Mineralogy, Geochemistry and Genesis of Duobaoshan Zn-Pb Deposit, in Karakoram, Xinjiang
-
摘要: 新疆喀喇昆仑多宝山铅锌矿床赋存于上白垩统铁隆滩组灰岩段中,明显受构造控制,矿体形态呈不规则囊状、脉状、透镜状等。成矿阶段可分为3期:早期硫化物成矿阶段(方铅矿、闪锌矿、方解石)、中期交代成矿阶段(菱锌矿、铁氧化物、白铅矿、石膏)与晚期氧化阶段(水锌矿)。硫化物阶段方铅矿的δ34S为-14‰~-0.6‰,表明S可能来源于海相硫酸盐岩的还原。Pb同位素组成集中,具有地壳来源特征,二叠系-白垩系可能提供了金属成矿物质。方解石的δ18CPDB为3.5‰~5.7‰,δ18OSMOW为22.1‰~27.1‰,来源于碳酸盐岩地层的溶解作用。交代成矿阶段菱锌矿的δ18CPDB为2.9‰~3.8‰,δ18OSMOW为16.9‰~20.3‰;白铅矿的δ18CPDB为2.7‰~4.4‰,δ18OSMOW为15.8‰~20.3‰,C、O同位素漂移可能是与大气降水的混入有关。硫化物成矿阶段方解石流体包裹体的3He/4He值为0.72~0.93R/Ra,40Ar/36Ar值为302.1~350.7,方铅矿流体包裹体的3He/4He值为1.17R/Ra,40Ar/36Ar值为298.1,交代成矿阶段菱锌矿流体包裹体的3He/4He值为0.22~0.46R/Ra,40Ar/36Ar值为292.6~295.8,白铅矿流体包裹体的3He/4He值为0.40~0.59R/Ra,40Ar/36Ar值为292.9~295.4,两个阶段成矿流体均为地壳流体与大气降水混合流体。综上所述,多宝山铅锌矿床是盆地边缘褶皱逆冲+构造流体+次生交代成矿系统的产物,硫化物成矿阶段为构造热液成因,交代成矿阶段为直接交代成因,后期发生叠加氧化作用。Abstract: Located in Karakoram of Xinjiang, the Duobaoshan lead-zinc deposit was formed in the limestones of the Cretaceous Tielongtan Formation, and was obviously controlled by structural fracture zones. The ore bodies are irregularly sac-like, vein-like, and lenticular-shape-like. It can be divided into three metallogenic stages:the early sulfide mineralization stage, the intermediate replacement mineralization stage and the late oxidation stage. The first stage is characterized by galena, sphalerite and calcite; the second stage is represented by smithsonite, iron oxide, cerussite, and gypsum; the last stage is characterized by hydrozincite. The δ34S values of the galena in the first stage range from -14‰ to -0.6‰, which shows a feature of reduced sulfur source. The lead isotope compositions are concentrated and show a crustal source feature, and the Permian-Cretaceous sedimentary rocks may be the sources of metals. The δ18CPDB values of calcite are from 3.5‰ to 5.7‰ and the δ18OSMOW, from 22.1‰ to 27.1‰ are which indicate the dissolution of carbonate. The δ18CPDB and δ18OSMOW values of the smithsonite are from 2.9‰ to 3.8‰ and 16.9‰ to 20.3‰, respectively. The δ18CPDB and δ18OSMOW values of the cerussite are from 2.7‰ to 4.4‰ and 15.8‰ to 20.3‰, respectively. All these values indicate the mixing of atmospheric precipitation. The 3He/4He and 40Ar/36Ar ratios of the fluid inclusions in the calcite are from 0.72 R/Ra to 0.93 R/Ra and 302.1 to 350.7, respectively; and the 3He/4He and 40Ar/36Ar ratios of the fluid inclusions in the galena are 1.17 R/Ra and 298.1, respectively. The 3He/4He and 40Ar/36Ar ratios of fluid inclusions in the smithsonite are from 0.22R/Ra to 0.46R/Ra and 292.6 to 295.8, respectively; the 3He/4He and 40Ar/36Ar ratios of fluid inclusions in cerussite are from 0.40R/Ra to 0.59R/Ra and 292.9 to 295.4, respectively. Thus, the ore-forming fluid may be the crustal fluid mixed with atmospheric precipitation. In summary, the Duobaoshan zinc-lead deposit is the product of fold thrust in the edge of the basin, structural fluids and secondary replacement system. The sulfides are formed of structural fluids, and the nonsulfides are the result of direct replacement, with oxidation occurring and hydrozincites formed at the last stage.
