中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Cherif Kessar, Yamina Benkesmia, Bilal Blissag, Lahsen Wahib Kébir. 2021. Delineation of groundwater potential zones in Wadi Saida Watershed of NW-Algeria using remote sensing, geographic information system-based AHP techniques and geostatistical analysis. Journal of Groundwater Science and Engineering, 9(1): 45-64. doi: 10.19637/j.cnki.2305-7068.2021.01.005
Citation: Cherif Kessar, Yamina Benkesmia, Bilal Blissag, Lahsen Wahib Kébir. 2021. Delineation of groundwater potential zones in Wadi Saida Watershed of NW-Algeria using remote sensing, geographic information system-based AHP techniques and geostatistical analysis. Journal of Groundwater Science and Engineering, 9(1): 45-64. doi: 10.19637/j.cnki.2305-7068.2021.01.005

Delineation of groundwater potential zones in Wadi Saida Watershed of NW-Algeria using remote sensing, geographic information system-based AHP techniques and geostatistical analysis

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Figure 9. 

    Figure 10. 

    Figure 11. 

    Figure 12. 

    Figure 13. 

    Figure 14. 

    Figure 15. 

    Figure 16. 

    Table 1.  Random indices for matrices of various sizes (Alonso and Lamata, 2006)

    N 3 4 5 6 7 8 9 10 11 12
    RI 0.524 5 0.881 5 1.108 6 1.247 9 1.341 7 1.405 6 1.449 9 1.485 4 1.514 1 1.536 5
    下载: 导出CSV

    Table 2.  Calculation of effects and rates of factors affecting groundwater potentiality (Saaty, 1980)

    Option Numerical value (s)
    Equal 1
    Strong 3
    Strong 5
    Very strong 7
    Extremly strong 9
    Intermediate values 2, 4, 6, 8
    Reflecting dominance of second alternative compared with the first Reciprocals
    下载: 导出CSV

    Table 3.  Pairwise comparison matrix and percent normalized weights of used criteria

    Matrix Dd G Lu R S Ld
    Dd 1 0.53 1 0.33 0.68 0.15
    G 1.9 1 3.88 0.72 1.9 0.21
    Lu 1 0.26 1 0.34 0.78 0.16
    R 3 1.38 2.91 1 2.04 0.72
    S 1.48 0.53 1.28 0.49 1 0.16
    Ld 6.88 4.83 6.35 1.38 6.35 1
    下载: 导出CSV

    Table 4.  Classification of influencing factors for groundwater potential zones

    Influencing factors Category class Rank Rating Normalized weight (%)
    Lineament density (km/km2) > 2 5 Very good 44.80
    1.5~2 4 Good
    1~1.5 3 Moderate
    0.5~1 2 Poor
    0~0.5 1 Very poor
    Geology Alluvium 5 Very good 14.47
    Limestone 4 Good
    Sandstone 3 Moderate
    Granites 1 Very poor
    Rainfall (mm) > 330 5 Very good 20.44
    315~330 4 Good
    300~315 3 Moderate
    < 300 2 Poor
    Slope (°) 0~3 5 Very good 8.09
    3~7 4 Good
    7~12.5 3 Moderate
    12.5~25 2 Poor
    > 25 1 Very poor
    Drainage density (km/km2) > 3 5 Very good 6.29
    2.5~3 4 Good
    < 2.5 3 Moderate
    Land use Forest 5 Very good 5.91
    Schrub land 4 Good
    Agriculture 3 Moderate
    Barren land 2 Poor
    Built up 1 Very poor
    下载: 导出CSV

    Table 5.  Area statistics of groundwater potential zones

    S.N GWP class Area (km2) Percentage from total area
    1 Poor 11.56 1.85
    2 Moderate 410.77 65.76
    3 Good 188.21 30.13
    4 Very Good 14.12 2.26
    下载: 导出CSV

