冈底斯斑岩铜矿带东段早中新世剥蚀作用及对渐新世—中新世斑岩矿床时空分布的影响

周敖日格勒, 王英, 唐菊兴, 王晓南, 张冠, 田斌, 林文海. 2022. 冈底斯斑岩铜矿带东段早中新世剥蚀作用及对渐新世—中新世斑岩矿床时空分布的影响. 西北地质, 55(3): 286-296. doi: 10.19751/j.cnki.61-1149/p.2022.03.023
引用本文: 周敖日格勒, 王英, 唐菊兴, 王晓南, 张冠, 田斌, 林文海. 2022. 冈底斯斑岩铜矿带东段早中新世剥蚀作用及对渐新世—中新世斑岩矿床时空分布的影响. 西北地质, 55(3): 286-296. doi: 10.19751/j.cnki.61-1149/p.2022.03.023
ZHOU Aorigele, WANG Ying, TANG Juxing, WANG Xiaonan, ZHANG Guan, TIAN Bin, LIN Wenhai. 2022. Early Miocene Exhumation History in the Eastern Gangdese Porphyry Copper Belt and Its Influence on the Spatiotemporal Distribution of Oligocene-Miocene Porphyry Deposits. Northwestern Geology, 55(3): 286-296. doi: 10.19751/j.cnki.61-1149/p.2022.03.023
Citation: ZHOU Aorigele, WANG Ying, TANG Juxing, WANG Xiaonan, ZHANG Guan, TIAN Bin, LIN Wenhai. 2022. Early Miocene Exhumation History in the Eastern Gangdese Porphyry Copper Belt and Its Influence on the Spatiotemporal Distribution of Oligocene-Miocene Porphyry Deposits. Northwestern Geology, 55(3): 286-296. doi: 10.19751/j.cnki.61-1149/p.2022.03.023

冈底斯斑岩铜矿带东段早中新世剥蚀作用及对渐新世—中新世斑岩矿床时空分布的影响

  • 基金项目:

    国家重点研发计划青年科学家项目“藏北高Sr/Y淡色花岗岩W-Nb-Ta成矿作用与找矿快速定位”(2021YFC2900100);国家自然科学基金青年基金项目“西藏甲玛斑岩-矽卡岩型矿床隆升剥露历史研究”(41902095);国家重点研发计划项目“甲玛-驱龙铜多金属资源基地深部勘查与增储示范”(2018YFC0604101);西藏中凯矿业有限公司横向项目“西藏龙玛拉铅锌(铁)矿区成矿条件与找矿方向综合研究”(HE2114)联合资助。

详细信息
    作者简介: 周敖日格勒(1989-),男,博士,助理研究员,矿产普查与勘探专业。E-mail:zhouaorigele@163.com。
    通讯作者: 唐菊兴(1964-),男,博士,研究员,矿产普查与勘探专业。E-mail:tangjuxing@126.com。
  • 中图分类号: P578.2+5

Early Miocene Exhumation History in the Eastern Gangdese Porphyry Copper Belt and Its Influence on the Spatiotemporal Distribution of Oligocene-Miocene Porphyry Deposits

More Information
  • 冈底斯渐新世—中新世斑岩铜矿带是特提斯成矿域重要组成部分,已经发现了多处超大型-大型斑岩-矽卡岩型铜-钼-金矿床。然而,渐新世以来铜矿带所处的青藏高原经历了强烈抬升与剥蚀作用,在此背景下带内矿床是如何保存下来的尚未清楚,带内剥蚀作用的发育特征及对渐新世—中新世斑岩矿床的分布影响如何,控制机制有待解决。笔者通过泽当以北40km处冈底斯弧内部垂直剖面锆石和磷灰石(U-Th)/He定年,发现成矿带内部发育了早中新世(17.3~15.1 Ma)快速剥蚀作用,期间平均剥蚀速率>1.82 km/Ma,剥蚀量为4.0 km,而后剥蚀速率降低至0.14~0.19 km/Ma,15.1 Ma至今剥蚀量~2.5 km。结合前人数据,笔者发现成矿带内早中新世强快速剥蚀区呈东—西向带状分布,且受谢通门-沃卡剪切带向南逆冲作用控制,其南、北两侧也发育同期剥蚀作用,强度明显低于剪切带活动区域,说明高原内部中新世以来的隆升与剥蚀作用具有差异性。冈底斯带渐、中新世斑岩矿床分别分布在早中新世强剥蚀区南、北两侧弱剥蚀区内,指示差异剥蚀作用是成矿带内已发现的渐新世—中新世矿床时空分布的重要影响因素。
  • 加载中
  • 董国臣, 莫宣学, 赵志丹, 等. 拉萨北部林周盆地林子宗火山岩层序新议[J]. 地质通报, 2005, 24(6):549-557.

    DONG Guochen, MO Xuanxue, ZHAO Zhidan, et al. A new understanding of the stratigraphic successions of the Linzizong volcanic rocks in the Lhunzhub basin, northern Lhasa, Tibet, China. Geological Bulletin of China[J], 2005, 24(6):549-557.

