北山造山带白云山蛇绿岩地幔橄榄岩成因及形成环境

杨剑洲, 龚晶晶, 高健翁, 蔡永文, 席明杰, 马生明. 2019. 北山造山带白云山蛇绿岩地幔橄榄岩成因及形成环境. 西北地质, 52(3): 1-13. doi: 10.19751/j.cnki.61-1149/p.2019.03.001
引用本文: 杨剑洲, 龚晶晶, 高健翁, 蔡永文, 席明杰, 马生明. 2019. 北山造山带白云山蛇绿岩地幔橄榄岩成因及形成环境. 西北地质, 52(3): 1-13. doi: 10.19751/j.cnki.61-1149/p.2019.03.001
YANG Jianzhou, GONG Jingjing, GAO Jianweng, CAI Yongwen, XI Mingjie, MA Shengming. 2019. Petrogenesis and Geotectonic Setting of Mantle Peridotites from the Baiyunshan Ophiolite in Beishan Orogen. Northwestern Geology, 52(3): 1-13. doi: 10.19751/j.cnki.61-1149/p.2019.03.001
Citation: YANG Jianzhou, GONG Jingjing, GAO Jianweng, CAI Yongwen, XI Mingjie, MA Shengming. 2019. Petrogenesis and Geotectonic Setting of Mantle Peridotites from the Baiyunshan Ophiolite in Beishan Orogen. Northwestern Geology, 52(3): 1-13. doi: 10.19751/j.cnki.61-1149/p.2019.03.001

北山造山带白云山蛇绿岩地幔橄榄岩成因及形成环境

  • 基金项目:

    中国地质调查局地质调查项目“内蒙古黑鹰山地区矿产地质调查”(DD20160040),中国地质科学院基本科研业务费“内蒙古架子山银钼多金属矿床成因研究”(AS2017J04)

详细信息
    作者简介: 杨剑洲(1990-),男,助理工程师,主要从事矿产勘查和生态地球化学调查工作。E-mail:yangjianzhou@igge.cn
  • 中图分类号: P588.12

Petrogenesis and Geotectonic Setting of Mantle Peridotites from the Baiyunshan Ophiolite in Beishan Orogen

  • 白云山蛇绿岩是北山造山带保存最好的蛇绿岩之一,其起源存在较大的争议。该蛇绿岩主要由橄榄岩、辉长岩以及基性火山岩等组成。橄榄岩主体为方辉橄榄岩以及少量二辉橄榄岩。这些岩石均发生不同程度的蛇纹石化以及强烈的变形变质作用。研究选取9件橄榄岩样品进行了全岩主量元素分析及单矿物电子探针分析,结果显示岩石均来自地幔。岩石中的尖晶石和辉石组分用来限定白云山蛇绿岩的成因及形成环境。样品包含了高Cr#(46.7~68.1)的尖晶石以及低Al2O3(0.78%~2.94%)含量的单斜辉石。矿物化学特征显示,地幔橄榄岩熔融程度为23%~36%,表明白云山地幔橄榄岩可能经历了多个阶段。矿物学及全岩地球化学特征表明,白云山蛇绿岩形成于洋中脊(MOR)环境,后受到俯冲带(SSZ)环境的改造。
  • 加载中
  • 侯青叶,王忠,刘金宝,等.北山月牙山蛇绿岩地球化学特征及SHRIMP定年[J].现代地质, 2012, 26(05):1008-1018.

    HOU Qingye, WANG Zhong, WANG Jin, et al. Geochemistry Characteristics and SHRIMP Dating of Yueyashan Ophiolite in Beishan Orogen[J]. Geoscience, 2012, 26(05):1008-1018.

    胡振兴,刘益,孙文礼,等.祁连山玉石沟橄榄岩岩浆作用的记录和铬铁矿的成因[J].西北地质,2015,48(01):1-15.

    HU Zhenxing, LIU Yi, SUN Wenli, et al. The Magmatic Record in the Peridotites from Yushigou, Qilian Orogen and the Petrogenesis of the Ophiolite-Type Chromitites[J].Northwestern Geology, 2015, 48(01):1-15.

    胡新茁,赵国春,胡新悦,等.内蒙古北山地区月牙山蛇绿质构造混杂岩带地质特征、形成时代及大地构造意义[J].地质通报,2015,34(Z1):425-436.

    HU Xinzhuo, ZHAO Guochun, HU Xinyue, et al. Geological Characteristics, Formation Epoch and Geotectonic Significance of the Yueyashan Ophiolitic Tectonic Mélange in Beishan Area, Inner Mongolia[J]. Geological Bulletin of China, 2015, 34(2/3):425-436.

