几种聚类优化的机器学习方法在灵台县滑坡易发性评价中的应用

邱维蓉, 吴帮玉, 潘学树, 唐亚明. 2020. 几种聚类优化的机器学习方法在灵台县滑坡易发性评价中的应用. 西北地质, 53(1): 222-233. doi: 10.19751/j.cnki.61-1149/p.2020.01.021
引用本文: 邱维蓉, 吴帮玉, 潘学树, 唐亚明. 2020. 几种聚类优化的机器学习方法在灵台县滑坡易发性评价中的应用. 西北地质, 53(1): 222-233. doi: 10.19751/j.cnki.61-1149/p.2020.01.021
QIU Weirong, WU Bangyu, PAN Xueshu, TANG Yaming. 2020. Application of Several Cluster-optimization-based Machine Learning Methods in Evaluation of Landslide Susceptibility in Lingtai County. Northwestern Geology, 53(1): 222-233. doi: 10.19751/j.cnki.61-1149/p.2020.01.021
Citation: QIU Weirong, WU Bangyu, PAN Xueshu, TANG Yaming. 2020. Application of Several Cluster-optimization-based Machine Learning Methods in Evaluation of Landslide Susceptibility in Lingtai County. Northwestern Geology, 53(1): 222-233. doi: 10.19751/j.cnki.61-1149/p.2020.01.021

几种聚类优化的机器学习方法在灵台县滑坡易发性评价中的应用

  • 基金项目:

    中国博士后科学基金(2016M600780)及中央高校基本科研业务费专项资金(xjj2018260)资助

详细信息
    作者简介: 邱维蓉(1994-),女,甘肃白银人,硕士,主要从事地球大数据挖掘研究。E-mail:18840840529@163.com
  • 中图分类号: P642.22

Application of Several Cluster-optimization-based Machine Learning Methods in Evaluation of Landslide Susceptibility in Lingtai County

  • 笔者以甘肃省平凉市灵台县为目标研究区域,基于地理空间和历史滑坡数据,利用混合高斯聚类(GMM)优化的逻辑回归(LR)、支持向量机(SVM)、BP神经网络(BP Neural Network)、随机森林(RF)4种机器学习模型构建滑坡易发性评价分析模型。选取高程、坡度、坡向、曲率、黄土侵蚀强度、归一化植被指数、地质构造7个环境因子作为滑坡易发性影响因子,以30 m栅格建立影响因子地理空间数据库,将研究区域划分为180万栅格单元。利用混合高斯聚类模型对整个研究区域的栅格单元进行聚类,得出初步的滑坡易发分区,选择易发程度最低类别中的栅格单元作为非滑坡区域,每次随机选择500个单元作为非滑坡单元,并根据历史滑坡数据将203个已知滑坡栅格单元作为滑坡单元,建立4种机器学习分类模型。利用训练好的模型对整个研究区域进行预测,绘制各算法的受试者工作曲线(ROC曲线),对各个算法的预测结果进行对比。分析结果表明,在本目标研究区域,各模型的滑坡易发区划图与实际的滑坡分布情况总体相吻合。随机森林模型的ROC曲线下面积(AUC)最大为0.96,测试集准确率最高为0.93;BP神经网络模型的ROC曲线下面积和测试集准确率次之,为0.90和0.87;支持向量机模型和逻辑回归模型的ROC曲线下面积和测试集准确率分别为0.86、0.81和0.85、0.80,均低于随机森林和BP神经网络模型。
  • 加载中
  • 黄发明,殷坤龙,蒋水华,等.基于聚类分析和支持向量机的滑坡易发性评价[J].岩石力学与工程学报,2018,37(1):156-167.

    HUANG Faming, YIN Kunlong, JIANG Shuihua, et al, Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Catena,2018, 37(1):156-167.

    许冲,戴福初,姚鑫,等. 基于GIS的汶川地震滑坡灾害影响因子确定性系数分析[J]. 岩石力学与工程学报,2010,29(增刊1):2972-2981.

    XU Chong, DAI Fuchu, YAO Xin, et al. GIS-based certainty factor analysis of landslide triggering factors in wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2010,29(Supp.1):2972-2981.(in Chinese)

    王佳佳. 三峡库区万州区滑坡灾害风险评估研究[D].武汉:中国地质大学(武汉),2015.

