基于斜坡单元的山区城镇滑坡灾害易发性评价:以康定为例

王家柱, 高延超, 铁永波, 徐伟, 白永健, 张彦锋. 2023. 基于斜坡单元的山区城镇滑坡灾害易发性评价:以康定为例. 沉积与特提斯地质, 43(3): 640-650. doi: 10.19826/j.cnki.1009-3850.2021.03001
引用本文: 王家柱, 高延超, 铁永波, 徐伟, 白永健, 张彦锋. 2023. 基于斜坡单元的山区城镇滑坡灾害易发性评价:以康定为例. 沉积与特提斯地质, 43(3): 640-650. doi: 10.19826/j.cnki.1009-3850.2021.03001
WANG Jiazhu, GAO Yanchao, TIE Yongbo, XU Wei, BAI Yongjian, ZHANG Yanfeng. 2023. Landslide susceptibility assessment based on slope units of mountainous cities and towns: A case study of Kangding city. Sedimentary Geology and Tethyan Geology, 43(3): 640-650. doi: 10.19826/j.cnki.1009-3850.2021.03001
Citation: WANG Jiazhu, GAO Yanchao, TIE Yongbo, XU Wei, BAI Yongjian, ZHANG Yanfeng. 2023. Landslide susceptibility assessment based on slope units of mountainous cities and towns: A case study of Kangding city. Sedimentary Geology and Tethyan Geology, 43(3): 640-650. doi: 10.19826/j.cnki.1009-3850.2021.03001

基于斜坡单元的山区城镇滑坡灾害易发性评价:以康定为例

  • 基金项目: 中国地质调查局地调项目资助(DD20221746);强震区特大型泥石流防控标准化体系及示范应用 (2018YFC1505406);国家自然科学基金(41702374);中国地质调查局成都地质调查中心“刘宝珺院士基金”
详细信息
    作者简介: 王家柱(1992—),男,工程师。主要从事地质灾害防治与评估研究。E-mail:383001693@qq.com
  • 中图分类号: P642.23

Landslide susceptibility assessment based on slope units of mountainous cities and towns: A case study of Kangding city

  • 山区地质灾害易发性评价对城镇地质灾害风险管理具有重要意义。本文以康定市为例,以斜坡单元为最小评价单元,选取高程、坡度、坡向、曲率、工程地质岩组、距道路距离、距断裂距离、距水系距离和斜坡结构等9个滑坡影响因子,根据各因子滑坡面积比曲线与证据权值曲线的突变点,划分滑坡影响因子二级状态,并对各影响因子进行相关性分析,剔除相关性较高的距道路距离因子,在此基础上,采用证据权模型进行滑坡易发性评价。对已有治理工程的斜坡单元,本文尝试利用折减系数法对其易发性进行进一步评价。结合现场调查,将研究区滑坡易发性程度划分为:极高易发、高易发、中等易发、低易发。评价结果表明,自然工况下极高易发区主要位于康定市炉城镇以及研究区北侧二道桥村一带,高易发区主要位于雅拉河、折多河与瓦斯沟河谷两侧,对治理工程所在的斜坡单元进行折减后,极高易发区面积由11.21%降至8.42%,滑坡比率由4.03降低至2.3,研究结果符合实际情况,模型精度达77.8%。评价结果较好地反映了康定市区的滑坡易发性分布情况,可为城镇精细化评价提供一定的参考依据。

  • 加载中
  • 图 1  研究区活动断裂分布图

    Figure 1. 

    图 2  滑坡灾害分布特征

    Figure 2. 

    图 3  评价因子状态分级统计图

    Figure 3. 

    图 4  天然工况研究区易发性分布图

    Figure 4. 

    图 5  滑坡易发性结果评价曲线

    Figure 5. 

    图 6  工程治理工况研究区易发性分布图

    Figure 6. 

    图 7  各工况下滑坡数与滑坡比率对比图

    Figure 7. 