    黄强太,李建峰,夏斌,等.西藏班公湖-怒江缝合带中段江错蛇绿岩岩石学、地球化学、年代学及地质意义[J].地球科学(中国地质大学学报),2015, 40(01):34-48.

    HUANG Qiangtai, LI Jianfeng, XIA Bin, et al. Petrology, Geochemistry, Chronology and Geological Significance of Jiang Tso Ophiolite in Middle Segment of Bangonghu-Nujiang Suture Zone, Tibet[J]. Earth Science-Journal of China University of Geoscience, 2015, 40(01):34-48.

    连东洋,杨经绥,熊发挥,等.雅鲁藏布江蛇绿岩带西段达机翁地幔橄榄岩组成特征及其形成环境分析[J].岩石学报,2014,30(08):2164-2184.

    LIAN Dongyang, YANG Jingsui, XIONG Fahui, et al. Composition Characteristics and Tectonic Setting of the Dajiweng Peridotite in the Western Yarlung-Zangbo Ophiolitic Belt[J]. Acta Petrologica Sinica,2014,30(08):2164-2184.

    孙立新,张家辉,任邦方,等.北山造山带白云山蛇绿混杂岩的地球化学特征、时代及地质意义[J].岩石矿物学杂志,2017,36(02):131-147.

    SUN Lixin, ZHANG Jiahui, REN Bangfang, et al. Geochemical Characteristics and U-Pb Age of Baiyunshan Ophiolite Mélange in the Beishan Orogenic Belt and their Geological Implications[J]. Acta Petrologica et Mineralogica,2017,36(02):131-147.

    王鑫玉, 袁超, 龙晓平,等.北山造山带尖山和石板井花岗岩年代学、地球化学研究及其地质意义[J].地球化学,2018,47(01):63-78.

    WANG Xinyu, YUAN Chao, LONG Xiaoping, et al. Geochronological, Geochemical, and Geological Significance of Jianshan and Shibanjing Granites in the Gongpoquan Arc, Beishan Orogenic Belt[J]. Geochimica,2018,47(01):63-78.

    杨合群,李英,赵国斌,等.北山蛇绿岩特征及构造属性[J].西北地质,2010,43(01):26-36.

    YANG Hequn, LI Ying, ZHAO Guobin, et al. Character and Structural Attribute of the Beishan Ophiolite[J]. Northwestern Geology, 2010,43(01):26-36.

    高峰,菅坤坤,李宁,等.北山造山带东段芨芨泉岩体地球化学特征、锆石U-Pb年代学及其构造意义[J].西北地质,2018,51(03):26-37.

    GAO Feng, JIAN Kunkun, LI Ning, et al. U-Zircon U-Pb Dating and Geochemistry of Jijiquan Pluton in the Eastern Section of Beishan Orogenic Belt and their Tectonic Implications[J]. Northwestern Geology, 2018,51(03):26-37.

    谢燮,赵国斌,杨合群,等.甘肃北山孙家岭含钪岩体LA-ICP-MS锆石U-Pb测年及地质意义[J].中国地质,2018,45(03):483-492.

    XIE Xie, ZHAO Guobin, YANG Hequn, et al. LA-ICP-MS zircon U-Pb Dating and Geological Significance of the Sunjialing Scandium Mineralized Intrusion in the Beishan Region, Gansu Province[J]. Geology in China, 2018, 45(3):483-492

    董洪凯,孟庆涛,刘广,等.内蒙古北山地区标山一带早志留世花岗岩地球化学特征及构造意义[J].西北地质,2018,51(01):159-174.

    DONG Hongkai, MENG Qingtao, LIU Guang, et al. Geochemical Characteristics of Early Silurian Granite from Biaoshan Area in Beishan, Inner Mongolia and Their Tectonic Implications[J]. Northwestern Geology, 2018,51(01):159-174.

    郑荣国,吴泰然,张文,等.北山地区月牙山-洗肠井蛇绿岩的地球化学特征及形成环境[J].地质学报,2012,86(06):961-971.

    ZHENG Rongguo, WU Tairan, ZHANG Wen, et al. Geochemical Characteristics and Tectonic Setting and of the Yueyashan-Xichangjing Ophiolite in the Beishan Area[J]. Acta Geologica Sinica,2012,86(06):961-971.

    左国朝,何国琦,李红诚,等.北山板块构造及成矿规律[M].北京:北京大学出版社,1990.

    ZUO Guochao, HE Guoqi, LI Hongcheng, et al. Plante Tectonics and Metallo ogenic Regulaties in Beishan Region[M]. Beijing:Peking University Publication, 1990.

    AHMED A H. Highly depleted harzburgite-dunite-chromitite complexes from the Neoproterozoic ophiolite, south Eastern Desert, Egypt:A possible recycled upper mantle lithosphere[J]. Precambrian Research, 2013,233(3):173-192.

