湖南仁里矿床高纯石英原料矿资源评价

陈虎, 周芳春, 柳清琦, 汪宣民, 曾乐, 粟峰. 湖南仁里矿床高纯石英原料矿资源评价[J]. 中国地质调查, 2025, 12(1): 40-48. doi: 10.19388/j.zgdzdc.2024.295
引用本文: 陈虎, 周芳春, 柳清琦, 汪宣民, 曾乐, 粟峰. 湖南仁里矿床高纯石英原料矿资源评价[J]. 中国地质调查, 2025, 12(1): 40-48. doi: 10.19388/j.zgdzdc.2024.295
CHEN Hu, ZHOU Fangchun, LIU Qingqi, WANG Xuanmin, ZENG Le, SU Feng. Resource evaluation of high-purity quartz raw material minerals in Renli deposit of Hunan Province[J]. Geological Survey of China, 2025, 12(1): 40-48. doi: 10.19388/j.zgdzdc.2024.295
Citation: CHEN Hu, ZHOU Fangchun, LIU Qingqi, WANG Xuanmin, ZENG Le, SU Feng. Resource evaluation of high-purity quartz raw material minerals in Renli deposit of Hunan Province[J]. Geological Survey of China, 2025, 12(1): 40-48. doi: 10.19388/j.zgdzdc.2024.295

湖南仁里矿床高纯石英原料矿资源评价

  • 基金项目:
    湖南省自然资源厅省级财政出资地质勘查项目“湖南省平江县仁里矿区铌钽多金属矿普查(编号: 20120370、20140350、20150351、20170331、20200803)”、湖南省自然资源厅项目“湖南省铌钽锂矿成矿规律及找矿方向研究(编号: 2018—02)”及湖南省地质院科研项目“湘东北仁里铌钽矿床深部成矿规律及找矿预测研究(编号: HNGSTP202427)”联合资助
详细信息
    作者简介: 陈虎(1991—), 男, 高级工程师, 主要从事稀有金属矿产勘查工作。Email: 604728898@qq.com
    通讯作者: 周芳春(1967—), 男, 正高级工程师, 主要从事稀贵金属矿产勘查与资源综合利用研究工作。Email: 578486016@qq.com
  • 中图分类号: P621+6, P613.23

Resource evaluation of high-purity quartz raw material minerals in Renli deposit of Hunan Province

More Information
  • 湖南仁里矿床是我国建国以来发现的品位最富、规模最大的超大型伟晶岩型钽矿床,拥有丰富的钽铌、铍等稀有金属矿和高纯石英原料矿。为了解区内伟晶岩型高纯石英原料矿品质,为矿山综合开发利用提供依据,对伟晶岩中的石英矿物特征、包裹体特征和杂质含量开展分析,并与邻区脉石英进行对比。研究表明: 区内伟晶岩中石英矿物呈透明-半透明,矿物样品的SiO2平均含量为99.982%,Al、B、Ca等14种杂质元素总量的平均值为110.06×10-6,Al平均含量为43.18×10-6,Ti平均含量为4.90×10-6;镜下观察显示石英颗粒大小不等,有一定的拉伸变形,颗粒表面通透性好,50%的颗粒内未见流体包裹体,包裹体类型为气液两相的H2O-NaCl型包裹体,包裹体形状各样、颜色明亮,个体形态差异较大,多数包裹体直径小于4 μm,最小个体直径不足1 μm,最大个体直径超过32 μm,视域内包裹体面积比例少于5%。区内高纯石英原料矿具有优良的禀赋条件,是优良的高纯石英硅质原料,预测仁里矿床高纯石英原料矿的潜在资源量超过3 000万t,加强选矿-提纯工艺研究有望获取4N8级及以上高纯石英产品。研究成果对构建平江县域高纯石英产业基地,促进湘东北地区高纯石英产业发展具有一定指导意义。

  • 加载中
  • 图 1  仁里矿床地质简图

    Figure 1. 

    图 2  仁里矿床伟晶岩型石英镜下照片

    Figure 2. 

    图 3  仁里矿床伟晶岩中石英及包裹体特征

    Figure 3. 