    Table 6.  Model characteristics

    Parameter Valor
    Nugget effect 492.05
    Type Gaussian
    Major range 4 506.48
    Sill 1 293.48
    Lag size 626.73
    Number of lags 12
    下载: 导出CSV

    Table 7.  Correlation function characteristics

    Function 0.096X+26.60
    Samples 47 of 47
    R2 0.87
    Standard average error 40.97
    下载: 导出CSV

    Table 8.  Accuracy assessment of groundwater potential zone map with optimum yield data

    Well N° Actual yield (m3/h) Actural yield class Estimated yield (m3/h) Estimated yield class (Kriging map) Estimated yield class (GWP map) Agreement estimated-actual yields description
    01 21.6 Moderate 28.0 Moderate Moderate Agree
    02 86.4 Very good 68.8 Good Moderate Partially agree
    03 3.6 Poor 5.8 Poor Very good Disagree
    04 3.6 Poor 9.0 Poor Moderate Disagree
    05 36.0 Moderate 57.5 Good Good Agree
    06 7.2 Poor 12.3 Poor Moderate Disagree
    07 14.4 Poor 8.9 Poor Good Disagree
    08 7.2 Poor 8.7 Poor Moderate Disagree
    09 7.2 Poor 18.8 Moderate Good Disagree
    10 93.6 Very good 89.3 Very good Good Partially agree
    11 133.2 Very good 90.0 Very good Good Partially agree
    12 10.8 Poor 20.8 Moderate Moderate Agree
    13 36.0 Moderate 41.2 Moderate Moderate Agree
    14 108.0 Very good 84.1 Very good Moderate Agree
    15 25.2 Moderate 28.4 Moderate Good Agree
    16 18.0 Moderate 31.7 Moderate Moderate Agree
    17 18.0 Moderate 21.6 Moderate Moderate Agree
    18 54.0 Good 46.3 Moderate Moderate Agree
    19 28.8 Moderate 28.0 Moderate Moderate Agree
    20 36.0 Moderate 36.8 Moderate Moderate Agree
    21 36.0 Moderate 36.8 Moderate Moderate Agree
    下载: 导出CSV
  • Adiat KAN, Nawawi MNM, Abdullah K. 2012. Assessing the accuracy of GIS-based elemen-tary multi criteria decision analysis as a spatial prediction tool (A case of predicting potential zones of sustainable ground water resources). Journal of Hydrology, 440-441: 75-89. doi: 10.1016/j.jhydrol.2012.03.028

    Alaa AA, Ayser AS. 2015. Groundwater potential mapping of the major aquifer in northeastern missan governorate, South of Iraq by using analytical hierarchy process and GIS. Jour-nal of Environment and Earth Science, 4(10): 125-150.

    Alonso JA, Lamata MT. 2006. Consistency in the analytic hierarchy process: A new approach. International Journal of Uncertainty Fuzziness and Knowledge Based Systems, 14(4): 445-459. doi: 10.1142/S0218488506004114

    Balasubramani K. 2018. Physical resources assess-ment in a semi-arid watershed: An integrated methodology for sustainable land use planning. ISPRS Journal of Photo-grammetry and Remote Sensing, 142: 358-379. doi: 10.1016/j.isprsjprs.2018.03.008

    Bartier PM, Keller CP. 1996. Multivariate inter-polation to incorporate thematic surface data using inverse distance weighting (IDW). Computers and Geosciences, 22(7): 795-799. doi: 10.1016/0098-3004(96)00021-0

    Bencherki A. 2008. Réalisation d'une carte de vulnérabilité des nappes phréatique de la région de Saida, en Algérie, avec l'aide des systèmes d'information géographique. MS. thesis. Canada: MONCTON University.

