Research Progresson Petrogenesis of LCT-type Granitic Pegmatite and Lithium Enrichment Mechanism
-
摘要: LCT型花岗伟晶岩是全球重要的锂资源寄主岩石之一。基于近40年全球LCT型花岗伟晶岩年代学、地球化学、包裹体、数值模拟和岩石实验学研究成果,笔者梳理总结LCT型花岗伟晶岩时空分布特征、温压条件、岩浆起源与演化过程和锂富集机制,以期为今后花岗伟晶岩型锂矿找矿工作提供理论依据。研究表明,全球LCT型花岗伟晶岩形成于3 040~7 Ma,成岩峰期与超大陆存在期具有较好耦合性;其侵位压力为250~350 MPa,液相线温度与助溶剂含量有关(650~750℃),固相线温度约为425℃。相比于大陆地壳,不同时代LCT型花岗伟晶岩均具有富集SiO2、Na2O、K2O、Li、Cs、Ta和Nb,亏损Fe2O3、CaO、MgO、TiO2和Zr,低Nb/Ta值、Zr/Hf值等特征。LCT型花岗伟晶岩岩浆可能起源于花岗质岩浆高程度(>90%)结晶分异、地壳物质小比例(5%~20%)深熔作用、富F-Li花岗质岩浆熔离作用或超临界流体(T≈731±21℃)。LCT型伟晶岩岩浆侵位后在较短时间内冷却固结,具体演化过程存在不平衡结晶和不混溶之争。伟晶岩岩浆起源和演化过程均有Li富集效应,其中结晶分异成因的LCT伟晶岩Li超常富集(Li≥10 000×10-6)受控于深部岩浆房总分配系数(DLi<0.5)、分异程度(F>99%)和Li初始浓度(>100×10-6);深熔成因LCT型伟晶岩Li超常富集受控于源区Li含量和残余相黑云母所占比例;不混溶成因LCT伟晶岩Li超常富集受控于含Li络合物/化合物进入富挥发分贫硅熔体相能力。伟晶岩岩浆不平衡结晶演化的Li富集与组成带状优化过程有关,而不混溶演化的Li富集受控于富挥发分熔体相温度和含水量。Abstract: LCT-type granitic pegmatite is one of the important host rocks of lithium resources in the world. Based on research results of geochronology, geochemistry, inclusion, numerical simulation and petrological experiments on LCT-type pegmatite in the past 40 years, this paper summarizes its the temporal-spatial distribution characteristics, temperature-pressure conditions, magma origin and evolution process and lithium enrichment mechanism, which is aim to provide theoretical reference for future prospecting work. Studys show that the global LCT-type granitic pegmatite was formed at 3040~7Ma, showing a good coupling between the peak of diagenesis and the supercontinent existence. The pressure of pegmatite emplacement is 250~350 MPa, and its liquidus temperature (650~750℃) is related to the abundance of fluxing-element while solidus temperature is about 425℃. Compared with the average composition of continental crust, LCT-type granitic pegmatite is characterized by enrichment of SiO2, Na2O, K2O, Li, Cs, Ta, Nb and depletion of Fe2O3, CaO, MgO, TiO2, Zr, Lower Nb/Ta and Zr/Hf ratios. LCT-type granitic pegmatite-froming magma is derived from granitic magma with high degree crystallization differentiation (>90%), from partial melting of crustal material with low degree (5%~20%), from immiscibility of F-Li-rich granitic magma and from a supercritical fluid(T≈731±21℃). It cooled and consolidated in a short time after emplacement, howere, its evolution process is debatable, including dynamic crystallization and melt-melt immiscibility. Both origin and evolution of pegmatite-forming melt can cause lithium enrichment. The crystallization differentiation origin modle proposes that the supernormal lithium enrichment (Li ≥ 10 000×10-6) is controlled by the total distribution coefficient (DLi<0.5), degree of crystallization differentiation (>99%) and initial lithium concentration (>100×10-6) in deep magma chamber; however, the partial melting origin modle suggests that the lithium abundance in LCT type pegmatite is related to the abundance of lithium in its source component and the proportion of biotite in the residual phase. The immisible origin modle point out that lithium enrichment is affected by the ability of lithium complexes/compounds entering the volatile-rich and silicion-poor melt phase. The enrichment of lithium during the dynamic crystallization evolution of pegmatite-forming magma is related to constitunent zoning-refining process, however, the lithium abundacne is associated with the temperature and water content of volatile-rich melt in the immiscible evolution model.