    表 1  仁里矿床、Spruce Pine地区、阿尔泰地区全岩样品杂质含量对比

    Table 1.  Comparison of impurities in whole rock samples in Renli deposit, Spruce Pine area and Altai area

    取样位置 样号 ωB/10-6 ω(SiO2)/%
    Ni Fe Cr Mg Ca Cu Ti Al Ba Na Li K Mn 杂质含量
    仁里铌钽矿区 HS02 0.00 7.00 0.04 3.00 26.00 0.06 210.00 0.11 48.00 28.76 29.00 0.19 352.16 99.92
    HS03 0.10 7.00 0.00 3.00 9.00 0.07 190.00 0.04 44.00 24.30 29.00 0.24 306.75 99.93
    HS08 0.00 4.00 0.19 2.00 5.00 0.00 60.00 0.03 70.00 8.18 43.00 0.04 192.44 99.95
    SH09 0.00 9.00 0.50 2.00 9.00 0.02 280.00 0.10 67.00 29.98 75.00 0.98 473.58 99.90
    HS10 0.01 14.00 0.08 3.00 11.00 0.15 8.41 260.00 0.20 22.00 24.11 44.00 1.39 388.35 99.91
    HW2(寒石) 0.01 4.90 0.07 3.50 7.80 0.03 7.51 220.00 2.00 35.50 16.00 0.50 297.83 99.93
    平均 0.02 7.65 0.15 2.75 11.30 0.06 7.96 203.33 0.10 42.17 25.14 39.33 0.06 335.19 99.92
    仁里周边 D04 0.06 235.00 0.09 34.00 10.80 0.06 6.81 910.00 32.00 23.50 790.00 3.70 2046.02 99.67
    Spruce Pine[7] SP-01 < 0.05 51.00 0.10 19.50 1 898.00 < 0.05 1.60 11 622.00 5.02 6 669.00 2.51 347.00 20 615.83
    SP-02 < 0.05 23.40 0.08 28.00 1 635.00 < 0.05 1.29 7 573.00 19.00 4 839.00 1.03 182.00 14 301.90
    阿尔泰[2] 0.00 22.08 2.86 3.87 26.60 0.04 3.29 101.44 49.77 0.10 12.43 0.48 222.96
    注: “—”表示未检测。
    下载: 导出CSV

    表 2  仁里矿床矿物样品杂质含量

    Table 2.  Impuritie content in mineral samples in Renli deposit

    样号 ωB/10-6 ω(SiO2)/%
    Al B Ca Co Cr Cu Fe K Li Mg Mn Na Ni Ti
    101 30.16 0.43 3.04 0.05 4.71 / 1.02 1.97 0.09 6.18 0.04 4.91 99.992
    102 57.38 0.23 5.57 39.50 4.48 / 7.37 1.80 0.08 16.99 8.78 99.987
    H237 42.00 / 10.00 <1 <1 <1 126.00 17.00 <2 3.90 4.50 21.00 <1 <1 99.966
    平均值 43.18 0.33 6.20 0.33 13.52 0.33 45.06 / 3.46 2.56 1.56 14.72 0.35 4.90 99.982
    注: “—”表示未检出; “/”表示未检测。
    下载: 导出CSV

    表 3  D05点位高纯石英砂主要杂质元素含量

    Table 3.  Content of main impurity elements in high-purity quartz sand in D05 sumpling location

    ωB/10-6 ω(SiO2)/%
    Al B Ca Cr Cu Fe K Li Mg Mn Na Ni P Ti 总量
    15.39 0.01 0.34 0.02 0.03 0.83 0.22 0.35 0.18 0.1 0.68 0.02 0.36 1.25 19.78 99.998
    下载: 导出CSV
  • [1]

    王九一. 全球高纯石英原料矿的资源分布与开发现状[J]. 岩石矿物学杂志, 2021, 40(1): 131-141.

    Wang J Y. Global high purity quartz deposits: Resources distribution and exploitation status[J]. Acta Petrologica et Mineralogica, 2021, 40(1): 131-141.

    [2]

    张海啟, 谭秀民, 马亚梦, 等. 新疆阿尔泰伟晶岩型高纯石英矿床地质特征及4N8级产品制备技术[J]. 矿产保护与利用, 2022, 42(5): 1-7.

    Zhang H Q, Tan X M, Ma Y M, et al. Geological characteristics of pegmatite-type high purity quartz in Altay, Xinjiang and preparation technology of 4N8 grade products[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 1-7.

    [3]

    张海啟, 张亮, 刘磊, 等. 全球高纯石英资源开发利用现状及供需分析[J]. 矿产保护与利用, 2022, 42(5): 49-54.

    Zhang H Q, Zhang L, Liu L, et al. Development, utilization, supply and demand of global high purity quartz resources: a systematic review and meta-analysis[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 49-54.

