Research on Spatial Distribution of Artificial Fill in Xi'an Based on Gaussian Mixture Clustering Algorithm
-
摘要: 通过整理西安市主城区400 km2范围内的工程地质资料,筛选出20 793个工程地质钻孔,用以进行杂填土和素填土的空间分布研究。采用机器学习中高斯混合聚类的算法,对无标记的钻孔数据样本进行学习;使用赤池信息准则和贝叶斯信息准则对高斯混合聚类算法进行检验;通过试算确定杂填土和素填土聚类簇数的底部为n=140,并形成杂填土和素填土的空间分布图。研究表明,西安市人工填土分布广泛,厚度多在3~10 m,局部地区最大厚度可达十几米,土层产状和厚度在平面上变化迅速,性质较为复杂。杂填土和素填土均广泛分布于城区各处,埋深多在3 m以内,部分地区埋深可达3~10 m,极少数区域层底深度达到10 m以上。Abstract: By sorting out the engineering geological data of 400km2 area in the main urban area of Xi'an, about 20793 engineering geological drillings are selected to be used in spatial distribution researching of miscellaneous fill and plain fill. Gaussian mixture clustering algorithm in Machine learning is used for learning unlabeled drilling data samples, Akaike Information Criterion and Bayesian Information Criterion are used for testing Gaussian Mixture Clustering Algorithm, and n=140 is the bottom of cluster number of miscellaneous fill and plain fill are determined by trial calculation, and then spatial distribution map of miscellaneous fill and plain fill are drawn. The research shows that artificial fill of Xi'an is widely distributed, its thickness is mostly between 3 to 10 meters, maximum thickness in local areas can reach more than 10 meters. The occurrence and thickness of soil layers change rapidly in plane and their properties are complicated. Miscellaneous fill and plain fill are widely distributed in urban areas,depth of embedment is mostly within 3 meters, some areas can reach 3 to 10 meters, and very few areas can reach more than 10 meters.
-
Key words:
- gaussian mixture clustering /
- machine learning /
- miscellaneous fill /
- plain fill /
- spatial distribution
-
-
西安市城市规划管理局.西安城市工程地质图集[M].西安:西安地图出版社, 1998.
李豪.成都市中心城区砂卵石层空间分布规律研究[D].成都:西南交通大学, 2018.
LI Hao. Research On The Spatial Distribution of Sand-cobble Stratum in the Chengdu central city[D]. Chengdu:Southwest Jiaotong University, 2018.
郭培虹, 牛瑞卿.基于遥感的三峡库区库岸岩土体类型及空间分布研究[J].长江科学院院报, 2010, 27(4):70-73.
GUO Peihong, NIU Ruiqing. Study on Classification of Rock-Soil Bank Slope and Its Spatial Distribution in Three Gorges Reservoir Area Based on Remote Sensing[J]. Journal of Yangtze River Scientific Research Institute, 2010, 27(4):70-73.
周志华.机器学习[M].北京:清华大学出版社, 2016.
邱维蓉, 吴帮玉, 潘学树, 等.几种聚类优化的机器学习方法在灵台县滑坡易发性评价中的应用[J].西北地质, 2020, 01:222-233.
QIU Weirong, WU Bangyu, PAN Xueshu, et al. Application of Several Cluster-optimization-based Machine Learning Methods in Evaluation of Landslide Susceptibility in Lingtai County[J].Northwestern Geology, 2020, 53(1):222-233.
张茂省, 王化齐, 王尧, 等.中国城市地质调查进展与展望[J].西北地质, 2018, 51(4):1-9.
ZHANG Maosheng, WANG Huaqi, WANG Yao, et al. Progress and Prospect of Urban Geological Survey in China[J].Northwestern Geology, 2018, 51(4):1-9.
张茂省, 王尧, 薛强.资源环境承载力评价理论方法与实践[J].西北地质, 2019, 52(2):1-11.
ZHANG Maosheng, WANG Yao, XUE Qiang.Evaluation of Resource Environment Carrying Capacity:Theoretical Method and Practice[J].Northwestern Geology, 2019, 52(2):1-11.
董英, 宋友桂, 张茂省, 等.关中盆地城市群发展中几个关键基础地质问题[J].西北地质, 2019, 52(2):12-26.
DONG Ying, SONG Yougui, ZHANG Maosheng, et al. Several Key Basic Geological Problems on the Development of the Guanzhong Urban Agglomeration[J].Northwestern Geology, 2019, 52(2):12-26.
王化齐, 董英, 张茂省.西安市地下空间开发利用现状与对策建议[J].西北地质, 2019, 52(2):46-52.
WANG Huaqi, DONG Ying, ZHANG Maosheng. Present Situation and Countermeasures for the Underground Space Utilization in Xi'an City[J].Northwestern Geology, 2019, 52(2):46-52.
洪增林.城市地质调查标准化建设系统[J].西北地质, 2019, 52(2):53-62.
HONG Zenglin. Multi-factor Urban Geological Survey Standardization Construction System[J].Northwestern Geology, 2019, 52(2):53-62.
Park Inhye, Lee Saro. Spatial prediction of landslide susceptibility using a decision tree approach:a case study of the Pyeongchang area, Korea[J].International Journal of Remote Sensing, 2014, 35(16):6089-6112.
Moller Anders Bjorn, Iversen Bo V., Beucher Amelie, et al. Prediction of soil drainage classes in Denmark by means of decision tree classification[J]. Geoderma, 2019, 352:314-329.
Zhou Chaofan, Gong Huili, Chen Beibei, et al. Quantifying the contribution ofmultiple factors to land subsidence in the Beijing Plain, China with machine learning technology[J].Geomorphology, 2019, 335:48-61.
Lee Saro, Lee Chang-Wook. Application of Decision-Tree Model to Groundwater Productivity-Potential Mapping[J].Sustainability, 2015, 7(10):13416-13432.
Jain A K, R CDubes. Algorithms for Clustering Data[M].NJ:Prentice Hall, Upper Saddle River, 1988.
Jain A K. Data clustering:50 years beyond k-means[J].Pattern Recognition Letters, 2009, 31(8):651-666.
Kohonen T. Self-Organizing Maps, 3rd edition[M].Berlin:Springer, 2001.
McLachlan G, D Peel. Finite MixtureModels[M].NY:John Wiley & Sons, New York, 2000.
-
计量
- 文章访问数: 639
- PDF下载数: 34
- 施引文献: 0