-
-
陈衍景, 薛莅治, 王孝磊, 等.世界伟晶岩型锂矿床地质研究进展[J].地质学报, 2021, 95(10):2971-2995.
CHEN Yanjing, XUE Lizhi, WANG Xiaolei, et al. Progress in geological study of pegmatite-typelithium deposits in the world[J]. Acta Geological Sinica, 2021, 95(10):2971-2995.
胡晓君, 李欢. 花岗伟晶岩型锂矿床研究进展及展望[J].中国有色金属学报, 2021, 31(11):3468-3488.
HU Xiaojun, LI huan. Research progress and prospect of granitic pegmatite-typelithium deposit[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(11):3468-3488.
李福春, 朱金初, 张林松, 等.富氟花岗质熔体形成和演化的实验研究[J].岩石学报, 2003, 19(1):125-130.
LI Fuchun, ZHU Jinchu, ZHANG Linsong, et al. Experimental study on formation and evolution of F-rich granitic melt[J]. Acta Petrologica Sinica, 2003, 19(1):125-130.
李建康, 李鹏, 严清高, 等.中国花岗伟晶岩的研究历程及发展态势[J].地质学报, 2021, 95(10):2996-3016.
LI Jiankang, LI Peng, YAN Qinggao, et al. History of granitic pegmatite research in China[J]. Acta Geologica Sinica, 2021, 95(10):2996-3016.
李建康, 张德会, 王登红, 等.富氟花岗岩浆液态不混溶作用及其成岩成矿效应[J]. 地质论评, 2008, 54(2):175-183.
LI Jiankang, ZHANG Dehui, WANG Denghong, et al. Liquid immiscibility of fluorine-rich granite magma and its diagenesis and metallogeny[J]. Geological Review, 2008, 54(2):175-183.
刘丽君, 王登红, 侯可军, 等.锂同位素在四川甲基卡新三号矿脉研究中的应用[J].地学前缘, 2017, 24(5):167-171.
LIU Lijun, WANG Denghong, HOU Kejun, et al. Application of lithium isotope to Jiajika new No.3 pegmatite lithium polymetallic vein in Siichuan[J]. Earth Science Frontiers, 2017, 24(5):167-171.
卢焕章, 王中刚, 李院生. 岩浆-流体过渡和阿尔泰三号伟晶岩脉之成因[J].矿物学报, 1996, 16(1):1-7.
LU Huanzhang, WANG Zhonggang, LI Yuansheng. Magma-fluid transition and genesis of pegmatite dike No.3 at Altay, Xinjiang[J]. Acta Mineralogica Sinica, 1996, 16(1):1-7.
栾世伟. 秦东稀有元素花岗伟晶岩某些地球化学特征[J]. 地球化学, 1979, 4:322-330.
LUAN Shiwei. Some geochemical features of a rare element bearing granite-pegmatite in the eastern Qinling range[J]. Geochemica, 1979, 4:322-330.
秦克章, 赵俊兴, 何畅通, 等.喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J].岩石学报, 2021, 37(11):3277-3286.
QIN Kezhang, ZHAO Junxing, HE Changtong, et al. Discovery of the Qongjiagang giantlithium pegmatite deposit in Himalaya, Tibet, China[J]. Acta Petrologica Sinica, 2021, 37(11):3277-3286.
苏嫒娜, 田世洪, 侯增谦, 等.锂同位素及其在四川甲基卡伟晶岩型锂多金属矿床研究中的应用[J]. 现代地质, 2011, 25(2):236-242.
SU Aina, TIAN Shihong, HOU Zengqian, et al. Lithium isotope and its application to Jiajika pegmatite typelithium polymetallic deposit in Sichuan[J]. Geoscience, 2011, 25(2):236-242.
孙文礼, 马叶情, 宋庆伟. 中国花岗伟晶岩型锂矿特征和研究进展[J].地质与勘探, 2021, 57(3):478-496.
SUN Wenli, MA Yeqing, SONG Qingwei. Characteristics and research progress of granitic pegmatite typelithium deposits in China[J]. Geology and Exploration, 2021, 57(3):478-496.
