青藏高原东部典型高位泥石流灾害成因机制与研究展望

刘吉鑫, 郭长宝, 辛鹏, 吴瑞安, 孙东霞. 青藏高原东部典型高位泥石流灾害成因机制与研究展望[J]. 中国地质调查, 2025, 12(3): 1-18. doi: 10.19388/j.zgdzdc.2024.389
引用本文: 刘吉鑫, 郭长宝, 辛鹏, 吴瑞安, 孙东霞. 青藏高原东部典型高位泥石流灾害成因机制与研究展望[J]. 中国地质调查, 2025, 12(3): 1-18. doi: 10.19388/j.zgdzdc.2024.389
LIU Jixin, GUO Changbao, XIN Peng, WU Ruian, SUN Dongxia. Formation mechanism and research prospect of typical high-altitude debris flow disasters in the eastern Tibetan Plateau[J]. Geological Survey of China, 2025, 12(3): 1-18. doi: 10.19388/j.zgdzdc.2024.389
Citation: LIU Jixin, GUO Changbao, XIN Peng, WU Ruian, SUN Dongxia. Formation mechanism and research prospect of typical high-altitude debris flow disasters in the eastern Tibetan Plateau[J]. Geological Survey of China, 2025, 12(3): 1-18. doi: 10.19388/j.zgdzdc.2024.389

青藏高原东部典型高位泥石流灾害成因机制与研究展望

  • 基金项目:
    中国地质调查局“全国重大工程地质安全风险区划与综合评价(编号: DD20221816、DD20230600601)”项目资助
详细信息
    作者简介: 刘吉鑫(1998—),男,博士研究生,主要从事地质灾害调查工作。Email: ljx18811071971@163.com
    通讯作者: 郭长宝(1980—),男,研究员,主要从事工程地质与地质灾害调查研究。Email: guochangbao@163.com
  • 中图分类号: P694; P642

Formation mechanism and research prospect of typical high-altitude debris flow disasters in the eastern Tibetan Plateau

More Information
  • 受全球气候变化影响,青藏高原东部高位地质灾害的发生频率有显著增加的趋势。高位泥石流作为一种典型的高位地质灾害,与一般泥石流相比,具有灾害规模更大、隐蔽性更高、流动距离远、危害程度更严重等特点。基于现阶段国内外研究成果,系统总结了青藏高原东部典型高位泥石流灾害的概念、主要类型、成灾模式、发生机制和运动特征等;梳理了青藏高原东部高位泥石流的4类主要成灾模式,即降雨诱发型高位泥石流、冰川-冰岩崩型高位泥石流、降雨-冰雪融水型高位泥石流及冰湖溃决型高位泥石流;以3个区内高位泥石流为典型案例进行成因与潜在风险研究,揭示了青藏高原东部高位泥石流的巨大危险性与破坏性。在此基础上,提出了高位泥石流的3个研究展望,指出青藏高原东部高位泥石流研究可借鉴的相关理论和方法,探讨了未来高位泥石流演化动力学机制及监测预警体系建设与装备研发的研究思路。

  • 加载中
  • 图 1  青藏高原东部典型高位泥石流分布特征

    Figure 1. 

    图 2  典型降雨诱发型高位泥石流发育特征

    Figure 2. 

    图 3  典型冰川、冰岩崩、冰湖溃决型高位泥石流发育特征

    Figure 3. 

    图 4  四川康定日地沟特大高位泥石流发育特征(据四川省综合地质调查研究所)

    Figure 4. 

    图 5  茶曲高位冰岩崩-泥石流遥感解译与地质灾害分布

    Figure 5. 

    图 6  茶曲流域BC01 (a)、BC02 (b)、BC03 (c)冰川遥感影像

    Figure 6. 

    图 7  茶曲流域高位冰岩崩-泥石流纵剖面

    Figure 7. 

    图 8  茶曲流域BC01冰崩堆积体多期光学遥感解译

    Figure 8. 

    图 9  培龙贡支沟地质灾害与冰川分布

    Figure 9. 

    图 10  培龙贡支高位冰川泥石流纵剖面

    Figure 10. 

    图 11  培龙贡支高位泥石流发育特征

    Figure 11. 

    图 12  培龙贡支冰川泥石流变化特征

    Figure 12. 

    图 13  海子沟高位泥石流物源分布与发育特征

    Figure 13. 

    图 14  海子沟高位冰湖-泥石流运动特征与潜在风险

    Figure 14. 

