LCT型花岗伟晶岩岩石成因和锂富集机制研究进展

孙文礼, 刘益, 张照伟. 2022. LCT型花岗伟晶岩岩石成因和锂富集机制研究进展. 西北地质, 55(2): 35-55. doi: 10.19751/j.cnki.61-1149/p.2022.02.003
引用本文: 孙文礼, 刘益, 张照伟. 2022. LCT型花岗伟晶岩岩石成因和锂富集机制研究进展. 西北地质, 55(2): 35-55. doi: 10.19751/j.cnki.61-1149/p.2022.02.003
SUN Wenli, LIU Yi, ZHANG Zhaowei. 2022. Research Progresson Petrogenesis of LCT-type Granitic Pegmatite and Lithium Enrichment Mechanism. Northwestern Geology, 55(2): 35-55. doi: 10.19751/j.cnki.61-1149/p.2022.02.003
Citation: SUN Wenli, LIU Yi, ZHANG Zhaowei. 2022. Research Progresson Petrogenesis of LCT-type Granitic Pegmatite and Lithium Enrichment Mechanism. Northwestern Geology, 55(2): 35-55. doi: 10.19751/j.cnki.61-1149/p.2022.02.003

LCT型花岗伟晶岩岩石成因和锂富集机制研究进展

  • 基金项目:

    国家自然科学基金“柴北缘花岗伟晶岩型锂铍等关键金属超常富集成矿的可能机制”(92062217);甘肃省教育厅高等学校创新基金项目“天水温泉岩体放射性元素生热特征与干热岩潜力评价”(2021A-230);天水市科技支撑项目“锆石Zr同位素分馏与关键金属超常富集耦合关系研究”(2022-FZJHK-3012);甘肃省青年博士基金项目“高分卫星特征参数反演算法系统集成研究”(2021QB-141)联合资助。

详细信息
    作者简介: 孙文礼(1990-),男,在读博士,讲师,主要从事岩浆演化过程与成矿关系研究。E-mail:sunwenli@pku.edu.cn。
  • 中图分类号: P618.71;P581

Research Progresson Petrogenesis of LCT-type Granitic Pegmatite and Lithium Enrichment Mechanism

  • LCT型花岗伟晶岩是全球重要的锂资源寄主岩石之一。基于近40年全球LCT型花岗伟晶岩年代学、地球化学、包裹体、数值模拟和岩石实验学研究成果,笔者梳理总结LCT型花岗伟晶岩时空分布特征、温压条件、岩浆起源与演化过程和锂富集机制,以期为今后花岗伟晶岩型锂矿找矿工作提供理论依据。研究表明,全球LCT型花岗伟晶岩形成于3 040~7 Ma,成岩峰期与超大陆存在期具有较好耦合性;其侵位压力为250~350 MPa,液相线温度与助溶剂含量有关(650~750℃),固相线温度约为425℃。相比于大陆地壳,不同时代LCT型花岗伟晶岩均具有富集SiO2、Na2O、K2O、Li、Cs、Ta和Nb,亏损Fe2O3、CaO、MgO、TiO2和Zr,低Nb/Ta值、Zr/Hf值等特征。LCT型花岗伟晶岩岩浆可能起源于花岗质岩浆高程度(>90%)结晶分异、地壳物质小比例(5%~20%)深熔作用、富F-Li花岗质岩浆熔离作用或超临界流体(T≈731±21℃)。LCT型伟晶岩岩浆侵位后在较短时间内冷却固结,具体演化过程存在不平衡结晶和不混溶之争。伟晶岩岩浆起源和演化过程均有Li富集效应,其中结晶分异成因的LCT伟晶岩Li超常富集(Li≥10 000×10-6)受控于深部岩浆房总分配系数(DLi<0.5)、分异程度(F>99%)和Li初始浓度(>100×10-6);深熔成因LCT型伟晶岩Li超常富集受控于源区Li含量和残余相黑云母所占比例;不混溶成因LCT伟晶岩Li超常富集受控于含Li络合物/化合物进入富挥发分贫硅熔体相能力。伟晶岩岩浆不平衡结晶演化的Li富集与组成带状优化过程有关,而不混溶演化的Li富集受控于富挥发分熔体相温度和含水量。
  • 加载中
  • 陈衍景, 薛莅治, 王孝磊, 等.世界伟晶岩型锂矿床地质研究进展[J].地质学报, 2021, 95(10):2971-2995.