王联魁, 王慧芬, 黄智龙. Li-F花岗岩液态分离的同位素地球化学标志[J]. 地质与勘探, 2002, 38(5):38-43.
WANG Liankui, WANG Huifeng, HUANG Zhilong. Geochemical indicators of isotopes in Li-F granitic liquid segregation[J]. Geology and Exploration, 2002, 38(5):38-43.
王汝成, 邬斌, 谢磊, 等.稀有金属成矿全球时空分布与大陆演化[J].地质学报, 2021, 95(1):182-193.
WANG Rucheng, WU Bin, XIE Lei, et al. Global tempo-spatial distribution of rare-metal mineralization and continental evolution[J]. Acta Geologica Sinica, 2021, 95(1):182-193.
熊欣, 李建康, 王登红, 等. 川西甲基卡花岗伟晶岩型锂矿床中熔体、流体包裹体固相物质研究[J]. 岩石矿物学杂志, 2019, 38(2):241-253.
XIONG Xin, LI Jiankang, WANG Denghong, et al. A study of solid minerals in melt inclusions and fluid inclusions from the Jiajika pegmatite-type lithium deposit[J]. Acta Petrologica et Mineralogica, 2019, 38(2):241-253.
薛颖瑜, 刘海洋, 孙卫东. 锂的地球化学性质与富集机理[J]. 大地构造与成矿学, 2021, 45(6):1202-1215.
XUE Yinyu, LIU Haiyang, SUN Weidong. The geochemical properties and enrichment mechanism of lithium[J]. Geotectonica et Metallogenia, 2021, 45(6):1202-1215.
徐兴旺, 洪涛, 李杭, 等.初论高温花岗岩-伟晶岩锂铍成矿系统:以阿尔金中段地区为例[J].岩石学报, 2020, 36(12):3572-3592.
XU Xingwang, HONG Tao, LI Hang, et al. Concept of high-temperature granite-pegmatite Li-Be metallogenic system with a primary study in the middle Altyn-Tagh[J]. Acta Petrologica Sinica, 2020, 36(12):3572-3592.
徐耀鉴, 徐汉南, 任锡钢. 岩石学[M]. 北京:地质出版社, 2007:86-87.
XU Yaojian, XU Hannan, REN Xigang. Petrology[M]. Beijing:Geological Publishing House, 2007:86-87.
许志琴, 朱文斌, 郑碧海, 等.新能源锂矿战略与大陆动力学研究-纪念南京大学地球科学与工程学院100周年华诞[J]. 地质学报, 2021, 95(10):2937-2954.
XU Zhiqing, ZHU Wenbin, ZHENG Bihai, et al. New energy strategy forlithium resource and the continental dynamics research-celebrating the centenary of the School of Earth Sciences and Engineering, Nanjing University[J]. Acta Geologica Sinica, 2021, 95(10):2937-2954.
赵俊兴, 何畅通, 秦克章, 等. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代, 源区特征及分异特征[J]. 岩石学报, 2021, 37(11):3325-3347.
ZHAO Junxing, HE Changtong, QIN Kezhang, et al. Geochronology, source features and the characteristics of fractional crystallization in pegmatite at the Qongjiagang giant pegmatite-type lithium deposit, Himalaya, Tibet[J]. Acta Petrologica Sinica, 2021, 37(11):3325-3347.
翟明国, 胡波.矿产资源国家安全、国际争夺与国家战略之思考[J]. 地球科学与环境学报, 2021, 43(1):1-11.
ZHAI Mingguo, HU Bo. Thinking to state security, international competition and national strategy of mineral resources[J]. Journal of Earth Science and Environment, 2021, 43(1):1-11.
张辉, 吕正航, 唐勇. LCT型伟晶岩及其锂矿床成因概述[J]. 地质学报, 2021, 95(10):2955-2970.
ZHANG Hui, LÜ Zhenghang, TANG Yong. A review of LCT pegmatite and its lithium ore genesis[J]. Acta Geological Sinica, 2021, 95(10):2955-2970.
赵振华, 陈华勇, 韩金生. 新疆阿尔泰造山带中生代伟晶岩的稀有金属成矿作用[J].中山大学学报(自然科学版), 2022, 1:1-26.