    表 1  基于不同诱发因素的青藏高原东部高位泥石流灾害成因类型

    Table 1.  Genetic types of high-altitude debris flow disasters in the eastern Tibetan Plateau based on different inducing factors

    成因类型 作用机理 运动特征 成灾模式
    降雨诱发型 岩土体软化、渗流作用、浮托作用、水楔作用 冲刷、侧蚀沟谷、山洪泥石流 岩土体饱水-渗流冲击
    冰川-冰岩崩型 冰岩崩落、碎屑混合、流体启动 冲刷沟谷、坡面滑移 冰崩碎屑流-泥石流冲击、铲刮
    降雨-冰雪融水型 水源汇聚、混合输移 流态演进、漫流堆积 渗流变形-堵溃
    冰湖溃决型 冰凌、侵蚀作用 溃决 冰湖拥堵-溃决灾害链
    下载: 导出CSV

    表 2  海子沟泥石流数值模拟参数表

    Table 2.  Numerical simulation parameters for Haizi Gully debris flow

    模型 摩擦系数 紊流系数 侵蚀平均增长率
    Voellmy模型 0.08 1 000 -
    侵蚀模型 - - 0.114×10-4
    注: “-”为无数据。
    下载: 导出CSV
  • [1]

    殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报, 2008, 16(4): 433-444. doi: 10.3969/j.issn.1004-9665.2008.04.001

    Yin Y P. Researches on the geo-hazards triggered by Wenchuan Earthquake, Sichuan[J]. Journal of Engineering Geology, 2008, 16(4): 433-444. doi: 10.3969/j.issn.1004-9665.2008.04.001

    [2]

    余斌, 马煜, 吴雨夫. 汶川地震后四川省绵竹市清平乡文家沟泥石流灾害调查研究[J]. 工程地质学报, 2010, 18(6): 827-836. doi: 10.3969/j.issn.1004-9665.2010.06.003

    Yu B, Ma Y, Wu Y F. Investigation of severe debris flow hazards in Wenjia gully of Sichuan province after the Wenchuan earthquake[J]. Journal of Engineering Geology, 2010, 18(6): 827-836. doi: 10.3969/j.issn.1004-9665.2010.06.003

    [3]

    张永双, 成余粮, 姚鑫, 等. 四川汶川地震-滑坡-泥石流灾害链形成演化过程[J]. 地质通报, 2013, 32(12): 1900-1910. doi: 10.12097/gbc.20131203

    Zhang Y S, Cheng Y L, Yao X, et al. The evolution process of Wenchuan earthquake-landslide-debris flow geohazard chain[J]. Geological Bulletin of China, 2013, 32(12): 1900-1910. doi: 10.12097/gbc.20131203

    [4]

    魏昌利, 何元宵, 张瑛, 等. 汶川地震灾区高位泥石流成灾模式分析[J]. 中国地质灾害与防治学报, 2013, 24(4): 52-60.

    Wei C L, He Y X, Zhang Y, et al. Study on high debris flow model in Wenchuan earthquake disaster area[J]. The Chinese Journal of Geological Hazard and Control, 2013, 24(4): 52-60.

    [5]

    殷跃平, 张永双, 伍法权, 等. 汶川地震地质灾害调查成果与展望[J]. 中国地质调查, 2014, 1(1): 1-9. http://zgdzdc.com.cn/article/id/54

    Yin Y P, Zhang Y S, Wu F Q, et al. Research achievements and prospects on Wenchuan earthquake-induced geohazard investigation[J]. Geological Survey of China, 2014, 1(1): 1-9. http://zgdzdc.com.cn/article/id/54

    [6]

    王思敬. 地球内外动力耦合作用与重大地质灾害的成因初探[J]. 工程地质学报, 2002, 10(2): 115-117. doi: 10.3969/j.issn.1004-9665.2002.02.001

    Wang S J. Coupling of earth's endogenic and exogenic geological processes and origins on serious geological disasters[J]. Journal of Engineering Geology, 2002, 10(2): 115-117. doi: 10.3969/j.issn.1004-9665.2002.02.001

    [7]

    张永双, 郭长宝, 姚鑫, 等. 青藏高原东缘活动断裂地质灾害效应研究[J]. 地球学报, 2016, 37(3): 277-286.

    Zhang Y S, Guo C B, Yao X, et al. Research on the geohazard effect of active fault on the eastern margin of the Tibetan plateau[J]. Acta Geoscientica Sinica, 2016, 37(3): 277-286.