    CHEN Yanjing, XUE Lizhi, WANG Xiaolei, et al. Progress in geological study of pegmatite-typelithium deposits in the world[J]. Acta Geological Sinica, 2021, 95(10):2971-2995.

    胡晓君, 李欢. 花岗伟晶岩型锂矿床研究进展及展望[J].中国有色金属学报, 2021, 31(11):3468-3488.

    HU Xiaojun, LI huan. Research progress and prospect of granitic pegmatite-typelithium deposit[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(11):3468-3488.

    李福春, 朱金初, 张林松, 等.富氟花岗质熔体形成和演化的实验研究[J].岩石学报, 2003, 19(1):125-130.

    LI Fuchun, ZHU Jinchu, ZHANG Linsong, et al. Experimental study on formation and evolution of F-rich granitic melt[J]. Acta Petrologica Sinica, 2003, 19(1):125-130.

    李建康, 李鹏, 严清高, 等.中国花岗伟晶岩的研究历程及发展态势[J].地质学报, 2021, 95(10):2996-3016.

    LI Jiankang, LI Peng, YAN Qinggao, et al. History of granitic pegmatite research in China[J]. Acta Geologica Sinica, 2021, 95(10):2996-3016.

    李建康, 张德会, 王登红, 等.富氟花岗岩浆液态不混溶作用及其成岩成矿效应[J]. 地质论评, 2008, 54(2):175-183.

    LI Jiankang, ZHANG Dehui, WANG Denghong, et al. Liquid immiscibility of fluorine-rich granite magma and its diagenesis and metallogeny[J]. Geological Review, 2008, 54(2):175-183.

    刘丽君, 王登红, 侯可军, 等.锂同位素在四川甲基卡新三号矿脉研究中的应用[J].地学前缘, 2017, 24(5):167-171.

    LIU Lijun, WANG Denghong, HOU Kejun, et al. Application of lithium isotope to Jiajika new No.3 pegmatite lithium polymetallic vein in Siichuan[J]. Earth Science Frontiers, 2017, 24(5):167-171.

    卢焕章, 王中刚, 李院生. 岩浆-流体过渡和阿尔泰三号伟晶岩脉之成因[J].矿物学报, 1996, 16(1):1-7.

    LU Huanzhang, WANG Zhonggang, LI Yuansheng. Magma-fluid transition and genesis of pegmatite dike No.3 at Altay, Xinjiang[J]. Acta Mineralogica Sinica, 1996, 16(1):1-7.

    栾世伟. 秦东稀有元素花岗伟晶岩某些地球化学特征[J]. 地球化学, 1979, 4:322-330.

    LUAN Shiwei. Some geochemical features of a rare element bearing granite-pegmatite in the eastern Qinling range[J]. Geochemica, 1979, 4:322-330.

    秦克章, 赵俊兴, 何畅通, 等.喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J].岩石学报, 2021, 37(11):3277-3286.

    QIN Kezhang, ZHAO Junxing, HE Changtong, et al. Discovery of the Qongjiagang giantlithium pegmatite deposit in Himalaya, Tibet, China[J]. Acta Petrologica Sinica, 2021, 37(11):3277-3286.

    苏嫒娜, 田世洪, 侯增谦, 等.锂同位素及其在四川甲基卡伟晶岩型锂多金属矿床研究中的应用[J]. 现代地质, 2011, 25(2):236-242.

    SU Aina, TIAN Shihong, HOU Zengqian, et al. Lithium isotope and its application to Jiajika pegmatite typelithium polymetallic deposit in Sichuan[J]. Geoscience, 2011, 25(2):236-242.

    孙文礼, 马叶情, 宋庆伟. 中国花岗伟晶岩型锂矿特征和研究进展[J].地质与勘探, 2021, 57(3):478-496.

    SUN Wenli, MA Yeqing, SONG Qingwei. Characteristics and research progress of granitic pegmatite typelithium deposits in China[J]. Geology and Exploration, 2021, 57(3):478-496.

    王联魁, 王慧芬, 黄智龙. Li-F花岗岩液态分离的同位素地球化学标志[J]. 地质与勘探, 2002, 38(5):38-43.