    Chowdhury A, Jha MK, Chowdary VM, et al. 2009. Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur District, West Bengal, India. International Journal of Remote Sensing, 30(1): 231-250. doi: 10.1080/01431160802270131

    Dahmani MN. 2016. Etude hydrologique e hydro-géologique du Bassin versant de l'Oued Saida, Magister thesis, University of d'Oran 2, Algeria. https://ds.univ-oran2.dz:8443/jspui/handle/123456789/458

    Das B, Pal SC. (2019). Combination of GIS and fuzzy-AHP for delineating groundwater recharge potential zones in the critical Goghat-Ⅱ block of West Bengal, India. HydroResearch, 2: 21-30. http://www.sciencedirect.com/science/article/pii/S2589757819300149

    Djidi K, Bakalowicz M, Benali AM. 2008. Mixed, classical and hydrothermal karstification in a carbonate aquifer: Hydrogeological consequences. The case of the Saida aquifer system, Algeria. Comptes Rendus Geo-science, 340(7): 462-473.

    Döell P, Hoffmann-Dobrev H, Portmann F, et al. 2012. Impact of water withdrawals from groundwater and surface water on continental water storage variations. Journal of Geodynamics, 59: 143-156. http://www.sciencedirect.com/science/article/pii/S0264370711000597

    Edet AE, Okereke CS, Teme SC, et al. 1998. Application of remote sensing data to ground-water exploration: A case study of the Cross River State, South Nigeria. Hydrogeology Journal, 6(3): 394-404. doi: 10.1007/s100400050162

    Field CB, Barros VR, Dokken DJ, et al. 2014. IPCC Climate change 2014: Impacts, adaptation and vulnerability. Part A: Global and sectoral aspects. Contribution of working group Ⅱ to the Fifth Cambridge, United Kingdom and NewYork, NY, USA: Cambridge University Press: 1132.

    Gdoura K, Anane M, Jellali S. 2015. Geospatial and AHP multicriteria analyses to locate and rank suitable sites for groundwater recharge with reclaimed water. Resources, Conservation and Recycling, 104: 19-30. doi: 10.1016/j.resconrec.2015.09.003

    Gebru H, Gebreyohannes T, Hagos E. 2020. Identification of groundwater potential zones using analytical hierarchy process (AHP) and GIS-remote sensing integration, the Case of Golina River Basin, Northern Ethiopia. International Journal, 9(1): 3289-3311. http://www.researchgate.net/publication/341430976_Identification_of_Groundwater_Potential_Zones_Using_Analytical_Hierarchy_Process_AHP_and_GIS-Remote_Sensing_Integration_the_Case_of_Golina_River_Basin_Northern_Ethiopia

    Ghosh D, Mandal M, Karmakar M, et al. 2020. Application of geospatial technology for delineating groundwater potential zones in the Gandheswari Watershed, West Bengal. Sustain. Water Resour Manag, 6: 14. https://link.springer.com/article/10.1007/s40899-020-00372-0 doi: 10.1007/s40899-020-00372-0

    Hachem AM, Ali E, El Ouali Abdelhadi EHA, et al. 2015. Using remote sensing and GIS-Multicriteria decision analysis for ground-water potential mapping in the Middle Atlas Plateaus, Morocco. Research Journal of Recent Sciences, 4(7): 1-10. http://www.researchgate.net/publication/282817563_Using_Remote_Sensing_and_GIS-Multicriteria_decision_Analysis_for_Groundwater_Potential_Mapping_in_the_Middle_Atlas_Plateaus_Morocco

    Hanquiez V, Coutelier C, Pierson J. 2014. Introduction a l'analyse spatiale sur ArcGis for Desktop 10.2. Université de Bordeaux et CNRS. http://vincent.hanquiez.free.fr/Images/Hanquiez_Formation_ArcGIS10.2_IntroAS.pdf

    Hennequi M. 2010. Spatialization of modeling data by Krigeage. Strasburg University: 7. https://dumas.ccsd.cnrs.fr/dumas-00520260/document

    Huisman O, Rolf De by. 2009. Principles of geographic information systems-an intro-ductory text book, serie 1. The interna-tional institute for geo-information science and earth observation. Netherlands: ITC: 1-441.

