-
摘要: 氦气是重要战略性稀有气体资源,寻找富氦天然气藏是解决氦气资源短缺的关键。目前工业利用的氦资源主要是壳源氦气,有效氦源岩是富氦天然气藏形成的基础,储层是氦气聚集的必须条件。资料调研表明已知富氦天然气藏与花岗岩关系密切,为研究花岗岩生氦、排氦及储氦能力,利用花岗岩铀钍含量与赋存状态、分段加热释氦、氩离子抛光扫描电镜等实验分析数据,结合前人成果综合研究表明:①渭河盆地南缘(北秦岭)花岗岩和银额盆地蒙额地1井花岗岩均富铀、钍,生氦能力较强。②花岗岩中的铀、钍有铀钍独立矿物和铀钍类质同象矿物等2种赋存状态。③温度是控制花岗岩中氦气释放的首要因素,不同矿物对氦气的封闭温度差异较大,晶质铀矿中4He封闭温度最低,为27℃~76℃,而磁铁矿封闭温度最高,可达250℃,即花岗岩在温度大于250℃时对4He无封闭能力,27℃~250℃具有部分封闭能力,27℃以下具有完全封闭能力。④花岗岩纳米级孔隙大小优于页岩(页岩气储层),微裂缝发育,具有氦气运移和储存能力。可见,花岗岩不仅是有效氦源岩,也可以是氦气储集岩。与在烃源岩中找页岩气类似,可在花岗岩等氦源岩中寻找氦气聚集。Abstract: As a strategically important noble gas resource, the exploration of helium in natural gas reservoirs is the key to solving the shortage of helium resources. Industrial use of helium resources is currently dominated by crust-derived helium. Effective helium source rocks are the foundation for the generation of helium-rich natural gas reservoirs, whereas reservoirs are necessary for the accumulation of helium. Previous researches have shown that the known helium-rich natural gas reservoirs are strongly associated with granites. To understand the helium generation, release and storage capacity in granites, this research analyzes the concentration and occurrence states of uranium(U) and thorium(Th), stepwise heating, argon ion polishing technique and scanning electron microscope, combined with previous results, it has been shown that:①The granites in the southern margin of the Weihe basin(North Qinling) and from the Meng'erdi 1 well in the Yingen-Ejinaqi basin are both abundant in uranium and thorium, resulting in good helium production capacity. ②U and Th in granites have two states of occurrence, including, U-Th independent minerals and U-Th isomorphic minerals. ③Temperature is the primary factor controlling the release of helium from granites. The closure temperature for helium differs widely among minerals. Uraninite has the lowest closure temperature for 4He at 27℃~76℃, while magnetite has the highest temperature and reaches 250℃. In other words, granite cannot block 4He inside above 250℃, 27℃~250℃ suggests a partial closure range, and below 27℃ has complete closure capacity. ④ Granite has better nanoscale pore size than shale(shale gas reservoirs), and develops microfractures, therefore it has a good helium transport and storage capacity. In summary, granites are not only effective helium source rocks, but can also be helium reservoirs. Just like exploring shale gas in hydrocarbon source rocks, it is also possible to find helium accumulations in helium source rocks such as granites.
-
Key words:
- granite /
- helium /
- helium source rock /
- diffusion /
- reservoir
-
-
付锁堂,马达德,陈琰,等.柴达木盆地阿尔金山前东段天然气勘探[J].中国石油勘探, 2015,20(06):1-13.
FU Suotang, MA Dade, CHEN Yan, et al. Natural Gas Exploration in Eastern Segment of Alkin Piedmont, Northern Qaidam Basin[J]. China Petroleum Exploration, 2015,20(06):1-13.
韩伟,刘文进,李玉宏,等.柴达木盆地北缘稀有气体同位素特征及氦气富集主控因素[J].天然气地球科学, 2020,31(3):385-392.
HAN Wei, LIU Wenjin, LI Yuhong, et al. Characteristics of Rare Gas Isotopes and Main Controlling Factors of Radon Enrichment in the Northern Margin of Qaidam Basin[J]. Natural Gas Geoscience, 2020, 31(03): 385-392.