    WANG Liankui, WANG Huifeng, HUANG Zhilong. Geochemical indicators of isotopes in Li-F granitic liquid segregation[J]. Geology and Exploration, 2002, 38(5):38-43.

    王汝成, 邬斌, 谢磊, 等.稀有金属成矿全球时空分布与大陆演化[J].地质学报, 2021, 95(1):182-193.

    WANG Rucheng, WU Bin, XIE Lei, et al. Global tempo-spatial distribution of rare-metal mineralization and continental evolution[J]. Acta Geologica Sinica, 2021, 95(1):182-193.

    熊欣, 李建康, 王登红, 等. 川西甲基卡花岗伟晶岩型锂矿床中熔体、流体包裹体固相物质研究[J]. 岩石矿物学杂志, 2019, 38(2):241-253.

    XIONG Xin, LI Jiankang, WANG Denghong, et al. A study of solid minerals in melt inclusions and fluid inclusions from the Jiajika pegmatite-type lithium deposit[J]. Acta Petrologica et Mineralogica, 2019, 38(2):241-253.

    薛颖瑜, 刘海洋, 孙卫东. 锂的地球化学性质与富集机理[J]. 大地构造与成矿学, 2021, 45(6):1202-1215.

    XUE Yinyu, LIU Haiyang, SUN Weidong. The geochemical properties and enrichment mechanism of lithium[J]. Geotectonica et Metallogenia, 2021, 45(6):1202-1215.

    徐兴旺, 洪涛, 李杭, 等.初论高温花岗岩-伟晶岩锂铍成矿系统:以阿尔金中段地区为例[J].岩石学报, 2020, 36(12):3572-3592.

    XU Xingwang, HONG Tao, LI Hang, et al. Concept of high-temperature granite-pegmatite Li-Be metallogenic system with a primary study in the middle Altyn-Tagh[J]. Acta Petrologica Sinica, 2020, 36(12):3572-3592.

    徐耀鉴, 徐汉南, 任锡钢. 岩石学[M]. 北京:地质出版社, 2007:86-87.

    XU Yaojian, XU Hannan, REN Xigang. Petrology[M]. Beijing:Geological Publishing House, 2007:86-87.

    许志琴, 朱文斌, 郑碧海, 等.新能源锂矿战略与大陆动力学研究-纪念南京大学地球科学与工程学院100周年华诞[J]. 地质学报, 2021, 95(10):2937-2954.

    XU Zhiqing, ZHU Wenbin, ZHENG Bihai, et al. New energy strategy forlithium resource and the continental dynamics research-celebrating the centenary of the School of Earth Sciences and Engineering, Nanjing University[J]. Acta Geologica Sinica, 2021, 95(10):2937-2954.

    赵俊兴, 何畅通, 秦克章, 等. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代, 源区特征及分异特征[J]. 岩石学报, 2021, 37(11):3325-3347.

    ZHAO Junxing, HE Changtong, QIN Kezhang, et al. Geochronology, source features and the characteristics of fractional crystallization in pegmatite at the Qongjiagang giant pegmatite-type lithium deposit, Himalaya, Tibet[J]. Acta Petrologica Sinica, 2021, 37(11):3325-3347.

    翟明国, 胡波.矿产资源国家安全、国际争夺与国家战略之思考[J]. 地球科学与环境学报, 2021, 43(1):1-11.

    ZHAI Mingguo, HU Bo. Thinking to state security, international competition and national strategy of mineral resources[J]. Journal of Earth Science and Environment, 2021, 43(1):1-11.

    张辉, 吕正航, 唐勇. LCT型伟晶岩及其锂矿床成因概述[J]. 地质学报, 2021, 95(10):2955-2970.

    ZHANG Hui, LÜ Zhenghang, TANG Yong. A review of LCT pegmatite and its lithium ore genesis[J]. Acta Geological Sinica, 2021, 95(10):2955-2970.

    赵振华, 陈华勇, 韩金生. 新疆阿尔泰造山带中生代伟晶岩的稀有金属成矿作用[J].中山大学学报(自然科学版), 2022, 1:1-26.

    ZHAO Zhenghua, CHEN Huayong, HAN Jinsheng. Rare metal mineralization of the Mesozoic pegmatite in Altay orogeny, northern Xinjiang[J]. Acta Scientiarum Naturalium University Sunyatseni, 2022, 1:1-26.