    [4]

    Müller A, Ihlen P M, Wanvik J E, et al. High-purity quartz mineralisation in Kyanite Quartzites, Norway[J]. Mineralium Deposita, 2007, 42(5): 523-535. doi: 10.1007/s00126-007-0124-8

    [5]

    焦丽香. 我国脉石英资源开发利用现状及供需分析[J]. 中国非金属矿工业导刊, 2019(2): 11-14.

    Jiao L X. Current situation and supply demand analysis of the development and utilization of vein quartz resources in China[J]. China Non-Metallic Minerals Industry, 2019(2): 11-14.

    [6]

    Swanson S E, Veal W B. Mineralogy and petrogenesis of pegmatites in the Spruce Pine District, North Carolina, USA[J]. Journal of Geosciences, 2010, 55(1): 27-42.

    [7]

    张晔, 陈培荣. 美国Spruce Pine与新疆阿尔泰地区高纯石英伟晶岩的对比研究[J]. 高校地质学报, 2010, 16(4): 426-435.

    Zhang Y, Chen P R. Characteristics of granitic pegmatite with high- purity quartz in Spruce Pine Region, USA and Altay region of Xinjiang, China[J]. Geological Journal of China Universities, 2010, 16(4): 426-435.

    [8]

    赵维佳. 我国高纯石英产业现状及资源保障分析[J]. 中国非金属矿工业导刊, 2023(1): 11-13, 27.

    Zhao W J. Analysis on the current situation of high-purity quartz industry and its resource guarantee in China[J]. China Non-Metallic Minerals Industry, 2023(1): 11-13, 27.

    [9]

    周芳春, 陈虎, 李鹏, 等. 幕阜山地区稀有金属矿勘查工作进展及成矿预测[J]. 中国地质调查, 2022, 9(3): 32-39. doi: 10.19388/j.zgdzdc.2022.03.04

    Zhou F C, Chen H, Li P, et al. Exploration progress and metallogenic prediction of rare metal deposits in Mufushan area[J]. Geological Survey of China, 2022, 9(3): 32-39. doi: 10.19388/j.zgdzdc.2022.03.04

    [10]

    杨世珍, 周芳春, 李建斌, 等. 湖南仁里超大型钽铌矿床工作进展及找矿思路[J]. 中国地质调查, 2020, 7(4): 28-36. doi: 10.19388/j.zgdzdc.2020.04.04

    Yang S Z, Zhou F C, Li J B, et al. Prospecting ideas and research progress of extra-large Ta-Nb deposit in Renli of Hunan Pro-vince[J]. Geological Survey of China, 2020, 7(4): 28-36. doi: 10.19388/j.zgdzdc.2020.04.04

    [11]

    周芳春, 黄志飚, 陈虎, 等. 湖南省平江县仁里矿区铌钽多金属矿普查报告[R]. 长沙: 湖南省核工业地质局三一一大队, 2021: 1-169.

    Zhou F C, Huang Z B, Chen H, et al. Survey Report of Nb-Ta Poiymetallic Deposit in Renli Mining Area, Pingjiang County, Hunan Province[R]. Changsha: 311 Brigade of Hunan Nuclear Geological Bureau, 2021: 1-169.

    [12]

    杨岳清, 王登红, 孙艳, 等. 矿产资源研究所"三稀"矿产研究与找矿实践70年历程——回顾与启示[J]. 矿床地质, 2021, 40(4): 655-692.

    Yang Y Q, Wang D H, Sun Y, et al. Review on research and exploration of the 3R mineral resources during the past 70 years by Institute of Mineral Resources[J]. Mineral Deposits, 2021, 40(4): 655-692.

    [13]

    刘翔, 周芳春, 李鹏, 等. 湖南仁里稀有金属矿田地质特征、成矿时代及其找矿意义[J]. 矿床地质, 2019, 38(4): 771-791.

    Liu X, Zhou F C, Li P, et al. Geological characteristics and metallogenic age of Renli rare metal orefield in Hunan and its prospecting significance[J]. Mineral Deposits, 2019, 38(4): 771-791.

    [14]

    周芳春, 李建康, 刘翔, 等. 湖南仁里铌钽矿床矿体地球化学特征及其成因意义[J]. 地质学报, 2019, 93(6): 1392-1404.

    Zhou F C, Li J K, Liu X, et al. Geochemical characteristics and genetic significance of ore bodies in Renli Nb-Ta deposit, Hunan Province[J]. Acta Geologica Sinica, 2019, 93(6): 1392-1404.