    吕鹏瑞, 姚文光, 张辉善, 等. 特提斯成矿域中新世斑岩铜矿岩石成因、源区、构造演化及其成矿作用过程[J]. 地质学报, 2020, 94(08):2291-2310.

    LÜ Pengrui, YAO Wenguang, ZHANG Huishan, et al. Petrogenesis, source, tectonic evolution and mineralization process of the Miocene porphyry Cu deposits in the Tethyan metallogenic domain[J]. Acta Geologica Sinica. 2020, 94(08):2291-2310.

    马元, 许志琴, 李广伟, 等. 藏南冈底斯白垩纪弧后盆地的地壳变形及初始高原的形成[J]. 岩石学报, 2017, 33(12):3861-3872.

    MA Yuan, XU Zhiqin, LI Guangwei, et al. Crustal deformation of the Gangdese Cretaceous back-arc basin and formation of Proto-plateau, South Tibet[J]. Acta Petrologica Sinica, 2017, 33(12):3861-3872.

    孟元库, 徐志琴, 马士委, 等. 藏南冈底斯地体谢通门-曲水韧性剪切带40Ar/39Ar年代学约束[J]. 地质论评, 2016a, 62(4):795-806.

    MENG Yuanku, XU Zhiqin, MA Shiwei, et al. The 40Ar/39Ar Geochronological Constraints on the Xaitongmoin-Quxu Ductile Shear Zone in the Gangdese Batholith, Southern Xizang(Tibet)[J]. Geological Review, 2016a, 62(4):795-806.

    孟元库, 许志琴, 马士委, 等. 藏南冈底斯岩浆带中段曲水韧性剪切带的变形特征及其年代学约束[J]. 地球科学, 2016b, 41(7):1081-1098.

    MENG Yuanku, XU Zhiqin, MA Shiwei, et al. Deformational characteristics and geochronological constraints of Quxu ductile shear zone in Middle Gangdese magmatic belt, South Tibet[J]. Earth Science, 2016b, 41(7):1081-1098.

    王根厚, 曾庆高, 普布次仁. 西藏谢通门-乌郁斜滑韧性剪切带研究[J]. 西藏地质, 1995, (1):93-98.

    WANG Genhou, ZENG Qinggao, PUBU Ciren. A study of Xietongmen-Wuyu Oblique-Sliding Ductile Shear Zone in Tibet[J]. Tibet Geology, 1995, (1):93-98.

    王英, 郑德文, 李又娟, 等. 国际标样Fish Canyon Tuff锆石的(U-Th)/He年龄测定[J]. 地震地质, 2019, 41(5):1302-1315.

    WANG Ying, ZHENG Dewen, LI Youjuan, et al. (U-TH)/He Dating of International standard Fish Canyon Tuff Zircon[J]. Seismology and Egology, 2019, 41(5):1302-1315.

    王英, 郑德文, 武颖, 等. 磷灰石单颗粒(U-Th)/He测年实验流程的建立及验证[J]. 地震地质, 2017, 39(06):1143-1157.

    WANG Ying, ZHENG Dewen, WU Ying, et al. Measurement procedure of single-grain apatite (U-Th)/He dating and its validation by Durango apatite standard[J]. Seismology and Egology, 2017, 39(06):1143-1157.

    袁万明, 侯增谦, 李胜荣, 等. 西藏甲马多金属矿区热历史的裂变径迹证据[J]. 中国科学:D 辑, 2001a, 31(B12):117-121.

    YUAN Wanming, HOU Zengqian, LI Shengrong, et al. Fission track evidence for thermal history of the Jiama polymetallic mining area, Tibet[J]. Scientia Sinica Terrae, 2001, 31(B12):117-121.

    袁万明, 王世成, 李胜荣, 等. 西藏冈底斯带构造活动的裂变径迹证据[J]. 科学通报(中文版), 2001b, 46(20):1739-1742.

    YUAN Wanming, WANG Shicheng, LI Shengrong, et al. Fission track evidence of tectonic activity in the Gangdise belt, Tibet[J]. Chinese Science Bulletin, 2001b, 46(20):1739-1742.

    赵珍, 陆露, 吴珍汉, 等. 西藏冈底斯新生代以来的抬升过程——磷灰石裂变径迹热史模拟的证据[J]. 地质通报, 2017, 36(9):1553-1561.

    ZHAO Zhen, LU Lu, WU Zhenhan, et al. Cenozoic uplift process in Gangdise, Tibet:Evidence from thermal history modeling of apatite fission track[J]. Geological Bulletin of China, 2017, 36(9):1553-1561.

    Chu Meifei, Chung Sunlin, Song Biao, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet[J]. Geology, 2006, 34(9):745-748.

    Chung S L, Chu M F, Zhang Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 2005, 68(3-4):173-196.

    Cooke D R. Porphyry Cu-Au-Mo deposits, FUTORES II Conference-Future Understanding of Tectonics, Ores, Resources, Environment and Sustainability, James Cook University, Townsville, QLD, 2017:25.