    邹天人, 李庆昌.中国新疆稀有及稀土金属矿床[M]. 北京:地质出版社, 2006:1-284.

    ZOU Tianren, LI Qingchang. Rare and rare earth metallic deposits in Xinjiang, China[M]. Beijing:Geological Publishing House, 2006:1-284.

    Annikova I Y, Vladimirov A G, Smirnov S Z, et al. Geology and mineralogy of the Alakha spodumene granite porphyry deposit, Gorny Altai, Russia[J]. Geology of Ore Deposits, 2016, 58(5):404-426.

    Aurisicchio C, De Vito C, Ferrini V, et al. Nb and Ta oxide minerals in the Fonte del Prete granitic pegmatite dike, Island of Elba, Italy[J]. The Canadian Mineralogist, 2002, 40(3):799-814.

    Bachmann O, Dungan M A, Bussy F. Insights into shallow magmatic processes in large silicic magma bodies:the trace element record in the Fish Canyon magma body, Colorado[J]. Contributions to Mineralogy and Petrology, 2005, 149(3):338-349.

    Ballouard C, Poujol M, Boulvais P, et al. Nb-Ta fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition[J]. Geology, 2016, 44(3):231-234.

    Barnes E M, Weis D, Groat L A. Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada[J]. Lithos, 2012, 132:21-36.

    Barnes E M. The rare element Little Nahanni Pegmatite Group, NWT:studies of emplacement, and magmatic evolution from geochemical and Li isotopic evidence[D]. University of British Columbia, 2010.

    Bradley D, Shea E, Buchwaldt R, et al. Geochronology and tectonic context of lithium-cesium-tantalum pegmatites in the Appalachians[J]. The Canadian Mineralogist, 2016, 54(4):945-969.

    Breaks F W, Moore J M. The Ghost Lake Batholith, Superior Province of northwestern Ontario; a fertile, S-type, peraluminous granite-rare-element pegmatite system[J]. The Canadian Mineralogist, 1992, 30(3):835-875.

    Breiter K, Ďuřisová J, Hrstka T, et al. The transition from granite to banded aplite-pegmatite sheet complexes:An example from Megiliggar Rocks, Tregonning topaz granite, Cornwall[J]. Lithos, 2018, 302:370-388.

    Breiter K, Müller A, Leichmann J, et al. Textural and chemical evolution of a fractionated granitic system:the Podlesí stock, Czech Republic[J]. Lithos, 2005, 80(1-4):323-345.

    Burnham C W, Nekvasil H. Equilibrium properties of granite pegmatite magmas[J]. American Mineralogist, 1986, 71(3):239-263.

    Cameron E N.Internal structure of granitic pegmatites[J]. Econ. Geol.Monograph, 1949, 2:115.

    Cao M J, Zhou Q F, Qin K Z, et al. The tetrad effect and geochemistry of apatite from the Altay Koktokay No. 3 pegmatite, Xinjiang, China:implications for pegmatite petrogenesis[J]. Mineralogy and Petrology, 2013, 107(6):985-1005.

    Černý P, Ercit T S.The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43(6):2005-2026.

    Černý P, London D, Novák M.Granitic pegmatites as reflections of their sources[J]. Elements, 2012, 8(4):289-294.

    Černý P. Rare-element granite pegmatites. Part I:anatomy and internal evolution of pegmatite deposits[J]. Geoscience Canada Reprint Series, 1991a, 18(2):49-67.

    Černý P. Fertile granites of Precambrian rare-element pegmatite fields:is geochemistry controlled by tectonic setting or source lithologies?[J]. Precambrian Research, 1991b, 51(1-4):429-468.

    Černý P. Rare-element granitic pegmatites. Part II:Regional to global environments and petrogenesis[J]. Geoscience Canada, 1991c, 18:68-81.

    Černý P. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research[J]. Applied geochemistry, 1992, 7(5):393-416.

    Chakoumakos B C, Lumpkin G R. Pressture constraints on the crystal AlLi2TiON op:Te Harding Pegmatite, Taos County, New Mexico[J]. The Canadian Mineralogist, 1990, 28(2):287-298.

    Chen B, Huang C, Zhao H. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization[J]. Chemical Geology, 2020, 551:119769.

    Dill H G. Pegmatites and aplites:Their genetic and applied ore geology[J]. Ore Geology Reviews, 2015, 69:417-561.