    [8]

    潘桂棠, 任飞, 尹福光, 等. 洋板块地质与川藏铁路工程地质关键区带[J]. 地球科学, 2020, 45(7): 2293-2304.

    Pan G T, Ren F, Yin F G, et al. Key zones of oceanic plate geology and Sichuan-Tibet railway project[J]. Earth Science, 2020, 45(7): 2293-2304.

    [9]

    Cui P, Ge Y G, Li S G, et al. Scientific challenges in disaster risk reduction for the Sichuan-Tibet Railway[J]. Engineering Geology, 2022, 309: 106837.

    [10]

    孙聿卿, 葛永刚, 陈兴长, 等. 金沙江流域泥石流危险性评价[J]. 地质通报, 2025, 44(2/3): 377-391.

    Sun Y Q, Ge Y G, Chen X Z, et al. Hazard assessment of debris flow in Jinsha River[J]. Geological Bulletin of China, 2025, 44(2/3): 377-391.

    [11]

    崔鹏. 中国山地灾害研究进展与未来应关注的科学问题[J]. 地理科学进展, 2014, 33(2): 145-152.

    Cui P. Progress and prospects in research on mountain hazards in China[J]. Progress in Geography, 2014, 33(2): 145-152.

    [12]

    兰恒星, 张宁, 李郎平, 等. 川藏铁路可研阶段重大工程地质风险分析[J]. 工程地质学报, 2021, 29(2): 326-341.

    Lan H X, Zhang N, Li L P, et al. Risk analysis of major engineering Geological Hazards for Sichuan-Tibet Railway in the phase of feasibility study[J]. Journal of Engineering Geology, 2021, 29(2): 326-341.

    [13]

    Field C B, Barros V, Stocker T, et al. Managing the risks of extreme events and disasters to advance climate change adaptation[R]. Cambridge: Cambridge University Press, 2012.

    [14]

    Bernai R R. Reviewed Work: Managing the risks of extreme events and disasters to advance climate change adaptation, Special Report of the Intergovernmental Panel on Climate Change (IPCC) by Edenhofer O., Madruga R. Pichs, Sokona Y., Seyboth K., Matschoss P., Kadnear S., Zwickel T., Eickemeier P., Hansen G., Schlömer S., von Stechow C., Field O.B., Barros V., Stocker T.F., Dahe Q., Dokken D.J., Ebi K.L., Mastraendrea M.D., Mach K.J., Plattner G., Allen S.K., Tignor M., Midgley P.M. [J]. Economics of Energy & Environmental Policy, 2013, 2(1): 101-112.

    [15]

    胡凯衡, 张晓鹏, 罗鸿, 等. 丹巴县梅龙沟"6·17"泥石流灾害链调查[J]. 山地学报, 2020, 38(6): 945-951.

    Hu K H, Zhang X P, Luo H, et al. Investigation of the "6·17" debris flow chain at the Meilong catchment of Danba county, China[J]. Mountain Research, 2020, 38(6): 945-951.

    [16]

    铁永波, 葛华, 高延超, 等. 二十世纪以来西南地区地质灾害研究历程与展望[J]. 沉积与特提斯地质, 2022, 42(4): 653-665.

    Tie Y B, Ge H, Gao Y C, et al. The research progress and prospect of geological hazards in Southwest China since the 20th Century[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(4): 653-665.

    [17]

    刘传正, 王建新. 崩塌滑坡泥石流灾害链分类研究[J]. 工程地质学报, 2024, 32(5): 1573-1596.

    Liu C Z, Wang J X. Research on classification of collapse, landslide and debris flow disaster chains[J]. Journal of Engineering Geology, 2024, 32(5): 1573-1596.

    [18]

    常鸣, 许强, 王运生, 等. 四川康定姑咱"8·3"特大山洪泥石流发育特征及孕灾成因研究[J]. 武汉大学学报: 信息科学版, 2024, 49(11): 2136-2144.

    Chang M, Xu Q, Wang Y S, et al. Development characteristics and disaster-causing mechanisms of the "8·3" catastrophic flash flood and debris flow in Guzan, Kangding, Sichuan Province[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2136-2144.

    [19]

    杨德宏, 付伟, 常帅鹏, 等. 藏东南培龙贡支泥石流形成机理与发展趋势分析[J]. 铁道标准设计, 2020, 64(7): 33-38.