李玉宏,卢进才,李金超,等.渭河盆地富氦天然气井分布特征与氦气成因[J].吉林大学学报(地球科学版), 2011,(S1):47-53.
LI Yuhong, LU Jincai, LI Jinchao, et al. Distribution of the Helium-Rich Wells and Helium Derivation in Weihe Basin[J]. Journal of Jilin University(Earth Science Edition). 2011,41(S1):47-53.
李玉宏, 周俊林, 张文, 等. 渭河盆地氦气成藏条件及资源前景(修订版)[M].北京:地质出版社, 2022b.
LI Yuhong, ZHOU Junlin, ZHANG Wen, et al. Helium Accumulation Conditions and Resource Prospects in the Weihe Basin(Revised) [M]. Beijing: Geological Publishing House, 2022b.
李玉宏,李济远,周俊林,等.国内外氦气资源勘探开发现状及其对中国的启示[J].西北地质,2022a,55(3):233-240.
LI Yuhong, LI Jiyuan, ZHOU Junlin, et al. Exploration and Development Status of Helium Resources and its Implications for China[J]. Northwestern Geology, 2022a,55(3):233-240.
李红哲,马峰,谢梅,等.柴达木盆地阿尔金东段基岩气藏盖层特征及控藏机制[J].天然气地球科学, 2018,29(08):1102-1110.
LI Hongzhe, MA Feng, XIE Me, et al. Caprocks characteristics and their control on hydrocarbon accumulation of bedrock gas reservoirs in eastern segment of Alkin Piedmont, Qaidam Basin[J]. Natural Gas Geoscience, 2018,29(08):1102-1110.
张健,杨威,易海永,等四川盆地前震旦系勘探高含氦天然气藏的可行性[J].天然气工业, 2015,35(01):45-52.
ZHANG Jian,YANG Wei,YI Haiyong, et al. Feasibility of high-helium natural gas exploration in the presinian strata of the Shichuan Basin[J]. Natural Gas Industry, 2015,35(01):45-52.
张乔, 周俊林, 李玉宏, 等. 渭河盆地南缘花岗岩中生氦元素(U、Th)赋存状态及制约因素研究——以华山复式岩体为例 [J]. 西北地质, 2022, 55(3): 241-256.
ZHANG Qiao, ZHOU Junlin, LI Yuhong, et al. The Occurrence State and Restraint Factors of Helium-produced Elements(U, Th) in the Granites from the Southern Margin of Weihe Basin: Evidences from Huashan Complex [J]. Northwestern Geology, 2022, 55(3): 241-256.
张文.关中和柴北缘地区战略性氦气资源成藏机理研究[D].北京:中国矿业大学(北京),2019.
ZHANG Wen. Accumulation mechanism ofhelium,a strategic resource,in Guanzhong and North Qaidam Basin[D].Beijing: China University of Mining and Technology(Beijing),2019.
张晓宝,周飞,曹占元,等.柴达木盆地东坪氦工业气田发现及氦气来源和勘探前景[J].天然气地球科学, 2020,31(11):1585-1592.
ZHANG Xiaobao, ZHOU Fei, CAO Zhanyuan. et al. Finding of the Dongping Economic Helium Gas Field in the Qaidam Basin, Helium Source and Exploration Prospect[J]. Natural Gas Geoscience,2020,31:1585-1592.
周伟.柴达木盆地西缘基岩风化壳与油气运聚关系研究[D].北京:中国石油大学(北京),2016.
ZHOU Wei. Relationship between the basement rock weathering crust and the hydrocarbon migration and accumulation in the west margin of the Qaidam Basin[D]. Beijing: China University of Petroleum(Beijing), 2016.
Ballentine C J, Sherwood L B. Regional Groundwater Focusing of Nitrogen and Noble Gases into the Hugoton-Panhandle Giant Gas Field, USA[J].Geochimica et Cosmochimica Acta, 2002, 66(14):2483-2497.