ZHAO Zhenghua, CHEN Huayong, HAN Jinsheng. Rare metal mineralization of the Mesozoic pegmatite in Altay orogeny, northern Xinjiang[J]. Acta Scientiarum Naturalium University Sunyatseni, 2022, 1:1-26.
邹天人, 李庆昌.中国新疆稀有及稀土金属矿床[M]. 北京:地质出版社, 2006:1-284.
ZOU Tianren, LI Qingchang. Rare and rare earth metallic deposits in Xinjiang, China[M]. Beijing:Geological Publishing House, 2006:1-284.
Annikova I Y, Vladimirov A G, Smirnov S Z, et al. Geology and mineralogy of the Alakha spodumene granite porphyry deposit, Gorny Altai, Russia[J]. Geology of Ore Deposits, 2016, 58(5):404-426.
Aurisicchio C, De Vito C, Ferrini V, et al. Nb and Ta oxide minerals in the Fonte del Prete granitic pegmatite dike, Island of Elba, Italy[J]. The Canadian Mineralogist, 2002, 40(3):799-814.
Bachmann O, Dungan M A, Bussy F. Insights into shallow magmatic processes in large silicic magma bodies:the trace element record in the Fish Canyon magma body, Colorado[J]. Contributions to Mineralogy and Petrology, 2005, 149(3):338-349.
Ballouard C, Poujol M, Boulvais P, et al. Nb-Ta fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition[J]. Geology, 2016, 44(3):231-234.
Barnes E M, Weis D, Groat L A. Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada[J]. Lithos, 2012, 132:21-36.
Barnes E M. The rare element Little Nahanni Pegmatite Group, NWT:studies of emplacement, and magmatic evolution from geochemical and Li isotopic evidence[D]. University of British Columbia, 2010.
Bradley D, Shea E, Buchwaldt R, et al. Geochronology and tectonic context of lithium-cesium-tantalum pegmatites in the Appalachians[J]. The Canadian Mineralogist, 2016, 54(4):945-969.
Breaks F W, Moore J M. The Ghost Lake Batholith, Superior Province of northwestern Ontario; a fertile, S-type, peraluminous granite-rare-element pegmatite system[J]. The Canadian Mineralogist, 1992, 30(3):835-875.
Breiter K, Ďuřisová J, Hrstka T, et al. The transition from granite to banded aplite-pegmatite sheet complexes:An example from Megiliggar Rocks, Tregonning topaz granite, Cornwall[J]. Lithos, 2018, 302:370-388.
Breiter K, Müller A, Leichmann J, et al. Textural and chemical evolution of a fractionated granitic system:the Podlesí stock, Czech Republic[J]. Lithos, 2005, 80(1-4):323-345.
Burnham C W, Nekvasil H. Equilibrium properties of granite pegmatite magmas[J]. American Mineralogist, 1986, 71(3):239-263.
Cameron E N.Internal structure of granitic pegmatites[J]. Econ. Geol.Monograph, 1949, 2:115.
Cao M J, Zhou Q F, Qin K Z, et al. The tetrad effect and geochemistry of apatite from the Altay Koktokay No. 3 pegmatite, Xinjiang, China:implications for pegmatite petrogenesis[J]. Mineralogy and Petrology, 2013, 107(6):985-1005.
Černý P, Ercit T S.The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43(6):2005-2026.
Černý P, London D, Novák M.Granitic pegmatites as reflections of their sources[J]. Elements, 2012, 8(4):289-294.
Černý P. Rare-element granite pegmatites. Part I:anatomy and internal evolution of pegmatite deposits[J]. Geoscience Canada Reprint Series, 1991a, 18(2):49-67.
Černý P. Fertile granites of Precambrian rare-element pegmatite fields:is geochemistry controlled by tectonic setting or source lithologies?[J]. Precambrian Research, 1991b, 51(1-4):429-468.
Černý P. Rare-element granitic pegmatites. Part II:Regional to global environments and petrogenesis[J]. Geoscience Canada, 1991c, 18:68-81.
Černý P. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research[J]. Applied geochemistry, 1992, 7(5):393-416.
Chakoumakos B C, Lumpkin G R. Pressture constraints on the crystal AlLi2TiON op:Te Harding Pegmatite, Taos County, New Mexico[J]. The Canadian Mineralogist, 1990, 28(2):287-298.
Chen B, Huang C, Zhao H. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization[J]. Chemical Geology, 2020, 551:119769.