    Ding K, Liang T, Yang X, et al. Petrogenesis of Dahongliutan Granite in West Kunlun:Evidence from Zircon U-Pb age and Li-Sr-Nd-Hf Isotope[J]. Acta Geological Sinica (English Edition), 2019, 93(S2):166.

    Faria P. The mineralogy and chemistry of the Spro pegmatite mine, Nesodden, and their genetic implications[D].Oslo:University of Oslo:2019, 1-94.

    Garate-Olave I, Roda-Robles E, Gil-Crespo P P, et al. Mica and feldspar as indicators of the evolution of a highly evolved granite-pegmatite system in the Tres Arroyos area (Central Iberian Zone, Spain)[J]. Journal of Iberian Geology, 2018, 44(3):375-403.

    Ginsburg A I, Timofeyev I N, Feldman L G. Principles of geology of the granitic pegmatites[M]. Nedra, Moscow:1979, 1-296.

    Icenhower J, London D. An experimental study of element partitioning among biotite, muscovite, and coexisting peraluminous silicic melt at 200 MPa (H2O)[J]. American Mineralogist, 1995, 80(11-12):1229-1251.

    Jahns R H, Burnham C W. Experimental studies of pegmatite genesis; l, A model for the derivation and crystallization of granitic pegmatites[J]. Economic Geology, 1969, 64(8):843-864.

    Jolliff B L, Papike J J, Shearer C K. Petrogenetic relationships between pegmatite and granite based on geochemistry of muscovite in pegmatite wall zones, Black Hills, South Dakota, USA[J]. Geochimica et Cosmochimica Acta, 1992, 56(5):1915-1939.

    Kontak D J, Dostal J, Kyser T K, et al. A petrological, geochemical, isotopic and fluid-inclusion study of 370 Ma pegmatite-aplite sheets, Peggys Cove, Nova Scotia, Canada[J]. The Canadian Mineralogist, 2002, 40(5):1249-1286.

    Li J K, Zou T R, Liu X F, Wang D H, Ding X.The metallogenetic regularities of lithium deposits in China[J]. Acta Geologica Sinica-english Edition, 2015, 89(2):652-670.

    Li J, Chou I M. An occurrence of metastable cristobalite in spodumene-hosted crystal-rich inclusions from Jiajika pegmatite deposit, China[J]. Journal of Geochemical Exploration, 2016, 171:29-36.

    Linnen R L, Van Lichtervelde M, Černý P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4):275-280.

    Liu L, Wang D, Hou J, et al.New data on lithium isotopic geochemistry of No.X03 lithium vein in the Jiajiaka super-large lithium deposit, Sichuan, China[J]. Acta Geologica Sinica-English Edition, 2019, 93(6):1983-1984.

    London D, Hervig R L, Morgan G B. Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems:experimental results with Macusani glass at 200 MPa[J]. Contributions to Mineralogy and Petrology, 1988, 99(3):360-373.

    London D, Hunt L E, Schwing C R, et al. Feldspar thermometry in pegmatites:truth and consequences[J]. Contributions to Mineralogy and Petrology, 2020, 175(1):1-21.

    London D, Morgan G B, Hervig R L. Vapor-undersaturated experiments with Macusani glass+H2O at 200 MPa, and the internal differentiation of granitic pegmatites[J]. Contributions to Mineralogy and Petrology, 1989, 102(1):1-17.

    London D, Morgan G B, Paul K A, et al. Internal evolution of miarolitic granitic pegmatites at the Little Three mine, Ramona, California, USA[J]. The Canadian Mineralogist, 2012, 50(4):1025-1054.

    London D. A petrologic assessment of internal zonation in granitic pegmatites[J]. Lithos, 2014, 184:74-104.

    London D. Experimental phase equilibria in the system LiAlSiO4-SiO2-H2O:a petrogenetic grid for lithiumx-rich pegmatites[J]. American Mineralogist, 1984, 69(11-12):995-1004.

    London D. Granitic pegmatites:an assessment of current concepts and directions for the future[J]. Lithos, 2005, 80(1-4):281-303.

    London D. Magmatic-hydrothermal transition in the Tanco rare-element pegmatite:Evidence from fluid inclusions and phase-equilibrium experiments[J]. American Mineralogist, 1986, 71(3-4):376-395.

    London D. Melt boundary-layers and the growth of pegmatitic textures[J]. Canadian Mineralogist, 1999, 37:826-827.