Blackburn T J, Stockli D F, Walker J D. Magnetite(U-Th)/He Dating and Its Application to the Geochronology of Intermediate to Mafic Volcanic Rocks[J].Earth And Planetary Science Letters, 2007, 259(3):360-371.
Boyce J W, Hodges K V, Olszewski W J,et al. He Diffusion in Monazite: Implications for(U-Th)/He Thermochronometry[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(12): Q12004.
Broadhead R F. Helium in New Mexico-Geologic Distribution, Resource Demand, and Exploration Possibilities[J]. New Mexico Geology, 2005, 27(4):93-101.
Copeland P,Watson E B, Urizar S C, et al. Alpha Thermochronology of Carbonates[J]. Geochimica et Cosmochimica Acta, 2007, 71(18): 4488-4511.
Dodson M H. Closure Temperature in Cooling Geochronological and Petrological Systems[J]. Contributions to Mineralogy and Petrology, 1973,40(3):259-274.
Johnson G E. Helium in Northeastern British Columbia[R].Geoscience Reports 2013: British Columbia Ministry of Natural Gas Development, 2013: 45-52.
Katz D L. Source of Helium in Natural Gases[R].USBM Information Circular 8417, 1969: 242-255.
Pierce A P, Gott G B.Mytton J W. Uranium and Helium in the Panhandle Gas Field, Texas, and Adjacent Areas[R].U.S. Geological Survey Professional Paper 454-G,1964: 57.
Reiners P W, Farley K A. Helium Diffusion and (U-Th)/He Thermochronometry of Titanite[J].Geochimica et Cosmochimica Acta, 1999, 63(22):3845-3859.
Reiners P W, Farley K A, Hickes H J. He Diffusion and (U-Th)/He Thermochronometry of Zircon: Initial Results from Fish Canyon Tuff and Gold Butte[J]. Tectonophysics, 2002, 349(1-4):297-308.
Roudil D, Bonhoure J, Pik R, et al. Diffusion of Radiogenic Helium in Natural Uranium Oxides[J]. Journal of Nuclear Materials, 2008, 378(1):70-78.
Ruedemann P, Oles L M. Helium: Its Probable Origin and Concentration in the Amarillo Fold, Texas[J].American Association of Petroleum Geologists Bulletin, 1929,(7): 799-810.
Sabaou N, Ait-Salem H, Zazoun R S. Chemostratigraphy, Tectonic Setting and Provenance of the Cambro-Ordovician Clastic Deposits of the Subsurface Algerian Sahara[J].Journal of African Earth Sciences, 2009, 55(3):158-174.
Tian J, Li J, Pan C,et al. Geochemical Characteristics and Factors Controlling Natural Gas Accumulation in the Northern Margin of the Qaidam Basin[J].Journal of Petroleum Science and Engineering, 2018, 160:219-228.
Wang X, Wang T, Zhang C. Granitoid Magmatism in the Qinling Orogen, Central China andits Bearing on Orogenic Evolution[J].Science China Earth Sciences, 2015, 58(9):1497-1512.
Wernicke R S, Lippolt H J.(U+Th)–He Evidence of Jurassic Continuous Hydrothermal Activity in the Schwarzwald Basement, Germany[J].Chemical Geology, 1997, 138(3):273-285.
Wolf R A, Farley K A, Silver L T. Helium Diffusion and Low-temperature Thermochronometry of Apatite[J].Geochimica et Cosmochimica Acta, 1996, 60(21):4231-4240.
Wolff R, Dunkl I, Kempe U, et al. Variable Helium Diffusion Characteristics in Fluorite[J]. Geochimica et Cosmochimica Acta, 2016,188: 21-34.
Zhang W, Li Y, Zhao F, et al. Granite is an Effective Helium Source Rock: Insights from the Helium Generation and Release Characteristics in Granites from the North Qinling Orogen, China[J]. Acta Geologica Sinica-English Edition, 2020, 94(1):114-125.
-
计量
- 文章访问数: 812
- PDF下载数: 73
- 施引文献: 0