Dill H G. Pegmatites and aplites:Their genetic and applied ore geology[J]. Ore Geology Reviews, 2015, 69:417-561.
Ding K, Liang T, Yang X, et al. Petrogenesis of Dahongliutan Granite in West Kunlun:Evidence from Zircon U-Pb age and Li-Sr-Nd-Hf Isotope[J]. Acta Geological Sinica (English Edition), 2019, 93(S2):166.
Faria P. The mineralogy and chemistry of the Spro pegmatite mine, Nesodden, and their genetic implications[D].Oslo:University of Oslo:2019, 1-94.
Garate-Olave I, Roda-Robles E, Gil-Crespo P P, et al. Mica and feldspar as indicators of the evolution of a highly evolved granite-pegmatite system in the Tres Arroyos area (Central Iberian Zone, Spain)[J]. Journal of Iberian Geology, 2018, 44(3):375-403.
Ginsburg A I, Timofeyev I N, Feldman L G. Principles of geology of the granitic pegmatites[M]. Nedra, Moscow:1979, 1-296.
Icenhower J, London D. An experimental study of element partitioning among biotite, muscovite, and coexisting peraluminous silicic melt at 200 MPa (H2O)[J]. American Mineralogist, 1995, 80(11-12):1229-1251.
Jahns R H, Burnham C W. Experimental studies of pegmatite genesis; l, A model for the derivation and crystallization of granitic pegmatites[J]. Economic Geology, 1969, 64(8):843-864.
Jolliff B L, Papike J J, Shearer C K. Petrogenetic relationships between pegmatite and granite based on geochemistry of muscovite in pegmatite wall zones, Black Hills, South Dakota, USA[J]. Geochimica et Cosmochimica Acta, 1992, 56(5):1915-1939.
Kontak D J, Dostal J, Kyser T K, et al. A petrological, geochemical, isotopic and fluid-inclusion study of 370 Ma pegmatite-aplite sheets, Peggys Cove, Nova Scotia, Canada[J]. The Canadian Mineralogist, 2002, 40(5):1249-1286.
Li J K, Zou T R, Liu X F, Wang D H, Ding X.The metallogenetic regularities of lithium deposits in China[J]. Acta Geologica Sinica-english Edition, 2015, 89(2):652-670.
Li J, Chou I M. An occurrence of metastable cristobalite in spodumene-hosted crystal-rich inclusions from Jiajika pegmatite deposit, China[J]. Journal of Geochemical Exploration, 2016, 171:29-36.
Linnen R L, Van Lichtervelde M, Černý P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4):275-280.
Liu L, Wang D, Hou J, et al.New data on lithium isotopic geochemistry of No.X03 lithium vein in the Jiajiaka super-large lithium deposit, Sichuan, China[J]. Acta Geologica Sinica-English Edition, 2019, 93(6):1983-1984.
London D, Hervig R L, Morgan G B. Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems:experimental results with Macusani glass at 200 MPa[J]. Contributions to Mineralogy and Petrology, 1988, 99(3):360-373.
London D, Hunt L E, Schwing C R, et al. Feldspar thermometry in pegmatites:truth and consequences[J]. Contributions to Mineralogy and Petrology, 2020, 175(1):1-21.
London D, Morgan G B, Hervig R L. Vapor-undersaturated experiments with Macusani glass+H2O at 200 MPa, and the internal differentiation of granitic pegmatites[J]. Contributions to Mineralogy and Petrology, 1989, 102(1):1-17.
London D, Morgan G B, Paul K A, et al. Internal evolution of miarolitic granitic pegmatites at the Little Three mine, Ramona, California, USA[J]. The Canadian Mineralogist, 2012, 50(4):1025-1054.
London D. A petrologic assessment of internal zonation in granitic pegmatites[J]. Lithos, 2014, 184:74-104.
London D. Experimental phase equilibria in the system LiAlSiO4-SiO2-H2O:a petrogenetic grid for lithiumx-rich pegmatites[J]. American Mineralogist, 1984, 69(11-12):995-1004.
London D. Granitic pegmatites:an assessment of current concepts and directions for the future[J]. Lithos, 2005, 80(1-4):281-303.
London D. Magmatic-hydrothermal transition in the Tanco rare-element pegmatite:Evidence from fluid inclusions and phase-equilibrium experiments[J]. American Mineralogist, 1986, 71(3-4):376-395.