    WANG Jiajia. Landslide risk assessment in Wanzhou County,Three Gorges Reservoir[Ph. D. Thesis] [D]. Wuhan:China University of Geosciences,2015.(in Chinese)

    刘艺梁, 殷坤龙, 刘斌. 逻辑回归和人工神经网络模型在滑坡灾害空间预测中的应用[J]. 水文地质工程地质, 2010,37(05):97-101.

    LIU Yiliang, YIN Kunlong, LIU Bing. Application of logistic regression and artificial neural networks in spatial assessment of landslide hazards[J]. Hydrogeology and Engineering Geology,2010,37(5):97-101.(in Chinese)

    吴益平, 张秋霞, 唐辉明, 等. 基于有效降雨强度的滑坡灾害危险性预警[J]. 地球科学-中国地质大学学报, 2014,39(7):889-895.

    WU Yiping,ZHANG Qiuxia,TANG Huiming,et al. Landslide Hazard Warning Based on Effective Rainfall Intensity[J]. Earth Science,2014,39(7):889-895. (in Chinese).

    石菊松, 徐瑞春, 石玲, 等. 基于RS和GIS技术的清江隔河岩库区滑坡易发性评价与制图[J]. 地学前缘, 2007(6):119-128.

    SHI Jusong, XU Ruichun, SHI Ling, et al. ETM+ imagery and GIS-based landslide susceptibility mapping for the regional area of Geheyan reservoir on the Qingjiang River,Hubei Province,China[J]. Earth Science Frontiers,2007,14(6):119-128.(in Chinese)

    朱莉, 卢毅敏, 罗建平. 基于灰色-Elman神经网络的区域滑坡易发性模型[J]. 自然灾害学报, 2013, 22(5):120-126.

    ZHU Li, LU Yimin, LUO Jianping. Regional landslide susceptibility model based on gray and Elman neural networks[J]. Journal of Natural Disasters, 2013,22(5):120-126.

    赵衡, 宋二祥. 滑坡灾害空间预测结果的评价方法[J]. 自然灾害学报,2010,19(05):36-41.

    ZHAO Heng,SONG Erxiang. Assessment method for results of spatial prediction of regional landslides[J]. Journal of Natural Disasters, 2010,19(05):36-41.

    赵艳南, 牛瑞卿. 基于证据权法的滑坡危险性区划探索[J]. 地理与地理信息科学, 2010, 26(6):19-23.

    ZHAO Yannan, NIU Ruiqin. Exploration of Landslide Hazard Zonation Based on the Weights of Evidence Method[J]. Geography and Geo-information Science, 2010, 26(6):19-23.

    张军, 刘祖强, 张正禄, 等. 基于神经网络和模糊评判的滑坡敏感性分析[J]. 测绘科学, 2012, 37(3):63-66.

    ZHANG Jun, LIU Zuqiang, ZHANG Zhenglu, et al.Susceptibility of landslide based on Artificial Neural Networks and fuzzy evaluating model[J]. Science of Surveying and Mapping,2012, 37(3):63-66.

    刘坚, 李树林, 陈涛. 基于优化随机森林模型的滑坡易发性评价[J]. 武汉大学学报·信息科学版, 2018, 43(7):1085-1091.

    LIU Jian, LI Shulin, Chen Tao. Landslide Susceptibility Assesment Based on Optimized Random Forest Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7):1085-1091.

    武雪玲, 任福, 牛瑞卿, 等. 斜坡单元支持下的滑坡易发性评价支持向量机模型[J]. 武汉大学学报·信息科学版, 2013, 38(12):1499-1503.

    WU Xueling, REN Fu, NIU Ruiqin, et al. Landslide Spatial Prediction Based on Slope Units and Support Vector Machines[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12):1499-1503.

    方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3):32-38.

    FANG Kuangnan, WU Jianbin, ZHU Jianping, et al. A Review of Technologies onRandom Forests[J]. Statistics & Information Forum, 2011, 26(3):32-38.

    赵向辉, 付忠良, 谢会云, 等. 神经网络和集成学习在地质灾害危险度区划中的应用研究[J]. 工程科学与技术, 2010, 42(增刊1):50-55.

    ZHAO Xianghui, FU Zhongliang, XIE Huiyun, et al. Application Research of Ensemble Learning and Neural Network on Geological Hazard Fatalness Zoning[J]. Journal of Sichuan University(Engineering Science Edition),2010, 42(Supp.1):50-55.

    乔建平, 石莉莉. 滑坡危险度区划方法及其应用[J]. 地质通报, 2009, 28(8):1031-1038.

    QIAO Jianping, SHI Lili. Landslide fatalness zoning method and its application[J]. Geological Bulletin of China, 2009, 28(8):1031-1038.