-
Key words:
- mineralogy /
- geochemistry /
- genesis /
- Duobaoshan Pb-Zn deposit /
- Karakoram
-
-
董连慧, 徐兴旺, 范廷宾, 等. 喀喇昆仑火烧云超大型喷流-沉积成因碳酸盐型Pb-Zn矿的发现及区域成矿学意义[J]. 新疆地质, 2015, 33(1):41-50.
DONG Lianhui, XU Xingwang, FAN Tingbin, et al. Discovery of the Huoshaoyun Super-Large Exhalative-Sedimentary Carbonate Pb-Zn Deposit in the Western Kunlun Area and its Great significance for Regional Metallogeny[J].Xinjiang Geology, 2015, 33(1):41-50.
杜红星, 魏永峰, 薛春纪, 等. 多宝山铅锌矿床地质特征及地球化学研究[J]. 新疆地质, 2012, 30(01):52-57.
DU Hongxing, WEI Yongfeng, XUE Chunji, et al, Geological and Geochemiscal characteristics of Duobaoshan Pb-Zn Deposit in Hetian, Xinjiang[J].Xinjiang Geology,2012, 30(01):52-57.
范廷宾, 余元军, 夏明毅, 等. 新疆和田县火烧云铅锌矿地质特征及其找矿[J]. 四川地质学报,2017, 37(4):578-582.
FAN Tingbin,YU Yuanjun,XIA Mingyi, et al.Geological Features and Prospecting for the Huoshaoyun Pb-Zn Deposit in Hotan, Xinjiang[J]. Acta Geologica Sichuan, 2017,37(4):578-582.
范廷宾, 李昊, 徐兴旺, 等.非硫化物型锌-铅矿床研究现状及其进展[J]. 西北地质, 2018, 51(2):147-159.
FAN Tingbin, LI Hao, XU Xingwang, et al. Research Status and Progress of Nosulfide Zinc-Lead Deposit[J]. Northwestern Geology, 2018, 51(2):147-159.
高永宝, 滕家欣, 李侃. 喀喇昆仑火烧云超大型铅锌矿床成矿特征与成因[J]. 矿物学报, 2017, (增刊):561-562.
GAO Yongbao, TENG Jiaxin, LI Kan. Metallogenic Characteristics and Genesis of Huoshaoyun Super-Large Lead-Zinc Deposit inKarakorum[J]. Journal of Minerals, 2017, (suppl.):561-562.
高永宝, 李侃, 滕家欣, 等. 新疆喀喇昆仑火烧云超大型铅锌矿床矿物学、地球化学及成因[J]. 西北地质, 2019, 52(4):168-185.
GAO Yongbao, LI Kan, TENG Jiaxin, et al. Mineralogy, Geochemistry and Genesis of Giant Huoshaoyun Zn-Pb Deposit, Karakoram, Xinjiang Province, NW China[J]. Northwestern Geology, 2019, 52(4):168-185.
胡瑞忠, 毕献武, TURNER G, 等. 哀牢山金矿带成矿流体He和Ar同位素地球化学[J].中国科学D辑:地球科学, 1999, 29:321-330.
HU Ruizhong, BI Xianwu, TUMER G, et al. Geochemistry of He and Ar isotopes of Gold-Forming fluids in Ailaoshan Gold Belt[J]. Science in China (Series D):Geosciences, 1999, 29:321-330.
黄智龙,李文博,陈进,等.云南会泽超大型铅锌矿床C、O同位素地球化学[J].大地构造与成矿学,2004,(01):53-59.
HUANG Zhilong, LI Wenbo, CHEN Jin, et al. Carbon and Oxygen isotope geochemistry of the Huize super large Pb-Zn ore deposits in Yunnanprovince[J]. Geotectonica et Metallogenia, 2004,(01):53-59.
晋红展, 万建领, 李晓磊. 新疆和田县多宝山铅锌矿地质特征及找矿思路[J]. 新疆有色金属, 2012, 35(S2):71-73.