London D. Melt boundary-layers and the growth of pegmatitic textures[J]. Canadian Mineralogist, 1999, 37:826-827.
London D. Ore-forming processes within granitic pegmatites.Ore Geology Reviews[J], 2018, 101:349-383.
London D. Reply to Thomas and Davidson on "A petrologic assessment of internal zonation in granitic pegmatites"(London, 2014a)[J]. Lithos, 2015, 212:469-484.
Lv Z H, Zhang H, Tang Y. Anatexis origin of rare metal/earth pegmatites:Evidences from the Permian pegmatites in the Chinese Altai[J]. Lithos, 2021, 380:105865.
Magna T, Novák M, Cempírek J, et al. Crystallographic control on lithium isotope fractionation in Archean to Cenozoic lithium-cesium-tantalum pegmatites[J]. Geology, 2016, 44(8):655-658.
Maneta V, Baker D R, Minarik W. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts[J]. Contributions to Mineralogy and Petrology, 2015, 170(1):4.
Maneta V, Baker D R. The potential of lithium in alkali feldspars, quartz, and muscovite as a geochemical indicator in the exploration for lithium-rich granitic pegmatites:A case study from the spodumene-rich Moblan pegmatite, Quebec, Canada[J]. Journal of Geochemical Exploration, 2019, 205:106336.
McCauley A, Bradley D C. The global age distribution of granitic pegmatites[J]. The Canadian Mineralogist, 2014, 52(2):183-190.
Melleton J, Gloaguen E, Frei D, et al. How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian Massif, Czech Republic?[J]. The Canadian Mineralogist, 2012, 50(6):1751-1773.
Michaud J A S, Pichavant M, Villaros A. Rare elements enrichment in crustal peraluminous magmas:insights from partial melting experiments[J]. Contributions to Mineralogy and Petrology, 2021, 176(11):1-33.
Morgan VI, G.B., London, D.Crystallization ofthe Little Three layered pegmatite-aplite dike, Ramona District, California[J]. Contributions to Mineralogy and Petrology, 1999, 136, 310-330.
Müller A, Romer R L, Pedersen R B. The Sveconorwegian pegmatite province-thousands of pegmatites without parental granites[J]. The Canadian Mineralogist, 2017, 55(2):283-315.
Norton J J. Sequence of mineral assemblages in differentiated granitic pegmatites[J]. Economic Geology, 1983, 78(5):854-874.
Padilla A J, Gualda G A R. Crystal-melt elemental partitioning in silicic magmatic systems:An example from the Peach Spring Tuff high-silica rhyolite, Southwest USA[J]. Chemical Geology, 2016, 440:326-344.
Parsons I, Magee C W, Allen C M, et al. Mutual replacement reactions in alkali feldspars II:trace element partitioning and geothermometry[J]. Contributions to Mineralogy and Petrology, 2009, 157(5):663-687.
Partington G A, McNaughton N J, Williams I S. A review of the geology, mineralization, and geochronology of the Greenbushes pegmatite, Western Australia[J]. Economic Geology, 1995, 90(3):616-635.
Patino Douce A E, Harris N. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 1998, 39(4):689-710.
Pichavant M, Villaros A, Deveaud S, et al. The influence of redox state on mica crystallization in leucogranitic and pegmatitic liquids[J]. The Canadian Mineralogist, 2016, 54(3):559-581.
Roda-Robles E, Pesquera A, Gil-Crespo P, Torres-Ruiz J. From granite to highly evolved pegmatite:a case study of the Pinilla de Fermoselle granite-pegmatite system (Zamora, Spain)[J]. Lithos, 2012, 153:192-207.
Rudnick R L, Gao S, Holland H D, et al. Composition of the continental crust[J]. The Crust, 2003, 3:1-64.
Selway J B, Breaks F W, Tindle A G. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits[J]. Exploration and Mining Geology, 2005, 14(1-4):1-30.
Shaw R A, Goodenough K M, Roberts N M W, et al. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes:A case study from the Lewisian Gneiss Complex of north-west Scotland[J]. Precambrian Research, 2016, 281:338-362.
Shearer C K, Papike J J, Jolliff B L. Petrogenetic links among granites and pegmatites in the Harney Peak rare-element granite-pegmatite system, Black Hills, South Dakota[J]. The Canadian Mineralogist, 1992, 30(3):785-809.