    [15]

    李建康, 李鹏, 黄志飚, 等. 湘北仁里伟晶岩型稀有金属矿田的地质特征及成矿机制概述[J]. 地学前缘, 2023, 30(5): 1-25.

    Li J K, Li P, Huang Z B, et al. Geological features and formation mechanism of pegmatite-type rare-metal deposits in the Renli orefield, northern Hunan, China-an overview[J]. Earth Science Frontiers, 2023, 30(5): 1-25.

    [16]

    李鹏, 刘翔, 李建康, 等. 湘东北仁里—传梓源矿床5号伟晶岩岩相学、地球化学特征及成矿时代[J]. 地质学报, 2019, 93(6): 1374-1391.

    Li P, Liu X, Li J K, et al. Petrographic and geochemical characteristics of Renli-Chuanziyuan No. 5 pegmatite, NE Hunan, and its metallogenic age[J]. Acta Geologica Sinica, 2019, 93(6): 1374-1391.

    [17]

    周芳春, 黄志飚, 刘翔, 等. 湖南仁里铌钽矿床辉钼矿Re-Os同位素年龄及其地质意义[J]. 大地构造与成矿学, 2020, 44(3): 476-485.

    Zhou F C, Huang Z B, Liu X, et al. Re-Os dating of Molybdenite from the Renli Nb-Ta deposit, Hunan Province, and its geological significance[J]. Geotectonica et Metallogenia, 2020, 44(3): 476-485.

    [18]

    周芳春, 李鹏, 刘翔, 等. 湖南仁里稀有金属矿床岩相学和矿物学特征及其地质意义: 以5号脉ZK708号钻孔为例[J]. 矿床地质, 2021, 40(4): 753-775.

    Zhou F C, Li P, Liu X, et al. Petrographic and mineralogical characteristics of Renli rare metal deposit in Hunan Province and their geological implications: A case study of drill hole ZK708 of the No. 5 vein[J]. Mineral Deposits, 2021, 40(4): 753-775.

    [19]

    Li J K, Liu C Y, Liu X, et al. Tantalum and niobium mineralization from F- and Cl-rich fluid in the lepidolite-rich pegmatite from the Renli deposit in Northern Hunan, China: Constraints of fluid inclusions and lepidolite crystallization experiments[J]. Ore Geology Reviews, 2019, 115: 103187.

    [20]

    刘聪宇. 幕阜山地区仁里矿床成矿流体特征及成矿温压条件研究[D]. 北京: 中国地质大学(北京), 2019: 1-53.

    Liu C Y. Study on Fluid Characteristics and Metallogenic Temperature and Pressure Conditions of Renli Deposit in Mufushan Area[D]. Beijing: China University of Geosciences (Beijing), 2019: 1-53.

    [21]

    周芳春, 苏俊男, 李建康, 等. 湖南仁里钽铌铍稀有金属矿床综合利用评价[J]. 矿产保护与利用, 2020, 40(2): 112-118.

    Zhou F C, Su J N, Li J K, et al. Comprehensive utilization evaluation of Tantalum-niobium-beryllium rare metal deposits in Renli Deposit, Hunan Province[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 112-118.

    [22]

    周芳春, 苏俊男, 陈虎, 等. 湖南省平江县仁里铌钽矿区铌钽绿柱石长石云母等矿产综合利用评价报告[R]. 湖南省核工业地地质局三一一大队, 2019: 1-66.

    Zhou F C, Su J N, Chen H, et al. Comprehensive Utilization Evaluation Report of Niobium Tantalum Beryl, Feldspar, Mica and Other Minerals in Renli Niobium Tantalum Mining Area, Pingjiang County, Hunan Province[R]. No. 311 Geological Party of Hunan Nuclear Geological Bureau, 2019: 1-66.

    [23]

    张海啟, 朱黎宽, 赵海波, 等. 河南卢氏龙泉坪伟晶岩型高纯石英矿床的首次发现及找矿意义[J]. 矿产保护与利用, 2022, 42(4): 153-158.

    Zhang H Q, Zhu L K, Zhao H B, et al. First discovery of the Longquanping pegmatitic high-purity quartz deposit in the area of Lushi, Henan: Implications for exploration[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 153-158.

    [24]

    刘广学, 马亚梦, 刘磊, 等. 新疆阿尔泰地区某花岗伟晶岩型石英深度除杂技术研究[J]. 矿产保护与利用, 2022, 42(5): 8-14.

    Liu G X, Ma Y M, Liu L, et al. Study on deep impurity removal technology of a granite pegmatite-type high-purity quartz in Altay region of Xinjiang[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 8-14.