JIN Hongzhan, WAN jianling, LI Xiaolei. Geological characteristics and prospecting ideas of Duobaoshan lead-zinc deposit in Hetian County,Xinjiang[J]. Xinjiang Non-ferrous Metal, 2012, 35(S2):71-73.
彭建堂, 胡瑞忠, 漆亮, 等. 锡矿山热液方解石的REE分配模式及其制约因素[J]. 地质论评, 2004, 50(1):25-32.
PENG Jiantang, HU Ruizhong, QI Liang, et al. REE Distribution Pattern far the Hydrothermal Calcites from the Xikuangshan Antimony Deposit and Its ConstrainingFactors[J]. Geological Review, 2004, 50(1):25-32.
彭玉旋, 岳蕴辉, 况守英, 等. 新疆火烧云铅锌矿矿石特征研究[J]. 新疆地质, 2018, 36(03):353-356.
PENG Yuxuan, YUE Yunhui, KUANG Shouying,et al. Study on the Mineral Characteristics of Huoshaoyun Pb-Zn Deposit in Xinjiang[J]. Xinjiang Geology, 2018, 36(03):353-356.
任广利, 杨敏, 杨军录. 喀喇昆仑甜水海-火烧云一带铅锌矿成矿系列研究[J]. 矿物学报, 2017, (增刊):337-338.
REN Guangli, YANG Min, YANG Junlu. Series of lead-zinc deposits in the Tianshuihai-Huoshaoyun area of Karakoram[J]. Acta Mineralogica Sinica, 2017, (suppl.):337-338.
沈能平, 彭建堂, 袁顺达, 等. 湖北徐家山锑矿床方解石C、O、Sr同位素地球化学[J]. 地球化学, 2007, 36(5):479-485.
SHEN Nengping, PENG Jiantang, YUAN Shunda, et al. Carbon, oxygen and strontium isotope geochemistry of calcites from Xujiashan antimony deposit, Hubei Province[J]. Geochimica, 2007, 36(5):479-485.
王松, 丰成友, 佘宏全, 等. 粤东麻坑非硫化物型锌矿锌的赋存状态及成因讨论[J]. 地质学报, 2008, 82(11):1547-1554.
WANG Song, FENG Chengyou, SHE Hongquan, et al. Zinc Occurrence and Genesis of Makeng Nonsulfide Zinc Deposits in the Eastern Guangdong Province[J]. Acta Geologica Sinica, 2008, 82(11):1547-1554.
王旭东, 倪培, 蒋少涌, 等. 江西漂塘钨矿成矿流体来源的He和Ar同位素证据[J]. 科学通报, 2009, 54(21):3338-3344.
WANG Xudong, NI Pei, JIANG Shaoyong, et al. Origin of ore-forming fluid in the Piaotang tungsten deposit in Jiangxi Province:Evidence from Helium and argon isotopes[J]. Chinese Science Bulletin, 2009, 54(21):3338-3344.
新疆地质矿产勘查开发局第八地质大队. 新疆和田县火烧云矿区铅锌矿勘探报告[R]. 乌鲁木齐:新疆维吾尔自治区地质勘查基金项目管理中心, 2016.
杨永强, 李丽. 非硫化物型锌矿床的地质特征和成因机制[J]. 世界地质, 2010, 29(1):56-59.
YANG Yongqiang, LI Li. Geological characteristics and formation mechanism of nonsulfide zinc deposit[J]. Global Geology, 2010, 29(1):56-59.
郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京:科学出版社, 2000.
ZHENG Yongfei, CHEN Jiangfeng. Geochemistry of Stable isotope[M]. Beijing:Science Press, 2000.
周家喜, 黄智龙, 周国富, 等. 黔西北天桥铅锌矿床热液方解石C、O同位素和REE地球化学[J]. 大地构造与成矿学, 2012, 36(1):93-101.
ZHOU Jiaxi, HUANG Zhilong, ZHOU Guofu, et al. C, O Isotope and REE Geochemistry of the Hydrothermal Calcites from the Tianqiao Pb-Zn Ore Deposit in NW Guizhou Province, China[J]. Geotectonica et Metallogenia, 2012, 36(1):93-101.
朱炳泉, 李献华. 地球科学中同位素体系理论与应用:兼论中国大陆壳幔演化[M]. 北京:科学出版社, 1998.