    王涛, 吴树仁, 石菊松. 国际滑坡风险评估与管理指南研究综述[J]. 地质通报, 2009,28(8):1006-1019.

    WANG Tao, WU Shuren, SHI Jusong. A review of international landslide risk assessment and management guidelines[J].Geological Bulletin of China, 2009, 28(8):1006-1019.

    谭龙, 陈冠, 曾润强, 等. 人工神经网络在滑坡敏感性评价中的应用[J]. 兰州大学学报(自科版), 2014, 50(1):15-20.

    TAN Long, CHEN Guang, ZENG Runqiang, et al. Application of artificial neural network in landslide susceptibility assessment[J].Journal of Lanzhou University (Natural Sciences), 2014, 50(1):15-20.

    文海家, 李洋, 薛靖元, 等. 基于大数据挖掘的山区公路沿线滑坡易发性小区划[J].自然灾害学报,2018,27(04):161-167.

    WEN Haijia, LI Yang, XUE Jingyuan, et al. Landslides susceptibility microzoning along highway in mountainous region based on mining the big data[J].Journal of Natural Disasters, 2018, 27(04):161-167.

    郭子正, 殷坤龙, 黄发明, 等. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报, 2019, 38(02):76-89.

    GUO Zizheng, YIN Kunlong, HUANG Faming, et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019,38(02):76-89.

    于晓辉, 林玲玲, 李静, 等. 基于GIS的中秦岭地区滑坡灾害易发性研究[J]. 防灾科技学院学报, 2010(04):106-113.

    YU Xiaohui, LIN Lingling, LI Jing, et al. A Study on the Susceptibility to Landslide Hazards in Middle Qinling Mountain by Using GIS Technology[J].Journal of Institute of Disaster-Prevention Science and Technology, 2010(4):106-113.

    李航.统计学习方法[M].北京:清华大学出版社,2012.

    周志华.机器学习[M].北京:清华大学出版社,2016.

    唐亚明, 冯卫, 毕银强, 等. 基于风险评价的黄土滑坡分类及特征[J]. 地质通报, 2015, 34(11):2092-2099.

    TANG Yaming, FENG Wei, BI Yinqiang, et al. The classification and features of loess landslide based on risk assessment[J].Geological Bulletin of China, 2015, 34(11):2092-2099.

    薛强, 张茂省, 李林. 基于斜坡单元与信息量法结合的宝塔区黄土滑坡易发性评价[J]. 地质通报, 2015, 34(11):2108-2115.

    XUE Qiang, ZHANG Maosheng, LI Lin. Loess landslide susceptibility evaluation based on slope unit and information value method in Baota District, Yan'an[J].Geological Bulletin of China, 2015, 34(11):2108-2115.

    张成航, 王佳运, 高波, 等. 陕西胥家村黄土滑坡风险定量分析[J].地质通报, 2015,34(11):2138-2142.

    ZHANG Chenghang, WANG Jiayun, GAO Bo, et al. Risk quantitative evaluation for Xujia Village loess landslide, Xi'an, Shaanxi Province[J], Geological Bulletin of China, 2015, 34(11):2138-2142.

    冯立, 张茂省, 张成航, 等. 四川虹口黑泥湾滑坡风险性评估[J]. 西北地质, 2014,47(3):165-176.

    FENG Li, ZHANG Maosheng, ZHANG Chenghang, et al. Risk Assessment of the Heiniwan Landslide in Hongkou County,Sichuan Province[J]. Northwestern Geology, 2014,47(3):165-176.

    缪卫东. 西安市白鹿塬滑坡发生时间预测研究[J]. 西北地质, 2003, 36(4):90-95.

    MIAO Weidong. Time prediction study on occurring of landslides in Bailuyuan, Xi'an[J]. Northwestern Geology, 2003, 36(4):90-95.

    PRADHAM B. A comparative study on the predictive ability of the decision tree,support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS[J]. Computers & Geosciences, 2013, 51(2):350-365.

    AYALEW L, YAMAGISHI H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan[J]. Geomorphology, 2005, 65(1-2):0-31.

    TSANGARATOS P, BENARDO A. Estimating landslide susceptibility through an artificial neural network classifier[J]. Natural Hazards, 2014, 74(3):1489-1516.

  • 加载中
计量
  • 文章访问数:  2019
  • PDF下载数:  675
  • 施引文献:  0
出版历程
收稿日期:  2019-10-02
修回日期:  2019-11-05

目录