中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
KANG Wen-kai, LIU Feng, YANG Fei-fan, WANG Hua-jun. 2020. Simulation of heat transfer performance using middle-deep coaxial borehole heat exchangers by FEFLOW. Journal of Groundwater Science and Engineering, 8(4): 315-327. doi: 10.19637/j.cnki.2305-7068.2020.04.002
Citation: KANG Wen-kai, LIU Feng, YANG Fei-fan, WANG Hua-jun. 2020. Simulation of heat transfer performance using middle-deep coaxial borehole heat exchangers by FEFLOW. Journal of Groundwater Science and Engineering, 8(4): 315-327. doi: 10.19637/j.cnki.2305-7068.2020.04.002

Simulation of heat transfer performance using middle-deep coaxial borehole heat exchangers by FEFLOW

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Figure 9. 

    Figure 10. 

    Figure 11. 

    Figure 12. 

    Figure 13. 

    Figure 14. 

    Table 1.  Parameters of the borehole and CBHE

    Parameter Unit Value
    Borehole diameter m 0.25
    Borehole depth m 2 000
    Inlet pipe diameter m 0.177 8
    Inlet pipe wall thickness m 0.008 05
    Inlet pipe thermal conductivity W/(m·K) 45
    Outlet pipe diameter m 0.1
    Outlet pipe wall thickness m 0.01
    Outlet pipe thermal conductivity W/(m·K) 0.42
    Grout thermal conductivity W/(m·K) 3
    下载: 导出CSV

    Table 2.  Major parameters used for model validation

    Parameter Unit Value
    Borehole diameter m 0.311
    Borehole depth m 2 000
    Inlet pipe diameter m 0.177 8
    Inlet pipe wall thickness m 0.009 19
    Inlet pipe thermal conductivity W/(m·K) 45
    Outlet pipe diameter m 0.11
    Outlet pipe wall thickness m 0.01
    Outlet pipe thermal conductivity W/(m·K) 0.45
    Grout thermal conductivity W/(m·K) 4
    下载: 导出CSV

    Table 3.  Parameters used in the sensitivity analysis

    Parameter Unit Lower limit Base value Upper limit
    Inlet temperature - 4 -
    Discharge rate of fluid m3/h - 15 -
    Porosity - - 0.3 -
    Thermal conductivity of rock W/(m·K) - 3 -
    Geothermal gradient ℃/m 0.02 0.03 0.05
    Rock heat capacity 106 J/(m3·K) 1.5 2.0 3.5
    Groundwater velocity m/s 1.16×10-7 0 1.16×10-5
    下载: 导出CSV
  • CAI Wan-long, WANG Feng-hao, LIU Jun, et al. 2019. Experimental and numerical investigation of heat transfer performance and sustainability of deep borehole heat exchangers coupled with ground source heat pump systems. Applied Thermal Engineering, 149: 975-986. doi: 10.1016/j.applthermaleng.2018.12.094

    CHEN Chao-fan, SHAO Hai-bing, Dmitri N, et al. 2019. Numerical investigation on the performance, sustainability, and efficiency of the deep borehole heat exchanger system for building heating. Geothermal Energy, 7(1): 18. doi: 10.1186/s40517-019-0133-8

    CHEN Ji-liang, JIANG Fang-ming. 2015. Desi-gning multi-well layout for enhanced geo-thermal system to better exploit hot dry rock geothermal energy. Renewable Energy, 74: 37-48. doi: 10.1016/j.renene.2014.07.056

    DAI Chuan-shan, LI Jia-shu, SHI Yu, et al. 2019. An experiment on heat extraction from a deep geothermal well using a downhole coaxial open loop design. Applied Energy, 252: 113447. doi: 10.1016/j.apenergy.2019.113447

    DENG Jie-wen, WEI Qing-fan, ZHANG Hui, et al. 2017. On-site measurement and analysis on energy consumption and energy efficiency ratio of medium-depth geothermal heat pump systems for space heating. HVAC, 47(08): 150-154. http://en.cnki.com.cn/Article_en/CJFDTOTAL-NTKT201708029.htm

    Diersch HJG, Bauer D, Heidemann W, et al. 2011. Finite element modeling of borehole heat exchanger systems. Computers and Geosciences, 37(8): 1122-1135. doi: 10.1016/j.cageo.2010.08.003

    Gordon D, Bolisetti T, Ting DSK, et al. 2018. Experimental and analytical investigation on pipe sizes for a coaxial borehole heat exchanger. Renewable Energy, 115: 946-953. doi: 10.1016/j.renene.2017.08.088