    Yang D H, Fu W, Chang S P, et al. Formation mechanism and development trend of Pei-Long-Gong-Zhi Debris flow in Southeastern Tibet[J]. Railway Standard Design, 2020, 64(7): 33-38.

    [20]

    陈宁生, 周海波, 胡桂胜. 气候变化影响下林芝地区泥石流发育规律研究[J]. 气候变化研究进展, 2011, 7(6): 412-417. doi: 10.3969/j.issn.1673-1719.2011.06.005

    Chen N S, Zhou H B, Hu G S. Development rules of debris flow under the influence of climate change in Nyingchi[J]. Climate Change Research, 2011, 7(6): 412-417. doi: 10.3969/j.issn.1673-1719.2011.06.005

    [21]

    苗晓岐. 瓤打曲泥石流运动特征及参数研究[J]. 铁道工程学报, 2022, 39(4): 20-25. doi: 10.3969/j.issn.1006-2106.2022.04.005

    Miao X Q. Research on the movement characteristics and parameters of debris flow in Rangdaqu[J]. Journal of Railway Engineering Society, 2022, 39(4): 20-25. doi: 10.3969/j.issn.1006-2106.2022.04.005

    [22]

    郭长宝, 王保弟, 刘建康, 等. 川藏铁路交通廊道地质调查工程主要进展与成果[J]. 中国地质调查, 2020, 7(6): 1-12.

    Guo C B, Wang B D, Liu J K, et al. Main progress and achievements of the geological survey project of Sichuan-Tibet Railway traffic corridor[J]. Geological Survey of China, 2020, 7(6): 1-12.

    [23]

    李朝月, 崔鹏, 郝建盛, 等. 1960年以来藏东南地区气温和降水的变化特征[J]. 高原气象, 2023, 42(2): 344-358.

    Li C Y, Cui P, Hao J S, et al. Variation characteristics of temperature and precipitation over the southeast Xizang since 1960[J]. Plateau Meteorology, 2023, 42(2): 344-358.

    [24]

    王岩, 王昊, 崔鹏, 等. 气候变化的灾害效应与科学挑战[J]. 科学通报, 2024, 69(2): 286-300.

    Wang Y, Wang H, Cui P, et al. Disaster effects of climate change and the associated scientific challenges[J]. Chinese Science Bulletin, 2024, 69(2): 286-300.

    [25]

    郭剑, 崔一飞. 滑坡-泥石流转化研究进展[J]. 工程地质学报, 2023, 31(3): 762-779.

    Guo J, Cui Y F. An overview of landslide-induced debris flow[J]. Journal of Engineering Geology, 2023, 31(3): 762-779.

    [26]

    铁永波, 孙强, 徐勇, 等. 南方山地丘陵区典型地质灾害成因机制与风险评价[J]. 中国地质调查, 2022, 9(4): 1-9. doi: 10.19388/j.zgdzdc.2022.04.01

    Tie Y B, Sun Q, Xu Y, et al. Genetic mechanism and risk assessment of typical geological hazards in mountainous and hilly areas of South China[J]. Geological Survey of China, 2022, 9(4): 1-9. doi: 10.19388/j.zgdzdc.2022.04.01

    [27]

    张宪政, 铁永波, 宁志杰, 等. 四川汶川县板子沟"6·26"特大型泥石流成因特征与活动性研究[J]. 水文地质工程地质, 2023, 50(5): 134-145.

    Zhang X Z, Tie Y B, Ning Z J, et al. Characteristics and activity analysis of the catastrophic "6·26" debris flow in the Banzi catchment, Wenchuan County of Sichuan Province[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 134-145.

    [28]

    殷跃平, 高少华. 高位远程地质灾害研究: 回顾与展望[J]. 中国地质灾害与防治学报, 2024, 35(1): 1-18.

    Yin Y P, Gao S H. Research on high-altitude and long-runout rockslides: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 1-18.

    [29]

    万佳威, 褚宏亮, 李滨, 等. 西藏嘉黎断裂带沿线高位链式地质灾害发育特征分析[J]. 中国地质灾害与防治学报, 2021, 32(3): 51-60.

    Wan J W, Zhu H L, Li B, et al. Characteristics, types, main causes and development of high-position geohazard chains along the Jiali fault zone, Tibet, China[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 51-60.

    [30]

    陈兰, 范宣梅, 熊俊麟, 等. 藏东南多依弄巴流域冰湖溃决危险性评价[J]. 地质科技通报, 2023, 42(2): 258-266.

