fluid-thermal-structural coupling model[J].Applied Thermal Engineering,2024,250:123457.

    [8]

    刘协鲁,阮海龙,赵义,等.天然气水合物岩心保压转移与测试系统研发现状分析[J].钻探工程,2023,50(S1):26-31.

    Liu X L,Ruan H L,Zhao Y,et al.Analysis on research and development of gas hydrate core pressure transfer and testing system[J].Drilling Engineering,2023,50(S1):26-31.

    [9]

    卢春华,张涛,徐俊,等.海域天然气水合物保压取心钻具的研制与试验[J].钻探工程,2023,50(6):18-26.

    Lu C H,Zhang T,Xu J,et al.Development and experiment of pressure core sampler for marine natural gas hydrates[J].Drilling Engineering,2023,50(6):18-26.

    [10]

    Li W B,Li X,Zhao S X,et al.Evaluation on carbon isotope fractionation and gas-in-place content based on pressure-holding coring technique[J].Fuel,2022,315:123243.

    [11]

    Zhao S X,Lu S F,Wu J F,et al.Comparison and verification of gas-bearing parameter evaluation methods for deep shale based on the pressure coring technique[J].Energy & Fuels,2023,37(3):2066-2077.

    [12]

    杨柳青,陈文才,曾欣.深层超深层取心技术进展与未来解决方案[J].钻采工艺,2024,47(2):113-120.

    Yang L Q,Chen W C,Ceng X.Progress and future solutions of deep and ultra-deep coring technology[J].Drilling & Production Technology,2024,47(2):113-120.

    [13]

    焦杨,孙少亮,高培丞,等.80 MPa保压取心工具的研制与应用[J].钻采工艺,2023,46(2):112-117.

    Jiao Y,Sun S L,Gao P C,et al.Development and application of 80 MPa in-situ pressure-preserved coring tool[J].Drilling & Production Technology,2023,46(2):112-117.

    [14]

    杨立文,苏洋,罗军,等.GW-CP194-80A型保压取心工具的研制[J].天然气工业,2020,40(4):91-96.

    Yang L W,Su Y,Luo J,et al.Development and application of GW-CP194-80A pressure-maintaining coring tool[J].Natural Gas Industry,2020,40(4):91-96.

    [15]

    朱庆忠,苏雪峰,杨立文,等.GW-CP194-80M型煤层气双保压取心工具研制及现场试验[J].特种油气藏,2020,27(5):139-144.

    Zhu Q Z,Su X F,Yang L W,et al.Development and field test of GW-CP194-80M CBM dual pressure coring tool[J].Special Oil and Gas Reservoirs,2020,27(5):139-144.

    [16]

    Xie H P,Hu Y Q,Gao M Z,et al.Research progress and application of deep in-situ condition preserved coring and testing[J].International Journal of Mining Science and Technology,2023,33(11):1319-1337.

    [17]

    任红,裴学良,吴仲华,等.天然气水合物保温保压取心工具研制及现场试验[J].石油钻探技术,2018,46(3):44-48.

    Ren H,Pei X L,Wu Z H,et al.Development and field tests of pressure-temperature preservation coring tools for gas hydrate[J].Petroleum Drilling Techniques,2018,46(3):44-48.

    [18]

    中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 26147-2010,球阀球体技术条件[S].北京:中国标准出版社,2011.General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,Standardization Administration of the People's Republic of China.GB/T 26147—2010 Specification for Ball of Ball Valve[S].Beijing:Standards Press of China,2011.

  • 加载中
计量
  • 文章访问数:  51
  • PDF下载数:  21
  • 施引文献:  0
出版历程
收稿日期:  2024-06-20
修回日期:  2024-09-26

目录