Sirbescu M L C, Schmidt C, Veksler I V, et al. Experimental crystallization of undercooled felsic liquids:Generation of pegmatitic texture[J]. Journal of Petrology, 2017, 58(3):539-568.
Stewart D B.Petrogenesis of lithium-rich pegmatites[J].American Mineralogist, 1978, 63(9-10):970-980.
Stilling A, Černý P, Vanstone P J. The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and their petrogenetic significance[J]. The Canadian Mineralogist, 2006, 44(3):599-623.
Teng F Z, McDonough W F, Rudnick R L, et al. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite[J]. Earth and Planetary Science Letters, 2006, 243(3-4):701-710.
Thomas R, Davidson P. The application of Raman spectroscopy in the study of fluid and melt inclusions[J]. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 2012a, 163(2):113-126.
Thomas R, Davidson P. Water in granite and pegmatite-forming melts[J]. Ore Geology Reviews, 2012b, 46:32-46.
Thomas R, Davidson P, Beurlen H. The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research[J]. Mineralogy and Petrology, 2012c, 106(1):55-73.
Thomas R, Davidson P. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state-consequences for the formation of pegmatites and ore deposits[J]. Ore Geology Reviews, 2016, 72:1088-1101.
Tomkinson M J, Harris P O, Robb L J. The nature and structural setting of rare-element pegmatites along the northern flank of the Barberton greenstone belt, South Africa[J]. South African Journal of Geology, 1995, 98(1):82-94.
Trumbull R B. A petrological and Rb-Sr isotopic study of an early Archean fertile granite-pegmatite system:The Sinceni Pluton in Swaziland[J]. Precambrian Research, 1993, 61(1-2):89-116.
Villaros A, Pichavant M. Mica-liquid trace elements partitioning and the granite-pegmatite connection:The St-Sylvestre complex (Western French Massif Central)[J]. Chemical Geology, 2019, 528:119265.
Walker R J, Hanson G N, Papike J J. Trace element constraints on pegmatite genesis:tin mountain pegmatite, Black Hills, South Dakota[J]. Contributions to Mineralogy and Petrology, 1989, 101(3):290-300.
Webber K L, Simmons W B, Falster A U, et al. Cooling rates and crystallization dynamics of shallow level pegmatite-aplite dikes, San Diego County, California[J]. American Mineralogist, 1999, 84(5-6):708-717.
Xing C M, Wang C Y, Wang H. Magmatic-hydrothermal processes recorded by muscovite andcolumbite-group minerals from the Bailongshan rare-element pegmatites in the West Kunlun-Karakorum orogenic belt, NW China[J]. Lithos, 2020, 364:105507.
Xiong X, Li J, Wang D, et al. Fluid Characteristics and Evolution of the Zhawulong Granitic Pegmatite Lithium Deposit in the Ganzi-Songpan Region, Southwestern China[J]. Acta Geologica Sinica-English Edition, 2019, 93(4):943-954.
Yan Q H., Wang H, Chi G X, et al. Recognition of a 600-km-long late Trasssic rare metal (Li-Be-Nb-Ta) pegmatite belt in the western Kunlun orogenic belt, western China[J]. Economic Geology, 2022, 17(01):213-236.
Zhang H, Tian S, Wang D, et al. Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite-pegmatite deposit, Sichuan, China[J]. Ore Geology Reviews, 2021, 134:104139.
Zhao H, Chen B, Huang C, et al. Geochemical and Sr-Nd-Li isotopic constraints on the genesis of the Jiajika Li-rich pegmatites, eastern Tibetan Plateau:implications for Li mineralization[J]. Contributions to Mineralogy and Petrology, 2022, 177(1):1-16.
Zhou J S, Wang Q, Xu Y G, et al. Geochronology, petrology, and lithium isotope geochemistry of the Bailongshan granite-pegmatite system, northern Tibet:Implications for the ore-forming potential of pegmatites[J]. Chemical Geology, 2021, 584:120484.
Zhu Y F, Zeng Y, Gu L. Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China[J]. Journal of Asian Earth Sciences, 2006, 27(1):61-77.
-
计量
- 文章访问数: 3729
- PDF下载数: 450
- 施引文献: 0