    Chen L, Fan X M, Xiong J L, et al. Hazard assessment of glacial lake outbursts in the Doyinongba Basin, southeastern Tibetan Plateau[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 258-266.

    [31]

    汤明高, 陈浩文, 赵欢乐, 等. 青藏高原冰湖溃决灾害隐患识别、发育规律及危险性评价[J]. 地质通报, 2023, 42(5): 730-742.

    Tang M G, Chen H W, Zhao H L, et al. Identification, development law and risk assessment of the hidden dangers of glacial lake outburst disasters on the Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 2023, 42(5): 730-742.

    [32]

    胡桂胜, 陈宁生, 邓明枫, 等. 西藏林芝地区泥石流类型及形成条件分析[J]. 水土保持通报, 2011, 31(2): 193-197, 221.

    Hu G S, Chen N S, Deng M F, et al. Classification and initiation conditions of debris flows in Linzhi Area, Tibet[J]. Bulletin of Soil and Water Conservation, 2011, 31(2): 193-197, 221.

    [33]

    高少华, 殷跃平, 李滨, 等. 雅鲁藏布江大峡谷则隆弄高位冰岩崩灾害链动力学特征[J]. 工程地质学报, 2024, 32(3): 996-1009.

    Gao S H, Yin Y P, Li B, et al. Dynamic characteristics of the rock-ice avalanche disaster chain in the Zelongnong Basin, Yarlung Zangbo river canyon region[J]. Journal of Engineering Geology, 2024, 32(3): 996-1009.

    [34]

    李尧, 崔一飞, 李振洪, 等. 川藏交通廊道林波段冰川泥石流发育动态演化分析及监测预警方案[J]. 地球科学, 2022, 47(6): 1969-1984.

    Li Y, Cui Y F, Li H Z, et al. Evolution of glacier debris flow and its monitoring system along Sichuan-Tibet traffic corridor[J]. Earth Science, 2022, 47(6): 1969-1984.

    [35]

    童立强, 涂杰楠, 裴丽鑫, 等. 雅鲁藏布江加拉白垒峰色东普流域频繁发生碎屑流事件初步探讨[J]. 工程地质学报, 2018, 26(6): 1552-1561.

    Tong L Q, Tu J N, Pei L X, et al, Preliminary discussion of the frequently debris flow events in Sedongpu Basin at Gyalaperi Peak, Yarlung zangbo River[J]. Journal of Engineering Geology, 2018, 26(6): 1552-1561.

    [36]

    刘传正, 吕杰堂, 童立强, 等. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究[J]. 中国地质, 2019, 46(2): 219-234.

    Liu C Z, Lv J T, Tong L Q, et al. Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibet[J]. Geology in China, 2019, 46(2): 219-234.

    [37]

    高波, 张佳佳, 王军朝, 等. 西藏天摩沟泥石流形成机制与成灾特征[J]. 水文地质工程地质, 2019, 46(5): 144-153.

    Gao B, Zhang J J, Wang J C, et al. Formation mechanism and disaster characteristics of debris flow in the Tianmo gully in Tibet[J]. Hydrogeology & Engineering Geology, 2019, 46(5): 144-153.

    [38]

    屈永平, 朱静, 卜祥航, 等. 西藏林芝地区冰川降雨型泥石流起动实验初步研究[J]. 岩石力学与工程学报, 2015, 34(S1): 3256-3266.

    Qu Y P, Zhu J, Bo X H, et al. Preliminary starting experiment study of glacialrainfall debris flow, in Nyingchi, Tibet[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3256-3266.

    [39]

    赵鑫, 张海太, 赵志芳, 等. 滇西北海巴洛沟"7·28"降雨-冰川融水混合型泥石流成因研究[J]. 工程地质学报, 2020, 28(6): 1339-1349.

    Zhao X, Zhang H T, Zhao Z F, et al. Study on the genesis of rainfall-glacier mixed type debris flow of Haibalo gully in northwest Yunnan on July 28, 2019[J]. Journal of Engineering Geology, 2020, 28(6): 1339-1349.

    [40]

    姚檀栋, 姚治君. 青藏高原冰川退缩对河水径流的影响[J]. 自然杂志, 2010, 32(1): 4-8. doi: 10.3969/j.issn.0253-9608.2010.01.002

    Yao T D, Yao Z J. Impacts of glacial reretreat on runoff on Tibetan Plateau[J]. Chinese Journal of Nature, 2010, 32(1): 4-8. doi: 10.3969/j.issn.0253-9608.2010.01.002

    [41]

    刘建康, 张佳佳, 高波, 等. 我国西藏地区冰湖溃决灾害综述[J]. 冰川冻土, 2019, 41(6): 1335-1347.