    Cooke D R, Hollings P, Walshe J L. Giant porphyry deposits:characteristics, distribution, and tectonic controls[J]. Economic geology, 2005, 100(5):801-818.

    Copeland P, Harrison T M, Pan Y, et al. Thermal evolution of the Gangdese batholith, southern Tibet:a history of episodic unroofing[J]. Tectonics, 1995, 14(2):223-236.

    Dai Jingen, Wang Chengshan, Hourigan Jeremy, et al. Exhumation History of the Gangdese Batholith, Southern Tibetan Plateau:Evidence from Apatite and Zircon (U-Th)/He Thermochronology[J]. Journal of Geology, 2013, 121(2):155-172.

    Farley K A, Wolf R A, Silver L T. The effects of long alpha-stopping distances on (U-Th)/He ages[J]. Geochimica Et Cosmochimica Acta, 1996, 60(21):4223-4229.

    Ge Yukui, Li Yalin, Wang Xiaonan, et al. Oligocene-Miocene burial and exhumation of the southernmost Gangdese mountains from sedimentary and thermochronological evidence[J]. Tectonophysics, 2018, 723:68-80.

    Harrison T M, Yin A, Grove M, et al. The Zedong Window:A record of superposed Tertiary convergence in southeastern Tibet[J]. Journal of Geophysical Research-Solid Earth, 2000, 105(B8):19211-19230.

    Ji Weiqiang, Wu Fuyuan, Liu Chuanzhou, et al. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet[J]. Science in China Series D-Earth Sciences, 2009, 52(9):1240-1261.

    Kesler Stephen E, Wilkinson Bruce H. The role of exhumation in the temporal distribution of ore deposits[J]. Economic Geology, 2006, 101(5):919-922.

    Li Guangwei, Tian Yuntao, Kohn Barry P, et al. Cenozoic low temperature cooling history of the Northern Tethyan Himalaya in Zedang, SE Tibet and its implications[J]. Tectonophysics, 2015a, 643:80-93.

    Li Guangwei, Kohn Barry, Sandiford Mike, et al. Synorogenic morphotectonic evolution of the Gangdese batholith, South Tibet:Insights from low-temperature thermochronology[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(1):101-112.

    Li Y L, Wang C S, Dai J G, et al. Propagation of the deformation and growth of the Tibetan-Himalayan orogen:A review[J]. Earth-Science Reviews, 2015b, 143:36-61.

    Mo Xuanxue, Niu Yaoling, Dong Guochen, et al. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic Succession in southern Tibet[J]. Chemical Geology, 2008, 250(1-4):49-67.

    Sillitoe Richard H. Porphyry Copper Systems[J]. Economic Geology, 2010, 105(1):3-41.

    Tremblay M M, Fox M, Schmidt J L. Erosion in southern Tibet shut down at~10 Ma due to enhanced rock uplift within the Himalaya[J]. Proceedings of the National Academy of Sciences, 2015, 112(39):12030-12035.

    Wen Daren, Liu Dunyi, Chung Sunlin, et al. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet[J]. Chemical Geology, 2008, 252(3-4):191-201.

    Williams H, Turner S, Kelley S, et al. Age and composition of dikes in Southern Tibet:New constraints on the timing of east-west extension and its relationship to postcollisional volcanism[J]. Geology, 2001, 29(4):339-342.

    Yang Zhiming, Goldfarb Richard, Chang Zhaoshan. Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate[J]. Society of Economic Geologists, 2016, 19:279-300.

    Yanites B J, Kesler S E. A climate signal in exhumation patterns revealed by porphyry copper deposits[J]. Nature Geoscience, 2015, 8(6):462.

    Yin A, Harrison T M, Ryerson F J, et al. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet[J]. Journal of Geophysical Research, 1994, 99(B9):18175-18201.

    Yin A, Harrison T M, Murphy M A, et al. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision[J]. Geological Society of America Bulletin, 1999, 111(11):1644-1664.

    Zhao Junxing, Qin Kezhang, Xiao Bo, et al. Thermal history of the giant Qulong Cu-Mo deposit, Gangdese metallogenic belt, Tibet:Constraints on magmatic-hydrothermal evolution and exhumation[J]. Gondwana Research, 2016, 36:390-409.

    Zhou Aorigele, Dai Jingen, Li Yalin, et al. Differential exhumation histories between Qulong and Xiongcun porphyry copper deposits in the Gangdese copper metallogenic Belt:Insights from low temperature thermochronology[J]. Ore Geology Reviews, 2019, 107:801-819.

    Zhou Aorigele, Tang Juxing, Zheng Ming. Eocene uplift and exhumation in Gangdese area:Evidence from zircon U-Pb ages and Al-in-biotite geobarometer[J]. China Geology, 2020, 3(4):652-655.

  • 加载中
计量
  • 文章访问数:  918
  • PDF下载数:  111
  • 施引文献:  0
出版历程
收稿日期:  2021-12-13
修回日期:  2022-04-25

目录