    表 1  研究区工程地质岩组划分表

    Table 1.  Classification of engineering geological rock group

    岩组编号工程地质岩组
    岩组1 坚硬块状中酸性岩浆岩岩组
    岩组2 坚硬块状基性–超基性岩浆岩岩组
    岩组3 冰川、冰水、冲洪积、泥石流堆积松散-半胶结土类
    岩组4 较软薄–中厚层状砂质泥岩、粉砂岩为主的岩组
    岩组5 较软-较硬薄层状砂质板岩、变质砂岩、变质粉砂岩为主的岩组
    岩组6 较软薄层状千枚岩、片岩、砂质泥岩为主的岩组
    岩组7 坚硬的中厚层状石英岩、大理岩为主的岩组
    下载: 导出CSV

    表 2  评价指标相关系数

    Table 2.  The correlation coefficients of assessment index

    指标因素高程坡度坡向曲率工程地质岩组距断裂距离距水系距离距道路距离斜坡结构
    高程1
    坡度0.141
    坡向0.110.071
    曲率0.030.010.001
    工程地质岩组−0.280.090.040.001
    距断裂距离0.200.020.030.00−0.061
    距水系距离0.230.03−0.040.00−0.140.151
    距道路距离0.370.140.110.00−0.230.260.311
    斜坡结构−0.05−0.160.160.000.09−0.03−0.24−0.111
    下载: 导出CSV

    表 3  各评价指标证据权重

    Table 3.  The weighted of evidence values of assessment index

    评价指标取值证据权重评价指标取值证据权重
    高程2490~27006.267距断裂距离0~200−0.446
    2700~2900−3.375200~3000.474
    2900~3100−1.502300~400−2.404
    3100~3200−4.761400~7000.252
    3200以上−0.361700~8000.01
    坡度0~100.387距水系距离800~9000.292
    10~151.574>9000.019
    15~25−1.9510~4002.299
    25~300.565400~500−0.115
    30~400.162500~800−5.325
    40~50−0.972800~900−0.034
    50以上−0.154900~1600−0.067
    坡向−1−0.008斜坡结构顺向坡0.813
    0-90−0.543顺斜坡−0.471
    90~1350.154横向坡−0.166
    135~180−1.508逆向坡0.863
    180~2700.268逆斜坡−2.572
    270~360−0.024土质0.233
    工程地质岩组岩组1−1.185曲率1.082
    岩组2−0.005−1.386
    岩组30.6961.786
    岩组41.483
    岩组5−0.063
    岩组6−0.054
    岩组70.166307
    下载: 导出CSV

    表 4  天然工况斜坡单元统计表

    Table 4.  The statistical table of natural condition of slope unit

    易发性等级发生滑坡数斜坡单元面积/m占总滑坡的比例/%占斜坡单元的比例/%滑坡比率
    215.896.4527.240.24
    319.219.6832.930.29
    1216.738.7128.621.35
    极高146.5445.1611.214.03
    下载: 导出CSV

    表 5  工程治理工况斜坡单元统计表

    Table 5.  The statistical table of treatment project for slope unit

    易发性等级发生滑坡数斜坡单元面积/m占总滑坡的比例/%占斜坡单元的比例/%滑坡比率
    211.736.4520.110.32
    720.3422.5834.860.65
    1621.3751.6136.621.41
    极高64.9119.358.422.30
    下载: 导出CSV
  • [1]

    Agterberg F P, Cheng Q, 2002. Conditional Independence Test for Weights-of-Evidence Modeling[J]. Natural Resources Research, 11(4): 249-255. doi: 10.1023/A:1021193827501

    [2]

    陈绪钰, 李明辉, 王德伟等, 2019. 基于GIS和信息量法的四川峨眉山市地质灾害易发性定量评价[J]. 沉积与特提斯地质, 39(4): 100-112 doi: 10.3969/j.issn.1009-3850.2019.04.011

    Chen X Y, Li M H, Wang D W, et al, 2019. Quantitative evalution of geohazards susceptibility based on GIS and information value model for Emeishan City, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 39(4): 100-112. doi: 10.3969/j.issn.1009-3850.2019.04.011

    [3]

    范强, 巨能攀, 向喜琼等, 2015. 证据权法在滑坡易发性分区中的应用——以贵州桐梓河流域为例[J]. 灾害学, 30(1): 124-129 doi: 10.3969/j.issn.1000-811X.2015.01.024