    Isaaks EH, Srivastava RM. 1989. An introduction to applied geostatistics. New York: Oxford University Press.

    Jha MK, Chowdary VM, Chowdhury A. 2010. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multicriteria decision analysis techniques. Hydrogeology Journal, 18(7): 1713-1728. https://doi.org/10.1007/s10040-010-0631-z doi: 10.1007/s10040-010-0631-z

    Jordan G, Meijninger BML, Hinsbergen DJJV, et al. 2005. Extraction of morphotectonic features from DEMs: Development and applications for study areas in Hungary and NW Greece. International Journal of Applied Earth Observation and Geoinformation, 7(3): 163-182. doi: 10.1016/j.jag.2005.03.003

    Kanohin F, Saley MB, Aké GE, et al. 2012. Apport de la télédétection et des SIG dans l'identification des ressources en eau souterraine dans la région de Daoukro (Centre- Est de la Côte D'Ivoire). Journal of Innovation and Applied Studies, 1(1): 35-53. http://www.researchgate.net/publication/234096716_Apport_de_la_tldtection_et_des_SIG_dans_l'identification_des_ressources_en_eau_souterraine_dans_la_rgion_de_Daoukro_(Centre-Est_de_la_Cte_D'Ivoire)

    Kessar C, Benkesmia Y, Blissag B, et al. 2020. Gis based analytical hierarchical process for the assessment of groundwater potential zones in Wadi Saida Watershed (NW-ALGERIA). 2020 Mediterranean and Middle-East Geo-science and Remote Sensing Symposium (M2GARSS). IEEE: 277-280. http://www.researchgate.net/publication/341844988_Gis_Based_Analytical_Hierarchical_Process_for_the_Assessment_of_Groundwater_Potential_Zones_in_Wadi_Saida_Watershed_NW-ALGERIA

    Kettab A. 2001. Les ressources en eau en Algérie: stratégies, enjeux et vision. Desalination, 136(1-3): 25-33. doi: 10.1016/S0011-9164(01)00161-8

    Klaus GD. 2013. Implementing the analytic hierarchy process as a standard method for multi-criteria decision making in corporate enterprises-a new AHP excel template with multiple inputs. Proceedings of the International Symposium on the Analytic Hierarchy Process: 1-10. http://www.researchgate.net/publication/275584293_Implementing_the_analytic_hierarchy_process_as_a_standard_method_for_multi-criteria_decision_making_in_corporate_enterprises-a_new_AHP_excel_template_with_multiple_inputs

    Koita M, Jourde H, Ruelland D, et al. 2010. Cartographie des accidents régionaux et identification de leur rôle dans l'hydro-dynamique souterraine en zone de socle. Cas de la région de Dimbokro-Bongouanou (Côte d'Ivoire). Hydrological Sciences Journal, 55(5): 805-820. http://www.tandfonline.com/doi/full/10.1080/02626667.2010.489749?scroll=top&needAccess=true&

    Koudou A, Assoma TV, Adiaffi B, et al. 2014. Analyses statistique et géostatistique de la fracturation extraite de l'imagerie ASAR ENVISAT du SUD-EST de la Côte d'Ivoire. Larhyss Journal, 20: 147-166. http://larhyss.net/ojs/index.php/larhyss/article/view/240

    Kumar T, Gautam K, Kumar T. 2014. Appraising the accuracy of GIS based multicriteria decision making technique for delineation of groundwater potential zones. Water Resources Management, 28: 4449-4466. doi: 10.1007/s11269-014-0663-6

    Le Page M, Berjamy B, Fakir Y, et al. 2012. An integrated DSS for groundwater management based on remote sensing. The case of a semi-arid aquifer in Morocco. Water Resources Management, 26(11): 3209-3230. doi: 10.1007/s11269-012-0068-3