    Huchtemann K, Müller D. 2014. Combined si-mulation of a deep ground source heat ex-changer and an office building. Building and Environment, 73: 97-105. doi: 10.1016/j.buildenv.2013.12.003

    KONG Yan-long, PANG Zhong-he, SHAO Hai-bing, et al. 2014. Recent studies on hydrothermal systems in China: A review. Geothermal Energy, 2(1): 19. doi: 10.1186/s40517-014-0019-8

    Kwanggeun O, Seokjae L, Sangwoo P, et al. 2019. Field experiment on heat exchange perfor-mance of various coaxial-type ground heat exchangers considering construction con-ditions. Renewable Energy, 144: 84-96. doi: 10.1016/j.renene.2018.10.078

    Le LM, Larroque F, Dupuy A, et al. 2015. Ther-mal performance of a deep borehole heat exchanger: Insights from a synthetic coupled heat and flow model. Geothermics, 57: 157-172. Doi:10.1016/j.geothermics.2015.06.014 (2015).

    LI Peng-cheng. 2018. Research on heat transfer characteristics of casing ground heat ex-changer with medium and deep ground source heat pump. Ph.D thesis. Harbin: Harbin Institute of Technology.

    LIU Jun, WANG Feng-hao, CAI Wan-long, et al. 2020. Numerical investigation on the effects of geological parameters and layered subsur-face on the thermal per-formance of middle-deep borehole heat exchanger. Renewable Energy, 149: 384-399. Doi:10.1016/j.renene. 2019.11.158 (2020).

    LIU Qi, JIANG Si-min, PU Ye-feng, et al. 2016. Hydro-geochemical simulation of the mixing balance of exploitation and reinjection of geothermal fluid. Journal of Groundwater Science and Engineering, 4(2): 81-87. http://gwse.iheg.org.cn/en/article/id/221

    Morchio S, Fossa M. 2019. Thermal modeling of deep borehole heat exchangers for geothermal applications in densely populated urban areas. Thermal Science and Engineering Progress, 13: 100363. Doi:10.1016/j.tsep.2019.100363 (2019).

    PANG Ai-qiang, LU Lin, CUI Ping, et al. 2019. A new analytical heat transfer model for deep borehole heat exchangers with coaxial tubes. International Journal of Heat and Mass Transfer, 141: 1056-1065. Doi:10.1016/j.ijheatmasstransfer.2019.07.041 (2019).

    Renaud T, Verdin P, Falcone G. 2019. Numerical simulation of a deep borehole heat exchanger in the krafla geothermal system. International Journal of Heat and Mass Transfer, 143: 118496. Doi:10.1016/j.ijheatmasstransfer.2019.118496 (2019).

    Sapinska-Sliwa A, Rosen MA, Gonet A, et al. 2016. Deep borehole heat exchangers-A con-ceptual and comparative review. Interna-tional Journal of Air-Conditioning and Refri-geration, 24(01): 1-15. http://www.worldscientific.com/doi/10.1142/S2010132516300019

    WANG Shu-fang, LIU Jiu-rong, SUN Ying, et al. 2018. Study on the geothermal production and reinjection mode in Xiong County. Journal of Groundwater Science and Engineering, 6(3): 178-186. http://gwse.iheg.org.cn/en/article/doi/10.19637/j.cnki.2305-7068.2018.03.003

    WANG Zhi-hua, WANG Feng-hao, LIU Jun, et al. 2017. Field test and numerical investigation on the heat transfer characteristics and op-timal design of the heat exchangers of a deep borehole ground source heat pump system. Energy Conversion and Management, 153: 603-615. doi: 10.1016/j.enconman.2017.10.038

    Zanchini E, Lazzari S, Priarone A. 2010. Improving the thermal performance of coaxial borehole heat exchangers. Energy, 35(2): 657-666. doi: 10.1016/j.energy.2009.10.038

    ZHAO Fang-hua. 2018. Research on single hole heat transfer power of ground source heat pu-mp system. Journal of Groundwater Science and Engineering, 6(1): 65-70. http://gwse.iheg.org.cn/en/article/doi/10.19637/j.cnki.2305-7068.2018.01.008

  • 加载中

(14)

(3)

计量
  • 文章访问数:  972
  • PDF下载数:  27
  • 施引文献:  0
出版历程
收稿日期:  2020-03-05
录用日期:  2020-04-10
刊出日期:  2020-12-25

目录