    Fan Q, Ju N P, Xiang X Q, et al, 2015. Application of weights of evidence method in landslide susceptibility zoning-a case study on Tongzi river basin in Guizhou[J]. Journal of Catastrophology, 30(1): 124-129. doi: 10.3969/j.issn.1000-811X.2015.01.024

    [4]

    Goyes-Peñafiel P, Hernández-Rojas A, 2021. Landslide susceptibility index based on the integration of logistic regression and weights of evidence: A case study in Popayan, Colombia[J]. Engineering Geology, 280: 105958. doi: 10.1016/j.enggeo.2020.105958

    [5]

    黄润秋, 2007.20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 26(3): 433-454 doi: 10.3321/j.issn:1000-6915.2007.03.001

    Huang R Q, 2007. Large-scale landslides and their sliding mechanisms in China since the 20th century [J]. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001

    [6]

    姜云, 尹金平, 1992. 华蓥山溪口滑坡—碎屑流[J]. 地质灾害与环境保护, 3(2): 51-58

    Jiang Y, Yin J P, 1992. Xikou landslide-debris flow, Huaying Mountain [J]. Geological Hazards and Environment Preservation, 3(2): 51-58.

    [7]

    Kumar R, Anbalagan R, 2019. Landslide susceptibility mapping of the Tehri reservoir rim area using the weights of evidence method[J]. Journal of Earth System Science, 128(6): 153. doi: 10.1007/s12040-019-1159-9

    [8]

    李媛, 孟晖, 董颖等, 2004. 中国地质灾害类型及其特征——基于全国县市地质灾害调查成果分析[J]. 中国地质灾害与防治学报, 15(2): 32-37 doi: 10.16031/j.cnki.issn.1003-8035.2004.02.005

    Li Y, Meng H, Dong Y, et al, 2004. Main types and characteristics of geo-hazard in china-based on the results of geo-hazard survey in 290 counties [J]. The Chinese Journal of Geological Hazard and Control, 15(2): 32-37. doi: 10.16031/j.cnki.issn.1003-8035.2004.02.005

    [9]

    Mohammady M, Pourghasemi H R, Amiri M, 2019. Assessment of land subsidence susceptibility in Semnan plain (Iran): a comparison of support vector machine and weights of evidence data mining algorithms[J]. Natural Hazards, 99(2): 951-971. doi: 10.1007/s11069-019-03785-z

    [10]

    Segoni S, Tofani V, Lagomarsino D, et al, 2016. Landslide susceptibility of the Prato-Pistoia-Lucca provinces, Tuscany, Italy[J]. Journal of Maps, 12(sup1): 401-406. doi: 10.1080/17445647.2016.1233463

    [11]

    唐然, 2007. 监测技术及其在滑坡防治过程中的应用研究——以丹巴县城建设街后山滑坡为例[D]. 成都理工大学.

    Tang R, 2007. Research on monitoring technology with the application to landslide control−taking Danba landslide for example[D]. Chengdu University of technology.

    [12]

    田述军, 张珊珊, 唐青松等, 2019. 基于不同评价单元的滑坡易发性评价对比研究[J]. 自然灾害学报, 28(6): 137-145

    Tian S J, Zhang S S, Tang Q S, et al, 2019. Comparative study of landslide susceptibility assessment based on different evaluation units [J]. Journal of Natural Disasters, 28(6): 137-145.

    [13]

    王德伟, 丁俊, 魏伦武等, 2006. 四川康定城地质灾害易发分区评价[J]. 沉积与特提斯地质, 26(2): 92-95

    Wang D W, Ding J, Wei L W, et al, 2006. Risk assessment of geological hazards in Kangding county town western Sichuan [J]. Sedimentary Geology and Tethyan Geology, 26(2): 92-95.