    Leroux R. 2007. Définition et application d'une méthodologie pour l'étude de la propagation d'états de mer en milieu côtier. http://web.univ-ubs.fr/lmba/frenod/IMG/pdf/Rap-StagRomain.pdf. (in French)

    Machiwal D, Jha MK, Mal BC. 2011. Assessment of groundwater potential in semi-arid region of india using remote sensing, GIS and MCDM Techniques. Water Resources Management, 25(5): 1359-1386. doi: 10.1007/s11269-010-9749-y

    Magesh NS, Chandrasekar N, Soundranayagam JP. 2012. Delineation of groundwater potential zones in Theni. District, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience Frontiers, 3(2): 189-196. http://www.cqvip.com/QK/71129X/20122/41195861.html

    Maity DK, Manda S. 2017. Identification of groundwater potential zones of the Kumari river Basin, India: An RS and GIS based semi-quantitative approach. Environ Dev Sustain, 21: 1013-1034. http://link.springer.com/10.1007/s10668-017-0072-0

    Malczewski J. 1999. GIS and Multicriteria decision analysis. Wiley, United States of America: 177-192.

    Medjber A, Berkane F. 2016. Quantification et évolution du Bilan de la nappe karstique de Saida (Nord-Ouest De l'Algérie). Journal Scientifique Européen, 12(9): 349. (in French) http://www.researchgate.net/publication/344628396_Quantification_Et_Evolution_Du_Bilan_De_La_Nappe_Karstique_De_Saida_Nord-Ouest_De_l'Algerie

    NAHR. 2008. The 1/200 000 geological map of northern Algeria.

    NAHR. 2014. Five Stations Rainfall Data.

    Nas B. 2009. Geostatistical approach to assessment of spatial distribution of groundwater quality. Polish Journal of Environmental Studies, 18(6): 1073-1082. http://www.cabdirect.org/abstracts/20103046528.html

    Nithyaa CN, Srinivas Y, Magesh NS, et al. 2019. Assessment of groundwater potential zones in Chittar basin, Southern India using GIS based AHP technique. Remote Sensing Applications: Society and Environment, 5: 1-15. http://www.sciencedirect.com/science/article/pii/S2352938519301168

    Nouayti A, Khattach D, Hilali M, et al. 2019. Mapping potential areas for groundwater storage in the High Guir Basin (Morocco): Contribution of remote sensing and geo-graphic information system. Journal of Groundwater Science and Engineering, 7(4): 309-322. http://gwse.iheg.org.cn/en/article/doi/DOI:%2010.19637/j.cnki.2305-7068.2019.04.002

    Nouayti N, Khattach D, Hilali M. 2017. Potential areas mapping for the groundwater storage in the high Ziz Basin (Morocco): Contribution of remote sensing and geographic information system. Bulletin de l'Institut Scientifique, Rabat, Section Sciences de la Terre, 39: 45-57. http://www.researchgate.net/publication/323153687_Potential_areas_mapping_for_the_groundwater_storage_in_the_high_Ziz_basin_Morocco_Contribution_of_remote_sensing_and_geographic_information_system

    Ould Cherif Ahmed A, Nagasawa R, Hattorin K, et al. 2008. Identification of groundwater potential areas in arid land using remote sensing and GIS: A case study for the Adrar region of northern Mauritania. Sand Dune Research, 55(1): 1-11. http://ci.nii.ac.jp/naid/10021176433

    Pankaj KS, Amit KB. 2006. Groundwater assess-ment through an integrated approach using remote sensing, GIS and resistivity tech-niques: A case study from a hard rock terrain. International Journal of Remote Sensing, 27(20): 4599-4620. doi: 10.1080/01431160600554983

    Pitaud G. 1973. Etude hydrogéologique pour la mise en valeur de la vallée de l'oued Saïda, DEMRH: 54-55. (in French)