    London D. Ore-forming processes within granitic pegmatites.Ore Geology Reviews[J], 2018, 101:349-383.

    London D. Reply to Thomas and Davidson on "A petrologic assessment of internal zonation in granitic pegmatites"(London, 2014a)[J]. Lithos, 2015, 212:469-484.

    Lv Z H, Zhang H, Tang Y. Anatexis origin of rare metal/earth pegmatites:Evidences from the Permian pegmatites in the Chinese Altai[J]. Lithos, 2021, 380:105865.

    Magna T, Novák M, Cempírek J, et al. Crystallographic control on lithium isotope fractionation in Archean to Cenozoic lithium-cesium-tantalum pegmatites[J]. Geology, 2016, 44(8):655-658.

    Maneta V, Baker D R, Minarik W. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts[J]. Contributions to Mineralogy and Petrology, 2015, 170(1):4.

    Maneta V, Baker D R. The potential of lithium in alkali feldspars, quartz, and muscovite as a geochemical indicator in the exploration for lithium-rich granitic pegmatites:A case study from the spodumene-rich Moblan pegmatite, Quebec, Canada[J]. Journal of Geochemical Exploration, 2019, 205:106336.

    McCauley A, Bradley D C. The global age distribution of granitic pegmatites[J]. The Canadian Mineralogist, 2014, 52(2):183-190.

    Melleton J, Gloaguen E, Frei D, et al. How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian Massif, Czech Republic?[J]. The Canadian Mineralogist, 2012, 50(6):1751-1773.

    Michaud J A S, Pichavant M, Villaros A. Rare elements enrichment in crustal peraluminous magmas:insights from partial melting experiments[J]. Contributions to Mineralogy and Petrology, 2021, 176(11):1-33.

    Morgan VI, G.B., London, D.Crystallization ofthe Little Three layered pegmatite-aplite dike, Ramona District, California[J]. Contributions to Mineralogy and Petrology, 1999, 136, 310-330.

    Müller A, Romer R L, Pedersen R B. The Sveconorwegian pegmatite province-thousands of pegmatites without parental granites[J]. The Canadian Mineralogist, 2017, 55(2):283-315.

    Norton J J. Sequence of mineral assemblages in differentiated granitic pegmatites[J]. Economic Geology, 1983, 78(5):854-874.

    Padilla A J, Gualda G A R. Crystal-melt elemental partitioning in silicic magmatic systems:An example from the Peach Spring Tuff high-silica rhyolite, Southwest USA[J]. Chemical Geology, 2016, 440:326-344.

    Parsons I, Magee C W, Allen C M, et al. Mutual replacement reactions in alkali feldspars II:trace element partitioning and geothermometry[J]. Contributions to Mineralogy and Petrology, 2009, 157(5):663-687.

    Partington G A, McNaughton N J, Williams I S. A review of the geology, mineralization, and geochronology of the Greenbushes pegmatite, Western Australia[J]. Economic Geology, 1995, 90(3):616-635.

    Patino Douce A E, Harris N. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 1998, 39(4):689-710.

    Pichavant M, Villaros A, Deveaud S, et al. The influence of redox state on mica crystallization in leucogranitic and pegmatitic liquids[J]. The Canadian Mineralogist, 2016, 54(3):559-581.

    Roda-Robles E, Pesquera A, Gil-Crespo P, Torres-Ruiz J. From granite to highly evolved pegmatite:a case study of the Pinilla de Fermoselle granite-pegmatite system (Zamora, Spain)[J]. Lithos, 2012, 153:192-207.

    Rudnick R L, Gao S, Holland H D, et al. Composition of the continental crust[J]. The Crust, 2003, 3:1-64.

    Selway J B, Breaks F W, Tindle A G. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits[J]. Exploration and Mining Geology, 2005, 14(1-4):1-30.

    Shaw R A, Goodenough K M, Roberts N M W, et al. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes:A case study from the Lewisian Gneiss Complex of north-west Scotland[J]. Precambrian Research, 2016, 281:338-362.

    Shearer C K, Papike J J, Jolliff B L. Petrogenetic links among granites and pegmatites in the Harney Peak rare-element granite-pegmatite system, Black Hills, South Dakota[J]. The Canadian Mineralogist, 1992, 30(3):785-809.