    [25]

    赵金洲, 张驰, 张森森, 等. 东秦岭花岗伟晶岩中高纯石英矿物的可利用性研究[J]. 矿物岩石地球化学通报, 2022, 41(6): 1305-1308.

    Zhao J Z, Zhang C, Zhang S S, et al. Study on the availability of high purity quartz mineral in Granite Pegmaite of East Qinling[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(6): 1305-1308.

    [26]

    赵海波, 王红杰, 张勇, 等. 东秦岭伟晶岩型高纯石英矿地球化学、锆石U-Pb及Hf同位素研究: 对高纯石英找矿方向的探讨[J]. 中国地质, 2024, 51(1): 42-56.

    Zhao H B, Wang H J, Zhang Y, et al. Geochemistry, zircon U-Pb and Hf Isotopes of the high-purity pegmatite-quartz deposits in the Eastern Qinling and discussion on its prospecting direction[J]. Geology in China, 2024, 51(1): 42-56.

    [27]

    全国工业陶瓷标准化技术委员会功能陶瓷技术委员会. JC/T 2027—2010高纯石英中杂质含量的测定方法电感耦合等离子体原子发射光谱法[S]. 2010.

    Functional Ceramics Subcommittee of the National Technical Committee on Industrial Ceramics of Stundardization Administrat. JC/T 2027—2010 Determination of Impurities in High Purity Quartz-Inductively Coupled Plasma Atomic Emission Spectrometry[S]. 2010.

    [28]

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 32649—2016光伏用高纯石英砂[S]. 中国标准出版社, 2016, 1-4.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of China. GB/T 32649—2016 High Purity Arenaceous Quartz Used in Photo-Voltaic Application[S]. Standards Press of China, 2016, 1-4.

    [29]

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 3284—2015石英玻璃化学成分分析方法[S]. 中国标准出版社, 2016, 1-18.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of China. GB/T 3284—2015 Analytical Method of the Chemical Composition in the Quartz Glass[S]. Standards Press of China, 2016, 1-18.

    [30]

    唐春花, 张生辉, 袁晶, 等. 江西宁都白云母伟晶花岗岩型高纯石英用硅质原料矿床特征与资源潜力[J]. 地质通报, 2024, 43(5): 667-679.

    Tang C H, Zhang S H, Yuan J, et al. Deposit characteristics and potential resources of silicon material for high-purity quartz of muscovite-pegmatite-granite type in Ningdu, Jiangxi Province[J]. Geological Bulletin of China, 2024, 43(5): 667-679.

    [31]

    袁晶, 唐春花, 周渝, 等. 江西棠阴花岗伟晶岩型高纯石英原料杂质元素含量特征研究及评价方法探讨[J]. 东华理工大学学报: 自然科学版, 2024, 47(1): 34-44.

    Yuan J, Tang C H, Zhou Y, et al. Content characteristics of impurity elements analysis and evaluation method discussion of high-purity quartz raw material of the granite pegmatite type in Tangyin, Jiangxi Province[J]. Journal of East China University of Technology (Natural Science), 2024, 47(1): 34-44.

    [32]

    中华人民共和国自然资源部. DZ/T 0467—2024高纯石英硅质原料评价工作指南[S]. 地质出版社, 2024, 1-8.

    Ministry of Natural Resources, People's Republic of China. DZ/T 0467—2024 Guideline for the Evaluation of Siliceous Material for High-purity Quartz[S]. Geological Publishing House, 2024, 1-8.

    [33]

    张海啟, 张亮, 刘磊, 等. 全球高纯石英资源开发利用现状及供需分析[J]. 矿产保护与利用, 2022, 42(5): 49-54.

    Zhang H Q, Zhang L, Liu L, et al. Development, utilization, supply and demand of global high purity quartz resources: A systematic review and meta-analysis[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 49-54.

    [34]

    黄建中, 文春华, 成永生, 等. 湖南省锂铌钽等稀有金属资源高效勘查与开发科技报告[R]. 湖南省地质调查所, 2022: 1-452.

    Huang J Z, Wen C H, Cheng Y S, et al. Efficient Exploration and Development Technology Report on Rare Metal Resources such as Lithium, Niobium, and Tantalum in Hunan Province[R]. Hunan Institute of Geological Survey, 2022: 1-452.

  • 加载中

(3)

(3)

计量
  • 文章访问数:  48
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2024-08-23
修回日期:  2025-01-13
刊出日期:  2025-02-25

目录