    ANONYMOUS. Penrose Field Conference on ophiolites[J]. Geotimes,1972,17:14-15.

    AO S J, XIAO W J, WINDLEY B F, et al. Paleozoic accretionary orogenesis in the eastern Beishan orogen:Constraints from zircon U-Pb and 40 Ar/ 39Ar geochronology[J]. Gondwana Research, 2016,30:224-235.

    AO S J, XIAO W J, HAN C M, et al. Cambrian to early Silurian ophiolite and accretionary processes in the Beishan collage, NW China:implications for the architecture of the Southern Altaids[J]. Geological Magazine, 2012, 149(04):606-625.

    ARAI S. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry[J]. Mineralogical Magazine, 1992, 56(383):173-184.

    ARAI S. Characterization of spinel peridotites by olivine-spinel compositional relationships:Review and interpretation[J]. Chemical Geology,1994, 113(3):191-204.

    BARNES S J and ROEDER P L. The range of spinel compositions in Terrestrial mafic and ultramafic rocks[J]. Journal of Petrology,2001, 42(12):2279-2302.

    BECCALUVA L, GIROLAMO P D, MACCIOTTA G, et al. Magma affinities and fractionation trends in ophiolites[J]. Ofioliti, 1983, 8(3):307-323.

    BÉDARD é,HÉBERT R,GUILMETTE C,et al. Petrology and geochemistry of the Saga and Sangsang ophiolitic massifs,Yarlung Zangbo Suture Zone,Southern Tibet:Evidence for an arc-back-arc origin[J]. Lithos, 2009, 113(1-2):48-67

    BHAT I M, AHMAD T, SUBBA R. Compositional variability of spinel-group minerals from the Shergol serpentinized peridotites along Indus Suture Zone, Ladakh Himalaya (India):Constraints on Tectonomagmatic History[J]. Chemie der Erde-Geochemistry, 2017,77(4):587-595.

    BRAUN J, DOOLEY J, GOLEBY B, et al. Secular variation in the composition of subcontinental lithospheric mantle:geophysical and geodynamic Implications[M]. American Geophysical Union,2013, 1-26.

    CHEN T, JIN Z, SHEN A H, et al. Altered Spinel as a Petrotectonic indicator in abyssal peridotite from the easternmost part of Southwest Indian Ridge[J]. Journal of Earth Science, 2016, 27(4):611-622.

    CHOIS H, SHERVAIS J W, MUKASA S B. Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California[J]. Contributions to Mineralogy and Petrology, 2008, 156(5):551-576.

    DILEK Y, FURNES H. Ophiolite Genesis and Global Tectonics:Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J].2011,123(3-4):387-411.

    DICK H J, BULLEN T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas[J]. Contributions to Mineralogy & Petrology, 1984, 86(1):54-76.

    DUPUIS C R, HÉBERT D V, GUILMETTE C, et al. The Yarlung Zangbo Suture Zone ophiolitic mélange(southern Tibet):new insights from geochemistry of ultramafic rocks[J]. Journal of Asian Earth Sciences, 2005, 25(6):937-960.

    FRANZ L and WIRTH R. Spinel inclusions in olivine of peridotite xenoliths from TUBAF seamount (Bismarck Archipelago/Papua New Guinea):evidence for the thermal and tectonic evolution of the oceanic lithosphere[J]. Contributions to Mineralogy & Petrology, 2000, 140(3):283-295.

    FURNES H and DILEK Y. Geochemical characterization and petrogenesis of intermediate to silicic rocks in ophiolites:A global synthesis[J].Earth-Science Reviews, 2017, 166(Supplement C):1-37.

    GAETANI G A, GROVE T L. The influence of water on melting of mantle peridotite[J]. Contributions to Mineralogy & Petrology, 1998, 131(4):323-346.

    GONZÁLEZ-JIMÉNEZ J M, PROENZA J A, GERVILLAF, et al. High-Cr and high-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal ophiolitic massif (eastern Cuba):Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements[J]. Lithos, 2011, 125(1-2):101-121.

    GUO G G, YANG J S, LIU X D, et al. Mid-ocean ridge (MOR) and suprasubduction zone (SSZ) geological events in the Yarlung Zangbo suture zone:Evidence from the mineral record of mantle peridotites[J]. Journal of Asian Earth Sciences, 2015, 110:33-54.

    HELLEBRAND E, SNOW J E, MVHE R. Mantle melting beneath Gakkel Ridge (Arctic Ocean):abyssal peridotite spinel compositions[J]. Chemical Geology,2002, 182(2):227-235.

    ISHIWATARIA. Igneous Petrogenesis of the Yakuno Ophiolite (Japan) in the context of the diversity of ophiolites[J]. Contributions to Mineralogy & Petrology,1985, 89(2-3):155-167.