    [14]

    王佳佳, 殷坤龙, 肖莉丽, 2014. 基于GIS和信息量的滑坡灾害易发性评价——以三峡库区万州区为例[J]. 岩石力学与工程学报, 33(4): 797-808 doi: 10.13722/j.cnki.jrme.2014.04.012

    Wang J J, Yin K L, Xiao L L, 2014. Landslide susceptibility assessment based on GIS and weighted information value: a case study of Wanzhou district, three gorges reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 33(4): 797-808. doi: 10.13722/j.cnki.jrme.2014.04.012

    [15]

    王建锋, 李世海, 燕琳等, 2002. 重庆武隆“五一”滑坡成因分析[J]. 中国工程科学, 4(4): 22-28 doi: 10.3969/j.issn.1009-1742.2002.04.004

    Wang J F, Li S H, Yan L, et al, 2002. Preliminary Analysis on the May1st Landslide at Wulong [J]. Engineering Science, 4(4): 22-28. doi: 10.3969/j.issn.1009-1742.2002.04.004

    [16]

    王永利, 丁俊, 王德伟等, 2006. 四川康定城地质灾害社会经济易损性分区评价[J]. 沉积与特提斯地质, 26 (2): 88-91 doi: 10.3969/j.issn.1009-3850.2006.02.017

    Wang Y L, Ding J, Wang D W, 2006. Assessment of the vulnerability of social economy by geological hazards in Kangding county town western Sichuan [J]. Sedimentary Geology and Tethyan Geology, 26 (2): 88-91. doi: 10.3969/j.issn.1009-3850.2006.02.017

    [17]

    魏伦武, 王德伟, 丁俊等, 2006. 四川康定城地质灾害危险性分区评价[J]. 沉积与特提斯地质, 26 (2): 81-87

    Wei L W, Wang D W, Ding J, et al, 2006. Risk assessment of geological hazards in Kangding county town western Sichuan[J]. Sedimentary Geology and Tethyan Geology, 26 (2): 81-87.

    [18]

    Xiao T, Segoni S, Chen L, et al, 2020. A step beyond landslide susceptibility maps: a simple method to investigate and explain the different outcomes obtained by different approaches[J]. Landslides, 17(3): 627-640. doi: 10.1007/s10346-019-01299-0

    [19]

    许冲, 戴福初, 姚鑫等, 2009. GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J]. 岩石力学与工程学报, 28(S2): 3978-3985

    Xu C, Dai F C, Yao X, et al, 2009. GIS-based landslide susceptibility assessment using analytical hierarchy process in Wenchuan earthquake region [J]. Chinese Journal of Rock Mechanics and Engineering, 28(S2): 3978-3985.

    [20]

    殷跃平, 2001. 重庆武隆“5.1”滑坡简介[J]. 中国地质灾害与防治学报, 12 (2): 101

    Yin Y P, 2001. A brief introduction to“5.1” landslide in Wulong, Chongqing[J]. The Chinese Journal of Geological Hazard and Control, 12 (2): 101.

    [21]

    殷跃平, 2013. 加强城镇化进程中地质灾害防治工作的思考[J]. 中国地质灾害与防治学报, 24(4): 5-8

    Yin Y P, 2013. On strengthening the prevention and control of geological disasters in the process of Urbanization[J]. The Chinese Journal of Geological Hazard and Control, 24(4): 5-8.

    [22]

    张茂省, 薛强, 贾俊等, 2019. 山区城镇地质灾害调查与风险评价方法及实践[J]. 西北地质, 52(2): 125-135

    Zhang M S, Xue Q, Jia J, et al, 2019. Method and practices for the investigation and risk assessment of geo-hazards in mountainous town[J]. Northwestern Geology, 52(2): 125-135.

    [23]

    赵良军, 陈冬花, 李虎等, 2017. 基于二元逻辑回归模型的新疆果子沟滑坡风险区划[J]. 山地学报, 35(2): 203-211

    Zhao L J, Chen D H, Li H, et al, 2017. A method to assess landslide susceptibility by using logistic regression model for Guozigou region, Xinjiang[J]. Mountain Research, 35(2): 203-211.

    [24]

    郑万模, 巴仁基, 刘宇杰等, 2012. 四川康定城市地震地质及地质灾害风险评价[J]. 沉积与特提斯地质, 32(3): 75-78

    Zheng W M, Ba R J, Liu Y J, et al, 2012. Risk evaluation of urban seismogeology and geological hazards in Kangding, western Sichuan[J]. Sedimentary Geology and Tethyan Geology, 32(3): 75-78.

  • 加载中

(7)

(5)

计量
  • 文章访问数:  2950
  • PDF下载数:  436
  • 施引文献:  0
出版历程
收稿日期:  2020-10-08
修回日期:  2021-03-15
刊出日期:  2023-09-30

目录