    Liu J K, Zhang J J, Gao B, et al. An overview of glacial lake outburst flood in Tibet, China[J]. Journal of Glaciology and Geocryology, 2019, 41(6): 1335-1347.

    [42]

    柴波, 陶阳阳, 杜娟, 等. 西藏聂拉木县嘉龙湖冰湖溃决型泥石流危险性评价[J]. 地球科学, 2020, 45(12): 4630-4639.

    Chai B, Tao Y Y, Du J, et al. Hazard assessment of debris flow triggered by outburst of Jialong glacial lake in Nyalam County, Tibet[J]. Earth Science, 2020, 45(12): 4630-4639.

    [43]

    贾洋, 崔鹏. 西藏冰湖溃决灾害事件极端气候特征[J]. 气候变化研究进展, 2020, 16(4): 395-404.

    Jia Y, Cui P. The extreme climate background for glacial lakes outburst flood events in Tibet[J]. Climate Change Research, 2020, 16(4): 395-404.

    [44]

    Zhang T T, Yin Y P, Li B, et al. Characteristics and dynamic analysis of the February 2021 long-runout disaster chain triggered by massive rock and ice avalanche at Chamoli, Indian Himalaya[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(3): 296-308.

    [45]

    杨瑞敏, 朱立平, 王永杰, 等. 西藏东南部米堆冰湖面积和水量变化及其对溃决灾害发生的影响[J]. 地理科学进展, 2012, 31(9): 1133-1140.

    Yang R M, Zhu L P, Wang Y J, et al. Study on the variations of lake area & volume and their effect on the occurrence of outburst of Mudui glacier lake in Southeastern Tibet[J]. Progress in Geography, 2012, 31(9): 1133-1140.

    [46]

    李德基, 游勇. 西藏波密米堆冰湖溃决浅议[J]. 山地研究, 1992, 10(4): 219-224.

    Li D J, You Y. Bursting of the Midui moraine lake in Bomi, Xizang[J]. Mountain Research, 1992, 10(4): 219-224.

    [47]

    Cui P, Zhou G G D, Zhu X H, et al. Scale amplification of natural debris flows caused by cascading landslide dam failures[J]. Geomorphology, 2013, 182: 173-189.

    [48]

    崔鹏, 郭剑. 沟谷灾害链演化模式与风险防控对策[J]. 工程科学与技术, 2021, 53(3): 5-18.

    Cui P, Guo J. Evolution models, risk prevention and control countermeasures of the valley disaster chain[J]. Advanced Engineering Sciences, 2021, 53(3): 5-18.

    [49]

    Zhou J W, Cui P, Hao M H. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China[J]. Landslides, 2016, 13(1): 39-54.

    [50]

    Zhang T T, Yin Y P, Li B, et al. Characteristics and dynamic analysis of the February 2021 long-runout disaster chain triggered by massive rock and ice avalanche at Chamoli, Indian Himalaya[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(2): 296-308.

    [51]

    倪化勇, 吕学军, 杨德伟. 川藏公路培龙沟路段堆积物的分形特征及其地质意义[J]. 工程地质学报, 2005, 13(4): 451-454. doi: 10.3969/j.issn.1004-9665.2005.04.004

    Ni H Y, Lv X J, Yang D W. Fractal feature and geological significance of accumu lations at Peilong section along Sichuan-Tibet highway[J]. Journal of Engineering Geology, 2005, 13(4): 451-454. doi: 10.3969/j.issn.1004-9665.2005.04.004

    [52]

    许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报: 信息科学版, 2019, 44(7): 957-966.

    Xu Q, Dong X J, Li W L. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966.

    [53]

    苗晓岐. 多源遥感技术在藏东南艰险复杂山区泥石流物源识别中的应用[J]. 地质通报, 2021, 40(12): 2052-2060. doi: 10.12097/j.issn.1671-2552.2021.12.008

    Miao X Q. Application of multi-source remote sensing technology in the identification of debris flow source within complex mountainous areas in southeast Tibet[J]. Geological Bulletin of China, 2021, 40(12): 2052-2060. doi: 10.12097/j.issn.1671-2552.2021.12.008

  • 加载中

(14)

(2)

计量
  • 文章访问数:  65
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2025-01-20
修回日期:  2025-04-02
刊出日期:  2025-06-25

目录