    KAPSIOTIS A N. Compositional signatures of SSZ-type peridotites from the northern Vourinos ultra-depleted upper mantle suite, NW Greece[J]. Chemie der Erde-Geochemistry,2014, 74(4):783-801.

    KELEMEN P B. Reaction between ultramafic rock and fractionating basaltic magma I. phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite[J]. Journal of Petrology,1990, 31(1):51-98.

    NIUY L. Mantle Melting and Melt Extraction Processes beneath Ocean Ridges:Evidence from Abyssal Peridotites[J]. Journal of Petrology.1997, 38(8):1047-1074.

    NIU Y L. Bulk-rock Major and Trace Element Compositions of Abyssal Peridotites:Implications for Mantle Melting, Melt Extraction and Post-melting Processes Beneath Mid-Ocean Ridges[J]. Journal of Petrology.2004, 45(12):2423-2458.

    OH C W, RAJESH V J, SEO J. Spinel compositions and tectonic relevance of the Bibong ultramafic bodies in the Hongseong collision belt, South Korea[J]. Lithos. 2010, 117(1-4):198-208.

    MCDONOUGHW F, SUN S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3-4):223-253.

    PALME H. Treatise on Geochemistry||Cosmochemical Estimates of Mantle Composition[M]. Treatise on Geochemistry, 2007:1-38.

    PARKINSON I J and PEARCE J A. Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125):Evidence for Mantle Melting and Melt-Mantle Interaction in a Supra-Subduction Zone Setting[J]. Journal of Petrology,1998, 39(9):1577-1618.

    PEARCE J A, BARKER P F, EDWARDS S J, et al. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic[J]. Contributions to Mineralogy & Petrology, 2000, 139(1):36-53.

    RICHES A J V and ROGERS N W. Mineralogical and geochemical constraints on the shallow origin, ancient veining, and multi-stage modification of the Lherz peridotite[J]. Geochimica et Cosmochimica Acta, 2011, 75(20):6160-6182.

    SANFILIPPO A, TRIBUZIO R and TIEPOLO M. Mantle-crust interactions in the oceanic lithosphere:Constraints from minor and trace elements in olivine[J]. Geochimica et Cosmochimica Acta, 2014, 141:423-439.

    SEO J, OH C W, CHOI S G, et al. Two ultramafic rock types in the Hongseong area, South Korea:Tectonic significance for northeast Asia[J]. Lithos,2013, 175(5):30-39.

    SHAFAⅡ M, HADI,ZAKI K, et al. Arc-related harzburgite-dunite-chromitite complexes in the mantle section of the Sabzevar ophiolite, Iran:A model for formation of podiform chromitites[J]. Gondwana Research,2015, 27(2):575-593.

    SONG D, XIAO W, WINDLEY B F, et al. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt[J]. Lithos,2015, 224-225:195-213.

    SUB, CHEN Y, GUO S, et al. Origins of orogenic dunites:Petrology, geochemistry, and implications[J]. Gondwana Research,2016, 29(1):41-59.

    UYSAL I, DOKUZ A, KAPSIOTIS A, et al. Petrogenesis of ultramafic rocks from the eastern Orhaneli ophiolite, NW Turkey:hints on the initiation and evolution of melt-peridotite interaction processes within a heterogeneously depleted mantle section[J]. Journal of Asian Earth Sciences, 2017,148:51-64.

    UYSAL İ, ERSOY E Y, KARSLI O, et al. Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan Ophiolite in SW Turkey:Constraints from mineral composition, whole-rock geochemistry (major-trace-REE-PGE), and Re-Os isotope systematics[J]. Lithos, 2012, 132-133:50-69.

    XIONG F H, YANG J S, ROBINSONP T, et al. Petrology and geochemistry of peridotites and podiform chromitite in the Xigaze ophiolite, Tibet:Implications for a suprasubduction zone origin[J]. Journal of Asian Earth Sciences, 2017,146:56-75.

    ZHENG J P, SUN M, GRIFFIN WL, et al. Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China:Petrogenetic and geodynamic implications[J]. Chemical Geology, 2008, 247(1-2):282-304.

    ZHENG R G, WU T R, ZHANG W. Late Paleozoic subduction system in the southern Central Asian Orogenic Belt:Evidences from geochronology and geochemistry of the Xiaohuangshan ophiolite in the Beishan orogenic belt[J]. Journal of Asian Earth Sciences,2013, 62:463-475.

  • 加载中
计量
  • 文章访问数:  1732
  • PDF下载数:  1000
  • 施引文献:  0
出版历程
收稿日期:  2018-08-26
修回日期:  2018-12-24

目录