    Sirbescu M L C, Schmidt C, Veksler I V, et al. Experimental crystallization of undercooled felsic liquids:Generation of pegmatitic texture[J]. Journal of Petrology, 2017, 58(3):539-568.

    Stewart D B.Petrogenesis of lithium-rich pegmatites[J].American Mineralogist, 1978, 63(9-10):970-980.

    Stilling A, Černý P, Vanstone P J. The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and their petrogenetic significance[J]. The Canadian Mineralogist, 2006, 44(3):599-623.

    Teng F Z, McDonough W F, Rudnick R L, et al. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite[J]. Earth and Planetary Science Letters, 2006, 243(3-4):701-710.

    Thomas R, Davidson P. The application of Raman spectroscopy in the study of fluid and melt inclusions[J]. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 2012a, 163(2):113-126.

    Thomas R, Davidson P. Water in granite and pegmatite-forming melts[J]. Ore Geology Reviews, 2012b, 46:32-46.

    Thomas R, Davidson P, Beurlen H. The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research[J]. Mineralogy and Petrology, 2012c, 106(1):55-73.

    Thomas R, Davidson P. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state-consequences for the formation of pegmatites and ore deposits[J]. Ore Geology Reviews, 2016, 72:1088-1101.

    Tomkinson M J, Harris P O, Robb L J. The nature and structural setting of rare-element pegmatites along the northern flank of the Barberton greenstone belt, South Africa[J]. South African Journal of Geology, 1995, 98(1):82-94.

    Trumbull R B. A petrological and Rb-Sr isotopic study of an early Archean fertile granite-pegmatite system:The Sinceni Pluton in Swaziland[J]. Precambrian Research, 1993, 61(1-2):89-116.

    Villaros A, Pichavant M. Mica-liquid trace elements partitioning and the granite-pegmatite connection:The St-Sylvestre complex (Western French Massif Central)[J]. Chemical Geology, 2019, 528:119265.

    Walker R J, Hanson G N, Papike J J. Trace element constraints on pegmatite genesis:tin mountain pegmatite, Black Hills, South Dakota[J]. Contributions to Mineralogy and Petrology, 1989, 101(3):290-300.

    Webber K L, Simmons W B, Falster A U, et al. Cooling rates and crystallization dynamics of shallow level pegmatite-aplite dikes, San Diego County, California[J]. American Mineralogist, 1999, 84(5-6):708-717.

    Xing C M, Wang C Y, Wang H. Magmatic-hydrothermal processes recorded by muscovite andcolumbite-group minerals from the Bailongshan rare-element pegmatites in the West Kunlun-Karakorum orogenic belt, NW China[J]. Lithos, 2020, 364:105507.

    Xiong X, Li J, Wang D, et al. Fluid Characteristics and Evolution of the Zhawulong Granitic Pegmatite Lithium Deposit in the Ganzi-Songpan Region, Southwestern China[J]. Acta Geologica Sinica-English Edition, 2019, 93(4):943-954.

    Yan Q H., Wang H, Chi G X, et al. Recognition of a 600-km-long late Trasssic rare metal (Li-Be-Nb-Ta) pegmatite belt in the western Kunlun orogenic belt, western China[J]. Economic Geology, 2022, 17(01):213-236.

    Zhang H, Tian S, Wang D, et al. Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite-pegmatite deposit, Sichuan, China[J]. Ore Geology Reviews, 2021, 134:104139.

    Zhao H, Chen B, Huang C, et al. Geochemical and Sr-Nd-Li isotopic constraints on the genesis of the Jiajika Li-rich pegmatites, eastern Tibetan Plateau:implications for Li mineralization[J]. Contributions to Mineralogy and Petrology, 2022, 177(1):1-16.

    Zhou J S, Wang Q, Xu Y G, et al. Geochronology, petrology, and lithium isotope geochemistry of the Bailongshan granite-pegmatite system, northern Tibet:Implications for the ore-forming potential of pegmatites[J]. Chemical Geology, 2021, 584:120484.

    Zhu Y F, Zeng Y, Gu L. Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China[J]. Journal of Asian Earth Sciences, 2006, 27(1):61-77.

  • 加载中
计量
  • 文章访问数:  3729
  • PDF下载数:  450
  • 施引文献:  0
出版历程
收稿日期:  2021-09-23
修回日期:  2022-01-10

目录