中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Liang Wen, Zhou Nian-qing, Dai Chao-meng, Duan Yan-ping, Zhou Lang, Tu Yao-jen. 2021. Study of diclofenac removal by the application of combined zero-valent iron and calcium peroxide nanoparticles in groundwater. Journal of Groundwater Science and Engineering, 9(3): 171-180. doi: 10.19637/j.cnki.2305-7068.2021.03.001
Citation: Liang Wen, Zhou Nian-qing, Dai Chao-meng, Duan Yan-ping, Zhou Lang, Tu Yao-jen. 2021. Study of diclofenac removal by the application of combined zero-valent iron and calcium peroxide nanoparticles in groundwater. Journal of Groundwater Science and Engineering, 9(3): 171-180. doi: 10.19637/j.cnki.2305-7068.2021.03.001

Study of diclofenac removal by the application of combined zero-valent iron and calcium peroxide nanoparticles in groundwater

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Table 1.  Crystal plane index of nZVI

    Diffraction angle (°)44.765.082.3
    Crystal plane distance (Å)2.025 71.433 71.170 6
    下载: 导出CSV

    Table 2.  Crystal plane index of nCaO2

    Diffraction
    angle (°)
    30.135.647.351.653.2
    Crystal plane
    distance (Å)
    2.966 62.519 81.920 21.769 91.720 3
    下载: 导出CSV

    Table 3.  Dosages of nZVI and nCaO2 in continuous-flow experiments

    nZVI (g/L)nCaO2 (g/L)
    10.050.2
    20.11.0
    30.51.0
    40.751.0
    下载: 导出CSV

    Table 4.  Analysis of variance of DCF degradation model

    ParameterSquare sumF valuep value
    Model23 202.18153.88< 0.000 1
    A nZVI468.1818.630.001 5
    B nCaO233.621.340.274 3
    C pH14 179.28564.24< 0.000 1
    A21 146.3245.62< 0.000 1
    B2934.7837.200.000 1
    C25 733.09228.14< 0.000 1
    下载: 导出CSV

    Table 5.  Optimized condition of DCF degradation

    nZVI dosage (g/L)nCaO2 dosage (g/L)pH valueDCF degradation (%)
    0.045-0.0550.190-0.2125.094.9-95.7
    下载: 导出CSV
  • [1]

    Abraham N, Daniel C. 2008. Calcium peroxide (CaO2) for use in modified Fenton chemistry. Journal of Hazardous Materials, 152(3): 1164-1170. doi: 10.1016/j.jhazmat.2007.07.096

    [2]

    Bin W, Shu-bo D, Jun H, et al. 2013. Environmental risk assessment and control of emerging contaminants in China. Environmental Chemistry(7): 1129-1136. doi: 10.7524/j.issn.0254-6108.2013.07.003

    [3]

    Einsiedl F, Radke M, Maloszewski P. 2010. Occurrence and transport of pharmaceuticals in a karst groundwater system affected by domestic wastewater treatment plants. Journal of Contaminant Hydrology, 117(1): 26-36. doi: 10.1016/j.jconhyd.2010.05.008

    [4]

    Forrez I, Carballa M, Verbeken K, et al. 2010. Diclofenac oxidation by biogenic manganese oxides. Environmental Science and Technology, 44(9): 3449-3454. doi: 10.1021/es9027327

    [5]

    Gomes DS, Gando-Ferreira LM, Quinta-Ferreira RM, et al. 2018. Removal of sulfamethoxazole and diclofenac from water: Strategies involving O3 and H2O2. Environmental Technology, 39(13): 1658-1669. doi: 10.1080/09593330.2017.1335351

    [6]

    Joo SH, FEITZ AJ, WAITE TD. 2004. Oxidative degradation of the carbothioate herbicide, molinate, using nanosoale zero-valent iron. Environmental Science and Technology, 38(7): 2242-2247. doi: 10.1021/es035157g

    [7]

    Jurado A, Walther M, Díaz-Cruz MS. 2019. Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain. Science of the Total Environment, 663: 285-296. doi: 10.1016/j.scitotenv.2019.01.270

    [8]

    Li R, Jin X, Megharaj M, et al. 2015. Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system. Chemical Engineering Journal, 264: 587-594. doi: 10.1016/j.cej.2014.11.128

    [9]

    Liang W, Dai CM, Zhou XF, et al. 2014. Application of zero-valent iron nanoparticles for the removal of aqueous zinc ions under various experimental conditions. Plos One, 9(1): e85686. doi: 10.1371/journal.pone.0085686

    [10]