    Prasad RK, Mondal NC, Banerjee P, et al. 2008. Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology, 55: 467-475. doi: 10.1007/s00254-007-0992-3

    Pretorius JPG, Partridge TC. 1974. Analysis of angular a typicality of lineaments as aid to mineral exploration. Journal of South African Institute of Mining and Metallurgy, 74(10): 367-369. http://www.researchgate.net/publication/265284313_The_analysis_of_angular_atypicality_of_lineaments_as_an_aid_to_mineral_exploration

    Rahmati O, Samani AN, Mahdavi M, et al. 2015. Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 8: 7059-7071. doi: 10.1007/s12517-014-1668-4

    Rajasekhar M, Sudarsana Raju G, Sreenivasulu Y, et al. 2019. Delineation of groundwater potential zones in semi-arid region of Jilledu-banderu river basin, Anantapur District, Andhra Pradesh, India using fuzzy logic, AHP and integrated fuzzy-AHP approaches. Hydro Research, 2: 97-108. http://www.sciencedirect.com/science/article/pii/S2589757819300204

    Rao BV, Briz-Kishore BH. 1991. A methodology for locating potential aquifers in a typical semi-arid region in India using resistivity and hydrogeologic parameters. Geoexploration, 27(1-2): 55-64. doi: 10.1016/0016-7142(91)90014-4

    Rilo RSA, Doni PEP, Lucas DS. 2019. Delineation of groundwater potential zones using re-mote sensing, GIS, and AHP techniques in southern region of Banjarnegara, Central Java, Indonesia, In: Proc. SPIE 11311, Sixth Geoinformation Science Symposium. Doi: 10.1117/12.2548473

    Saaty TL. 1980. The analytic hierarchy process: Planning, priority setting, resource allocation. New York: McGraw-Hill: 340.

    Sander P. 2007. Lineaments in groundwater ex-ploration: A review of applications and limi-tations. Hydrogeology Journal, 15(1): 71-74. doi: 10.1007/s10040-006-0138-9

    Saprikhine O, Riabenko V. 1978. Rapport sur les résultants des recherches systématiques et levé géologique à 1/50 000 effectué en 1978 par l'équipe dans le périmètre de la feuille n°304 (Saida). (in French)

    Sekar I, Randhir TO. 2007. Spatial assessment of conjunctive water harvesting potential in watershed systems. Journal of Hydrology, 334(1-2): 39-52. doi: 10.1016/j.jhydrol.2006.09.024

    Senanayake IP, Dissanayake DMDOK, Maya-dunna BB, et al. 2015. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geoscience Frontiers, 7(1): 115-124.

    Shekhar S, Pandey AC. 2014. Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geo-graphical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto International, 30(4): 402-421.

    Suja Rose RS, Krishnan N. 2009. Spatial analysis of groundwater potential using remote sensing and GIS in the Kanyakumari and Nambiyar basins, India. Journal of the Indian Society of Remote Sensing, 37: 681-692. Doi: 10.1007/s12524-009-0058-y

    Wondifraw N, Binyam TH, Tilahun A. 2019. Mapping of groundwater potential zones using sentinel satellites (-1 SAR and -2A MSI) images and analytical hierarchy process in Ketar Watershed, Main Ethiopian Rift. Journal of African Earth Sciences, 160: 1-17. http://www.sciencedirect.com/science/article/pii/S1464343X19302870

    WWDR. 2019. UN World Water Development Report 2019: Leaving No One Behind. The United Nations Educational, Scientific and Cultural Organization.

    Yles F. 2014. Modélisation pluie-débit et transport solide dans le bassin versant de l'oued Saida. Ph. D. thesis, Algeria: Abou Bakr Belkaid University. (in French)

  • 加载中

(16)

(8)

计量
  • 文章访问数:  6249
  • PDF下载数:  115
  • 施引文献:  0
出版历程
收稿日期:  2020-09-10
录用日期:  2020-12-03
刊出日期:  2021-03-15

目录