ZHU Bingquan, LI Xianhua. Isotopic systematic theory and application in Earth sciences:concurrently discussing crust-mantle evolution of Chinese continent[M]. Beijing:Science Press, 1998.
赵晓健, 伍跃中, 王泰山, 等. 西昆仑乔尔天山-岔路口地区铅锌矿成矿特征及找矿标志[J]. 西北地质, 2014, 47(4):245-255.
ZHAO Xiaojian, WU Yuezhong, WANG Taishan, et al. Metallogenic characteristics and Prospecting Criteria of Lead-zinc Deposits in Qiao'er Tianshan-Chalukou Region of west Kunlun[J]. Northwestern Geology, 2014, 47(4):245-255.
赵振华. 微量元素地球化学原理[M]. 北京:科学出版社, 1997.
ZHAO Zhenhua. Principles of Micro-element Geochemistry[M]. Beijing:Science Press, 1997.
BURNARD PG, HU R, TURNER G, et al. Mantle,crustal and atmospheric noble gases in Ailaoshan gold deposits, Yunnan Province, China[J]. Geochimica et Cosmochimica Acta, 1999, 63:1595-1604.
BONI M and MONDILLO N. The "Calamines" and the "Others":The Great Family of Supergene Nonsulfide Zinc Ores[J]. Ore Geology Reviews, 2015, 67:208-233.
GONFIANTINI R, STICHLER W, ROZANSKI K. Standards and Intercomparison Materials Distributed by the International Atomic Energy Agency for Stable Isotope Measurements. In Reference and Intercomparison Materials for Stable Isotopes of Light elements[M]. IAEA, Vienna, Austria:the Isotope Hydrology Section of the International Atomic Energy Agency. 1995, 13-29.
GAO Yongbao. The Giant HuoshaoyunNonsulfide Zinc Deposit in Karakorum, North Margin of Tibet Plateau[A]. In:Abstract Volume to the Thematic Session at the 52nd CCOP Annual Session[C]. 2016, 104.
HOEFS J. Stable Isotope Geochemistry[M]. 3rd Edition. Berlin:Springer-Verlag. 1987, 241.
LEACH D L, SANGSTER D F, KELLEY K D, et al. Sediment-hosted lead-Zink deposit:A global perspective[M]. Economic Geology, 100th Anniversary Volume, 2005, 561-607.
OHMOTO H, RYE RO. Isotopes of sulfur and carbon. In:Barnes HL(ed.). Geochemistry of Hydrothermal Ore Deposits[M]. 2nd Edition. New York:J.Wiley and Sons, Inc. 1979, 798.
OHMOTO H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 1972, 67(5):551-578.
STUART FM, BURNARD PG, TAYLOR RP, et al. Resolving mantle and crustal contributions to ancient hydrothermal fluids:He-Ar isotopes in fluid inclusions from DaeHwa W-Mo mineralization, S. Korea[J]. Geochimica et Cosmochimica Acta, 1995, 59:4663-4673.
SANGSTER D F. Mississippi Valley-type and Sedex Lead-zinc Deposits:a Comparative Examination[J]. Transaction-Instiution of Mining and Metallurgy (Sect. B:Applied Earth Sciences), 1990, 99:21-42.
TAYLOR HP. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Economic Geology, 1986, 69:843-883.
TAYLOR SR and MCLENNAN SM. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33:241-265.
TRULL TW, KURZ MD, JENKINS W J. Diffusion of cosmogenic3He in olivine and quartz:Implications for surface exposure dating[J]. Earth and Planetary Science Letters, 1991, 103:241-256.
VEIZER J and HOEFS J. The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonaterocks[J]. Geochimica et Cosmochimica Acta, 1976, 40:1387-1395.
ZARTMAN R E and DOE B R. Plumbotectonics-The model[J]. Tectonophysics, 1981, 75:135-162.
ZHOU Jiaxi,WANG Jingsong,YANG Dezhi,LIU Jinhai.H-O-S-Cu-Pb Isotopic Constraints on theOrigin of the Nage Cu-Pb Deposit, Southeast Guizhou Province, SW China[J]. Acta Geologica Sinica (English Edition), 2013, 87(05):1334-1343.
-
计量
- 文章访问数: 1288
- PDF下载数: 661
- 施引文献: 0