    Liang W, Zhou NQ, Dai C M, et al. 2020. Zero-valent iron nanoparticles and its combined process for diclofenac degradation under various experimental conditions. Polish Journal of Environmental Studies, 30(2): 1279-1288. doi: 10.15244/pjoes/123921

    [11]

    Mikhailov I, Komarov S, Levina V, et al. 2017. Nanosized zero-valent iron as Fenton-like reagent for ultrasonic-assisted leaching of zinc from blast furnace sludge. Journal of Hazardous Materials, 321: 557-565. doi: 10.1016/j.jhazmat.2016.09.046

    [12]

    Muhammad U, Hamidi Abdul A, Mohd Suffian Y. 2010. Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Management, 30(11): 2113-2121. doi: 10.1016/j.wasman.2010.07.003

    [13]

    Mutiyar PK, Gupta SK, Mittal AK. 2018. Fate of pharmaceutical active compounds (PhACs) from River Yamuna, India: An ecotoxicological risk assessment approach. Ecotoxicology and Environmental Safety, 150(15): 297-304. doi: 10.1016/j.ecoenv.2017.12.041

    [14]

    Qian Y, Zhou X, Zhang Y, et al. 2013. Performance and properties of nanoscale calcium peroxide for toluene removal. Chemosphere, 91(5): 717-723. doi: 10.1016/j.chemosphere.2013.01.049

    [15]

    Schwaiger J, Ferling H, Mallow U, et al. 2004. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part I: Histopathological alterations and bioaccumulation in rainbow trout. Aquatic Toxicology, 68(2): 141-150. doi: 10.1016/j.aquatox.2004.03.014

    [16]

    Shen J, Ou C, Zhou Z, et al. 2013. Pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater using a combined zero-valent iron (ZVI) reduction and Fenton oxidation process. Journal of Hazardous Materials, 260: 993-1000. doi: 10.1016/j.jhazmat.2013.07.003

    [17]

    Shirazi E, Torabian A, Nabi Bidhendi G. 2013. Carbamazepine removal from groundwater: Effectiveness of the TiO2/UV, nanoparticulate zero-valent iron, and Fenton (nZVI/H2O2) processes. Clean - Soil Air Water, 41(11): 1062-1072. doi: 10.1002/clen.201200222

    [18]

    Singh R, Misra V, Mudiam MKR, et al. 2012. Degradation of γ-HCH spiked soil using stabilized Pd/Fe0 bimetallic nanoparticles: Pathways, kinetics and effect of reaction condition. Journal of Hazardous Materials, 237-238: 355-364. doi: 10.1016/j.jhazmat.2012.08.064

    [19]

    Stefaniuk M, Oleszczuk P, Ok YS. 2016. Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chemical Engineering Journal, 287: 618-632. doi: 10.1016/j.cej.2015.11.046

    [20]

    Sun YP, Li XQ, Cao J, et al. 2006. Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120(1-3): 47-56. doi: 10.1016/j.cis.2006.03.001

    [21]

    Vieno N, Sillanpää M. 2014. Fate of diclofenac in municipal wastewater treatment plant – A review. Environment International, 69: 28-39. doi: 10.1016/j.envint.2014.03.021

    [22]

    Vilardi G, Sebastiani D, Miliziano S, et al. 2018. Heterogeneous nZVI-induced Fenton oxidation process to enhance biodegradability of excavation by-products. Chemical Engineering Journal, 335: 309-320. doi: 10.1016/j.cej.2017.10.152

    [23]

    Vymazal J, Dvořáková Březinová T, Koželuh M, et al. 2017. Occurrence and removal of pharmaceuticals in four full-scale constructed wetlands in the Czech Republic–the first year of monitoring. Ecological Engineering, 98: 354-364. doi: 10.1016/j.ecoleng.2016.08.010

    [24]

    Wang HF, Zhao YS, Li TY, et al. 2016. Properties of calcium peroxide for release of hydrogen peroxide and oxygen: A kinetics study. Chemical Engineering Journal, 303: 450-457. doi: 10.1016/j.cej.2016.05.123

    [25]

    Zhang W, Gao H, He J, et al. 2017. Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron (nZVI) with H2O2 system: Optimization of operating conditions and degradation pathway. Separation and Purification Technology, 172: 158-167. doi: 10.1016/j.seppur.2016.08.008

  • 加载中

(8)

(5)

计量
  • 文章访问数:  1458
  • PDF下载数:  43
  • 施引文献:  0
出版历程
收稿日期:  2021-05-20
录用日期:  2021-07-25
刊出日期:  2021-09-15

目录